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Summary This paper constructs an adaptive algorithm for ordi-
nary differential equations and analyzes its asymptotic behavior as
the error tolerance parameter tends to zero. An adaptive algorithm,
based on the error indicators and successive subdivision of time steps,
is proven to stop with the optimal number, N , of steps up to a prob-
lem independent factor defined in the algorithm. A version of the
algorithm with decreasing tolerance also stops with the total num-
ber of steps, including all refinement levels, bounded by O(N). The
alternative version with constant tolerance stops with O(N log N)
total steps. The global error is bounded by the tolerance parameter
asymptotically as the tolerance tends to zero. For a p-th order accu-
rate method the optimal number of adaptive steps is proportional to
the p-th root of the L

1
p+1 quasi-norm of the error density, while the

number of uniform steps, with the same error, is proportional to the
p-th root of the larger L1-norm of the error density.
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1 Introduction to Adaptive ODE Methods

This paper constructs an adaptive method, for approximation of or-
dinary differential equations, and analyzes its asymptotic behavior as
the error tolerance parameter tends to zero. The algorithm is based
on error indicators for the global discretization error of the form

global error =
∑

time steps

local error · weight + higher order error. (1.1)

Consider a solution X : [0, T ] → R
d of a differential equation, with

flux a : [0, T ] × R
d → R

d,

dX

dt
(t) = a(t,X(t)), 0 < t ≤ T,

X(0) = X0,
(1.2)

and an approximation X of (1.2) by any numerical method, satisfying
the same initial condition

X(0) = X(0) = X0 (1.3)

with time steps
0 = t0 < · · · < tN = T.

This work uses error estimates of the form (1.1) for the global
error

g(X(T )) − g(X(T )), (1.4)

derived in [28], with a given general function g : R
d → R, to con-

struct adaptive time stepping methods. The function g is therefore
included in the data of the problem, which the user specifies as in
optimal control problems; i.e. the user provides the information to
approximate the value of the objective function g. One example is to
find the value of one component of the solution at the final time, e.g.
g(x) = x1.

The adaptive algorithm in this work can be viewed as a solution
to the optimal control problem to minimize the number of time steps,
with the error asymptotically bounded by the tolerance, for general
numerical schemes of ordinary differential equations. The proposed
adaptive algorithm yields an approximate solution to the optimal
strategy ∣∣local error · weight

∣∣ = constant. (1.5)

The advantage with this approximation of functionals, g, of the so-
lution and the optimal control approach to adaptive methods is that
the weights can be computed with additional work which is of the
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same order as that of solving for X. Alternative adaptive methods
based on global error control of Lp-norms of the error require either
more expensive computations of the weights, as compared to the work
to compute X, for d � 1, or some a priori estimates of the weights,
see [20,13,14,23]. In particular the work [20,13,14,23] focuses on the
more important and much harder goal of guaranteed global error con-
trol, which is possible for certain differential equations allowing good
a priori error estimates; this higher goal, not considered here, would
clearly also justify more computational work. On the other hand, our
algorithm treats roundoff errors, which often are neglected even in
studies on guaranteed global error control.

Subsequent work extends the adaptive algorithms here to optimal
control problems, see [32]. Our optimal control approach to adaptivity
is inspired by the work [5–7] and [21] on finite element approxima-
tions. The work [15] studies discontinuous Galerkin approximation of
optimal control problems with adaptive methods based on the alter-
native global error control in norms and arbitrary functionals.

There are numerous adaptive algorithms for ordinary and partial
differential equations, e.g., [1], [3], [5–7], [12], [13], [18], [21], [27], [29],
but the theoretical understanding of convergence rates of adaptive
algorithms is not as well developed; there are however recent impor-
tant contributions. DeVore studies in [10] the efficiency of adaptive
approximation of functions, including wavelet expansions, based on
smoothness conditions in Besov spaces. Inspired by this approxima-
tion result, Cohen, Dahmen and DeVore prove in [8] that a wavelet-
based adaptive N -term approximation algorithm produces a solution
with asymptotically optimal error O(N−s) in the energy norm for lin-
ear coercive elliptic problems. Our work connects DeVore’s smooth-
ness conditions to error densities for adaptive approximation of gen-
eral ordinary differential equations. Adaptivity is also understood in
the special case of integration, e.g., [17] shows that local error indi-
cators give rigorous error bounds in an average probabilistic sense.

What is the right measure of convergence rates for adaptive al-
gorithms? For a constant step size Δt, approximations with error
O(Δtp) require computational work with O(1/Δt) operations. The
accuracy ε ≡ O(Δtp) is hence asymptotically determined by the num-
ber of steps N = O(1/Δt) = O(ε−1/p). This simple asymptotic com-
plexity estimate, O(ε−1/p), is one of the most basic and well used
numerical analysis measures of the performance of approximations.
Analogously, for adaptive methods, it seems natural to study the ap-
proximation error and the associated work, proportional to the num-
ber of steps, as the tolerance parameter tends to zero. For a p-th order
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accurate method, the number of uniform steps to reach a given ap-
proximation error turns out to be proportional to the p-th root of the
L1-norm of the error density, defined by (local error ·weight)/Δtp+1,
while the smallest number of adaptive steps is proportional to the
p-th root of the smaller L

1
p+1 quasi-norm of the error density. These

norms are therefore good measures of the convergence rates and define
our optimal number of steps: Theorems 2.1, 2.4 and 2.5 in Section 2
prove that an adaptive algorithm stops with the optimal number of
steps, N , up to a problem independent factor and the global error
is asymptotically bounded by the tolerance times a problem inde-
pendent factor, as the tolerance parameter tends to zero. The total
number of time steps, including all refinement levels, can be bounded
by the number of steps on the finest level times a problem indepen-
dent factor, provided the tolerance in each refinement level decreases
by a constant factor to guarantee that the number of steps increases
at least by a given factor, see Theorem 2.7. Varying tolerance has the
drawback that the final stopping tolerance is not a priori known; on
the other hand, with constant tolerance, the total number of steps
including all levels is bounded by the larger O(N log N). The reports
[33,25] and [26] introduce adaptive algorithms for weak approxima-
tion of stochastic differential equations and partial differential equa-
tions, respectively, in the spirit of Section 2. The extensions of The-
orems 2.1, 2.4 and 2.5 to stochastic and partial differential equations
are straight-forward except for the convergence of the error density: to
prove convergence of the error density for approximation of ordinary
differential equations is simple, while the corresponding convergence
result for stochastic and partial differential equations are subtle and
require special techniques and new ideas, see [25] and [26].

The authors are not aware of any results on convergence rates and
asymptotic work related to Theorem 2.1, 2.4, 2.5 and 2.7 for other
algorithms to solve ordinary differential equations. One reason for
this is that most adaptive algorithms are based on making a com-
bination of the absolute and the relative local errors approximately
constant, ignoring the weights, cf. [18], [34]. Although these algo-
rithms in practice perform very well, a proof of the optimality of the
mesh is lost; since the tolerance parameter measures only the local
error, there is by (1.1) no explicit relation between this tolerance pa-
rameter and the global error. Many such algorithms also lack proofs
of convergence of the approximations. One exception is the work [22,
31], which in particular proves the convergence of ODE23 of MATLAB
version 4.2 solving ordinary differential equations. Adaptivity based
on the local errors, without the weights, has the clear advantage to
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avoid the additional storage and work needed to compute the weight
at many time levels. This additional storage is clearly a drawback. On
the other hand many computer programs for the numerical solution
of ordinary differential equations store the solution at all time levels
for other reasons, e.g. for post processing. The use of dual functions is
standard in optimal control theory and also well known for adaptive
mesh control for ordinary and partial differential equations, see [2],
[5], [7], [14], [20], [21], [36].

The literature on information based complexity, cf. [4], [30], [35],
[37], discuss the efficiency of adaptive versus non-adaptive methods.
A central result by Bakhvalov and Smolyak proves that, using a fixed
number of functional evaluations, there is for each adaptive method a
non-adaptive method which has as small maximal error as the adap-
tive method for approximation of linear functionals, S : F → R, such
as, e.g., Sf =

∫ 1
0 f(t)dt, with functions f in a convex symmetric sub-

set F of a normed linear function space. A symmetric set is a set which
contains −f , if f is in the set. A precise statement of the theorem is
in Remark 2.10. Starting from Bakhvalov and Smolyak’s result, the
insightful review [30] includes discussion about when adaptive meth-
ods for integration and solution of ordinary and partial differential
equations are useful. Our study differs from Bakhvalov and Smolyak’s
work in two important regards: Section 2 and 3 prove that an adap-
tive algorithm applied to a fixed differential equation (1.2) (and a
fixed discretization method), uses a number of time steps which is
asymptotically close to the optimal number to approximate with a
given error tolerance, for the error (1.4), as the number of steps tends
to infinity. In contrast, Bakhvalov and Smolyak analyze discretization
methods based on the maximal error in a convex function set, with a
fixed number of steps. The performance of the algorithm in Section 2
and 3 is not characterized by convex function sets; on the contrary,
applied to integration, i.e., a(t, x) = a(t) in (1.2), the estimate of the
number of steps to approximate with error TOL in Section 2, using a
p-th order accurate method, shows that adaptive integration is much
more efficient than uniform steps, asymptotically as TOL → 0, if

‖a(p)‖
L

1
p+1 (0,T )

<< ‖a(p)‖L1(0,T ),

where a(p) ≡ dpa/dtp is the error density (non adaptive methods with
non uniform steps would require some additional a priori information
to improve over uniform steps). In particular, the functions which can
be adaptively integrated, with given asymptotic behavior of the error
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and number of steps, are characterized by the non convex set{
a ∈ Cp([0, T ]) : ‖a(p)‖

L
1

p+1 (0,T )
≤ c
}

(1.6)

for a constant c. Our goal is to solve a problem to a certain accu-
racy with minimal asymptotic work by using appropriate adaptive
time steps. We do not address the related problem to adaptively de-
termine the order of the method and to determine implicit/explicit
alternatives. The closely related problem of efficient adaptive and non
adaptive approximation of functions, measured in Lq norms, has been
characterized by DeVore [10] using Besov spaces, see Remark 2.11.

In conclusion, the main results are:

– a measure of convergence rates for adaptive approximation of or-
dinary differential equations;

– a general adaptive algorithm, where this work on ordinary differ-
ential equations is the basis for the extensions to stochastic and
partial differential equations in [25,26]; and

– a rigorous and simple analysis of convergence rates of an adap-
tive algorithm, where several related algorithms were successively
improved to finally have both good numerical and theoretical re-
sults, with assumptions that are reasonable also in practice and
not only for very small error tolerances.

The outline of the paper is: Section 2 describes and analyzes an
adaptive algorithm; Section 3 presents numerical experiments based
on the adaptive algorithm.

2 An Adaptive Algorithm

This section describes general properties of an adaptive algorithm.
First we recall an expansion (1.1) of the global approximation error,
derived in [28], and based on the local error and a variational princi-
ple. Then an adaptive algorithm is presented for problem (1.2). The
algorithm chooses the number of time steps adaptively, by succes-
sively dividing time steps, to bound an approximation of the global
error. The main result is that each refinement level in the algorithm
decreases the maximal error indicator with at least a given factor
until the algorithm stops with the optimal number of steps, up to a
multiplicative constant factor which is independent of the problem
(1.2). The true global error is then bounded by the tolerance times a
similar problem independent factor, asymptotically as the tolerance
tends to zero.



Convergence rates for adaptive approximation of ODE 7

2.1 An Error Expansion

The adaptive algorithm we construct in this paper uses the error
expansion (2.8) derived in [28], with computable leading order term
based on approximate local errors and weights defined as follows.

Consider a p-th order accurate one step approximation X , of X,
written in the form

X(tn) = A(X(tn−1),Δtn), (2.1)

with time levels tn and initial condition (1.3). The weights can then
be approximated by

Ψ i(tn−1) =
d∑

j=1

∂xiAj(X(tn−1),Δtn)Ψ j(tn),

Ψ i(T ) = ∂xig(X(T )),

(2.2)

which yields a p-th order accurate approximation

max
n

|X(tn) − X(tn)| + max
n

|Ψ(tn) − Ψ(tn)| = O((max Δt)p), (2.3)

where Δtn = tn − tn−1 and maxΔt ≡ maxn Δtn.
Let the local error e be defined by

e(tn) ≡ X̃(tn) − X(tn), (2.4)

where the local exact solution X̃ satisfies, for each time step (tn−1, tn],

dX̃

dt
(t) = a(t, X̃(t)), tn−1 < t ≤ tn,

X̃(tn−1) = X(tn−1).
(2.5)

We approximate the local error e = X̃−X by replacing the unknown
exact local solution X̃ by an approximation X of higher accuracy
than X , i.e., with smaller time steps or a higher order method in a
higher precision. For smooth solutions X, the existence of the limits

lim
Δt→0

(Δtn)−(p+1)
(
X̃(tn) − X(tn)

)
,

lim
Δt→0

(Δtn)−(q+1)
(
X̃(tn) − X(tn)

)
,

(2.6)

determines by Richardson extrapolation a constant γ, for q ≥ p cf.
[9], such that

e(tn) = X̃(tn) − X(tn) = γ
(
X(tn) − X(tn)

)
+ O(Δtp+2

n ). (2.7)
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For instance there holds: γ = 2p/(2p − 1) for X computed with the
half mesh size and q = p; and γ = 1 for X computed with a higher
order method q > p, see [18].

The global approximation error for the differential equation (1.2)
then has the expansion

g(X(T )) − g(X(T )) =
N∑

n=1

(
(ē(tn), Ψ (tn)) + O(Δtp+2

n )
)

(2.8)

=
N∑

n=1

ρnΔtp+1
n ,

where

ρn ≡ (ē(tn), Ψ (tn)) + O(Δtp+2
n )

Δtp+1
n

and ē(tn) ≡ γ
(
X(tn) − X(tn)

)
is the approximation of the local

error in (2.7).

2.2 Adaptive Step Size Control

Let us now motivate the optimal choice of steps∣∣local error · weight
∣∣ = constant,

for approximation methods which have no essential constraint on
the step sizes, such as one step methods (2.1). For the time steps
0 = t0 < · · · < tN = T , let the piecewise constant mesh function Δt
be defined by

Δt(τ) ≡ Δti ≡ ti − ti−1 for τ ∈ (ti−1, ti] and i = 1, . . . , N.

Then the number of time steps that corresponds to a mesh Δt, for
the interval [0, T ], can be defined by

N(Δt) ≡
∫ T

0

1
Δt(τ)

dτ. (2.9)

Consider, for τ ∈ (ti−1, ti] and i = 1, . . . , N , the piecewise constant
function ρ, which measures the density of the global error from (2.8)

ρ(τ) ≡ ρi ≡ (ē(ti), Ψ (ti))

Δtp+1
i

+ O(Δti) (2.10)
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and its approximate counterpart ρ̄, obtained from (2.8) with

ρ̄(τ) ≡ ρ̄i ≡ sign
(
ē(ti), Ψ (ti)

)
max

(
| (ē(ti), Ψ (ti)

) |
Δtp+1

i

, δ

)
(2.11)

where

δ ≡ TOLγ̄ , 0 < γ̄ <
1

p + 1
, (2.12)

and sign(x) = 1 for x ≥ 0 and −1 for x < 0. The constant δ > 0 is
motivated by the requirements that maxΔt → 0 as TOL → 0 and
that the bounds for the error density in (2.22) hold, see Lemma 2.2.

It seems hard to use the sign of the error indicator for constructing
the mesh, since with only two steps the error can be zero just by
chance: let

∫ 1
0 f(s)ds = 0 be the integral of a continuous function

where also f(0) = f(1) = 0. This integral can be computed by the
Euler method without error for a very particular choice of just the two
time steps (0, s̄), (s̄, 1), with an interior point s̄ satisfying f(s̄) = 0,
but any other choice of time steps gives in general very large errors.
On the other hand, the cancellation of the error does not seem to
be important in many cases, e.g. the Lorenz problem shows that the
error only grows with a factor of two by using |ρ̄| instead of ρ̄, see
Remark 3.4. We choose to minimize the number of steps N in (2.9)
under the more stringent constraint

N∑
i=1

|ρ̄i|Δtp+1
i =

∫ T

0
|ρ̄(τ)|Δtp(τ)dτ = TOL. (2.13)

This yields, with a standard application of a Lagrange multiplier, the
optimal time steps Δt∗ satisfying

|ρ̄i|Δtp+1
i = constant (2.14)

and

Δt∗ ≡ TOL
1
p

|ρ̄| 1
p+1

(∫ T

0
|ρ̄(τ)| 1

p+1 dτ

)− 1
p

. (2.15)

This optimal choice gives TOL = |ET|, where

ET ≡
N∑

i=1

ρ̄iΔtp+1
i , (2.16)
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only for problems with positive density functions ρ̄, since otherwise
(2.16) and (2.13) may give TOL � |ET|. To use the sign of the density
in an optimal way is not considered in this work.

The goal of the adaptive algorithm described below is to construct
a partition Δt of [0, T ] such that

|ρ̄i|Δtp+1
i ≈ TOL

N
, ∀ i = 1, . . . , N, (2.17)

which is an approximation of the optimal (2.14). To achieve (2.17) let
s1 ≈ 1 be a given constant, start with an initial partition Δt[1] and
then specify iteratively a new partition Δt[k + 1], from Δt[k], using
the following division strategy: for i = 1, 2, . . . , N [k], let

r̄i[k] ≡ |ρ̄i[k]|(Δti[k])p+1, (2.18)

and

if r̄i[k] > s1
TOL
N [k]

then

divide Δti[k] into M uniform substeps
else
let the new step be the same as the old

endif

(2.19)

where M is a given integer greater than 1. With this division strategy,
it is natural to use the stopping criterion:

if
(

max
1≤i≤N [k]

r̄i[k] ≤ S1
TOL
N [k]

)
then stop. (2.20)

Here S1 is a given constant, with S1 > s1 ≈ 1, determined more
precisely as follows: we want the maximal error indicator to decay
quickly to the stopping level S1TOL/N , but when almost all r̄i satisfy
r̄i ≤ s1

TOL
N , the reduction of the error may be slow. Theorem 2.1

shows that slow reduction is avoided if S1 satisfies (2.23). Refinements
by subdivision related to (2.19) is standard in adaptive algorithms
for partial differential equations, cf. [6], but the stopping (2.20) is
not. We have tested several alternative stopping rules, such as the
well known |ET| ≤ TOL. It turns out that the stopping condition
(2.20) yields more accurate error estimates both theoretically and
computationally.

The remainder of this section analyzes in three theorems the adap-
tive algorithm based on (2.17) with respect to stopping, accuracy
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and efficiency. In order to analyze the decay of the maximal er-
ror indicator, it is useful to understand the variation of the den-
sity ρ̄ at different refinement levels. In particular we will consider a
time step (ti−1, ti][k] and its parent on a previous refinement level,
parent(i, k), with the corresponding error density ρ̄(ti)[parent(i, k)].
Since by (2.29), TOL → 0+ implies that maxΔt → 0, there is a limit,
ρ̃, of ρ using Ψ → Ψ by (2.3) and ē/Δtp+1 − e/Δtp+1 → 0 by (2.6,
2.7) as max Δt → 0, thus

|ρ̄| → |ρ̃|, as maxΔt → 0. (2.21)

A consequence of (2.21) as TOL → 0+, and (2.10, 2.11) is that for
all time steps (ti−1, ti][k] and all refinement levels k there exists a
constant c = c(ti), close to 1 for sufficiently refined meshes, such that
the error density satisfies

c ≤
∣∣∣∣ ρ̄(ti)[parent(i, k)]

ρ̄(ti)[k]

∣∣∣∣ ≤ c−1,

c ≤
∣∣∣∣ ρ̄(ti)[k − 1]

ρ̄(ti)[k]

∣∣∣∣ ≤ c−1,

(2.22)

provided maxn,k Δtn[k] is sufficiently small. Section 3 verifies the con-
dition (2.22) computationally for some examples; in particular the
Lorenz problem in Figure 3.3 shows that c−1 for the maximal error
indicator is close to 1, while maxi c(ti)−1 can be very large. Note that
the condition (2.22) also implies a related constraint on the optimal
mesh, see Remark 2.3.

Theorem 2.1 (Stopping) Suppose the adaptive algorithm uses the
strategy (2.18)-(2.20). Assume that c satisfies (2.22) for the time
steps corresponding to the maximal error indicator on each refine-
ment level, and that

S1 ≥ M

c
s1, 1 >

c−1

Mp+1
. (2.23)

Then each refinement level either decreases the maximal error indi-
cator with the factor

max
1≤i≤N [k+1]

r̄i[k + 1] ≤ c−1

Mp+1
max

1≤i≤N [k]
r̄i[k], (2.24)

or stops the algorithm.



12 K.-S. Moon, A. Szepessy, R. Tempone and G.E. Zouraris

Proof. There is a t∗ ∈ [0, T ] giving the maximal error indicator value

r̄(t∗)[k + 1] = max
1≤i≤N [k+1]

r̄i[k + 1]

on refinement level k+1. The corresponding indicator r̄(t∗)[k], on the
previous level, satisfies precisely one of the following three statements

r̄(t∗)[k] ≤ s1TOL
N [k]

, (2.25)

s1TOL
N [k]

< r̄(t∗)[k] ≤ Mp+1 s1TOL
N [k]

, (2.26)

r̄(t∗)[k] > Mp+1 s1TOL
N [k]

. (2.27)

If (2.25) holds the time step containing t∗ is not divided on level k+1
and by (2.22)

r̄(t∗)[k + 1] ≤ c−1s1TOL
N [k]

. (2.28)

Condition (2.23) and the bound N [k + 1] ≤ MN [k] imply S1TOL
N [k+1] ≥

c−1s1TOL
N [k] , which together with (2.28) show that the algorithm stops

at level k + 1 if (2.25) holds.
Similarly, if (2.26) holds, the time step containing t∗ is divided on

level k + 1, so that r̄(t∗)[k + 1] ≤ c−1s1TOL
N [k] again and consequently

the algorithm stops at level k + 1.
Finally if (2.27) holds, the time step containing t∗ is divided and

by (2.22)

r̄(t∗)[k + 1] ≤ c−1

Mp+1
r̄(t∗)[k] ≤ c−1

Mp+1
max

1≤i≤N [k]
r̄i[k],

which proves the theorem. �

Let us verify that the choice (2.12) of δ implies that maxΔt → 0
and that c is close to 1 in (2.22) for sufficiently refined meshes.

Lemma 2.2 Suppose (2.8), (2.10-2.12), and (2.21) hold, then

lim
TOL→0+

max
t

Δt(t)[J ] = 0, (2.29)

for the final mesh J , and∣∣∣∣ |ρ̄(ti)[parent(i, k)]|
|ρ̄(ti)[k]| − 1

∣∣∣∣ = O
(

TOL
1−(p+1)γ̄

p

)
,∣∣∣∣ |ρ̄(ti)[k − 1]|

|ρ̄(ti)[k]| − 1
∣∣∣∣ = O

(
TOL

1−(p+1)γ̄
p

)
.
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Proof. When the algorithm stops the error indicators satisfy the
bound

|ρ̄i|Δtp+1
i ≤ S1TOL

N
, for all i. (2.30)

Consequently we have by (2.12)

δ maxΔtp+1 ≤ S1TOL
N

,

which proves (2.29):

maxΔtp ≤ S1TOL
δ(N maxΔt)

≤ S1TOL1−γ̄

T
.

The definition (2.11) implies |ρ̄| = max(|ρ̃|+O(max Δt), δ), where
ρ̃ is the limit of ρ̄ obtained in (2.21). Therefore, we have∣∣∣∣ |ρ̄(ti)[k − 1]|

|ρ̄(ti)[k]| − 1
∣∣∣∣ ≤ O(maxΔt[k])

δ
= O(TOL

1−γ̄
p

−γ̄).

The same estimate for |ρ̄(ti)[parent(i,k)]|
|ρ̄(ti)[k]| finishes the proof. �

Remark 2.3 The error density condition (2.22) also implies con-
straints on the optimal mesh; for instance, M = 2 and the assumption
1
2(ρ̄i[k] + ρ̄i+1[k]) = ρ̄(ti)[k − 1] shows that

2c − 1 ≤
∣∣∣∣ ρ̄i+1[k]

ρ̄i[k]

∣∣∣∣ ≤ 2c−1 − 1. (2.31)

�

2.3 Accuracy of the Adaptive Algorithm

The adaptive algorithm guarantees that the estimate of the global
error is bounded by a given error tolerance, TOL. An important
question is whether or not the true global error is bounded by TOL
asymptotically. Using the upper bound (2.20) of the error indicators
and the convergence of ρ and ρ̄ in (2.8, 2.10, 2.11, 2.21), the global
error has the estimate

Theorem 2.4 (Accuracy) Suppose that the assumptions of Lemma
2.2 hold. Then the adaptive algorithm (2.18)-(2.20) satisfies

lim sup
TOL→0+

(
TOL−1

∣∣g(X(T )) − g(X(T ))
∣∣ ) ≤ S1. (2.32)
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Proof. When the adaptive algorithm stops, (2.8), (2.10) and (2.20)
imply

TOL−1|g(X(T )) − g(X(T ))| ≤ TOL−1
N∑

i=1

Δtpi

∫ ti

ti−1

|ρ(τ)|dτ

≤ TOL−1

(
S1

TOL
N

) p
p+1

N∑
i=1

∫ ti

ti−1

|ρ(τ)|
|ρ̄(τ)| p

p+1

dτ.

(2.33)

Rewrite the inequality (2.20) as

|ρ̄| 1
p+1 ≤

(
S1

TOL
N

) 1
p+1 1

Δti
,

integrate both sides and use the definition (2.9) to obtain

N
− p

p+1 ≤ (S1TOL)
1

p+1
1∫ T

0 |ρ̄(τ)| 1
p+1 dτ

.

Apply this to the right hand side of (2.33) to get

TOL−1|g(X(T )) − g(X(T ))| ≤ S1

∫ T
0 |ρ(τ)|/|ρ̄(τ)| p

p+1 dτ∫ T
0 |ρ̄(τ)| 1

p+1 dτ
. (2.34)

Since by Lemma 2.2 we have max Δt → 0 and consequently ρ and ρ̄
converge to ρ̃ as TOL → 0+, the fraction in (2.34) converges to 1 by
the Lebesgue dominated convergence theorem, which proves (2.32).
�

2.4 Efficiency of the Adaptive Algorithm

An important issue for the adaptive method is its efficiency: we want
to determine a partition with as few time steps as possible providing
the desired accuracy. The definition (2.9) and the optimality condi-
tion (2.15) shows that the number of optimal adaptive steps, N opt,
satisfies

N opt =
∫ T

0

1
Δt∗(τ)

dτ =
1

TOL
1
p

(∫ T

0
|ρ̄[k](τ)| 1

p+1 dτ

) p+1
p

,

i.e.,

N opt =
1

TOL
1
p

‖ρ̄‖
1
p

L
1

p+1
. (2.35)
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Here p > 0 is the order of accuracy of the approximate solution and
‖ · ‖

L
1

p+1
is the quasi-norm defined by

‖f‖
L

1
p+1

≡
(∫ T

0
|f(x)| 1

p+1 dx
)p+1

.

On the other hand, for the uniform steps Δt = constant, the
number of steps, N uni, to achieve

∑N
i=1 |ρ̄i|Δtp+1

i = TOL becomes

N uni =
∫ T

0

1
Δt(τ)

dτ =
T

TOL
1
p

(∫ T

0
|ρ̄[k](τ)|dτ

) 1
p

,

i.e.,

N uni =
T

TOL
1
p

‖ρ̄‖
1
p

L1 . (2.36)

Hence, the number of uniform steps is measured in the L1-norm and
the optimal number of steps is measured in the L

1
p+1 quasi-norm.

Jensen’s inequality implies ‖f‖
L

1
p+1

≤ T p‖f‖L1 , therefore an adap-
tive method may use fewer time steps than the uniform step size
method, see Remarks 2.10 and 2.11, (1.6) and Example 3.2.

The following theorem uses a lower bound of the error indicators,
obtained from the stopping condition (2.20) and the ratio of the error
density (2.22), to show that the algorithm (2.18)-(2.20) generates a
mesh which is optimal, up to a multiplicative constant.

Theorem 2.5 (Efficiency) Assume that c = c(t) satisfies (2.22) for
all time steps at the final refinement level, that all initial time steps
have been divided when the algorithm stops, and that the assumptions
of Lemma 2.2 hold. Then there exists a constant C > 0, bounded
by (Mp+1

s1
)

1
p , such that the final number of adaptive steps N , of the

algorithm (2.18)-(2.20), satisfies

TOL
1
p N ≤ C ‖ ρ̄

c
‖

1
p

L
1

p+1
≤ C

(
max

0≤t≤T
c(t)−

1
p

)
‖ρ̄‖

1
p

L
1

p+1
, (2.37)

and ‖ρ̄‖
L

1
p+1

→ ‖ρ̃‖
L

1
p+1

, asymptotically as TOL → 0+.

The Lorenz problem in Section 3 gives an example where the average
‖ ρ̄

c‖L
1

p+1
/‖ρ̄‖

L
1

p+1
≈ 1 while max c−1 ≈ 105. Therefore the first bound

in (2.37) yields a good estimate N/N opt ≈ 1, but the second inequality
yields the less accurate estimate N/N opt � 10, see Section 3. In fact,
the main guideline for our construction of adaptive algorithms has
been to find an algorithm for which convergence rates can be derived
based on assumptions that are also satisfied in practice.



16 K.-S. Moon, A. Szepessy, R. Tempone and G.E. Zouraris

Proof. When the adaptive algorithm stops, on level k, the error in-
dicators satisfy the upper bound

r̄i[k] = (|ρ̄(ti)|Δtp+1
i )[k] ≤ S1TOL

N [k]
.

By assumption, each time step (ti−1, ti][k] has a parent on a previous
level, parent(i, k) (not necessary the previous level k − 1), which was
divided. Therefore the indicators of the parent time steps satisfy the
lower bound

|ρ̄(ti)[parent(i, k)]|Mp+1Δt(ti)p+1[k]

= (|ρ̄(ti)|Δt(ti)p+1)[parent(i, k)]

>
s1TOL

N [parent(i, k)]

≥ s1TOL
N [k]

.

The estimate on the number of steps now follows by relating the error
indicators to the lower bounds of their parents:

Δt(ti)p+1[k] >
s1TOL
N [k]

1
Mp+1

1
|ρ̄(ti)[parent(i, k)]|

≥ s1TOL
N [k]Mp+1

c

|ρ̄(ti)[k]| .

This and (2.9) imply

N [k] =
∫ T

0

dt

Δt(t)[k]
<

(N [k])
1

p+1 M

(s1TOL)
1

p+1

∫ T

0

∣∣∣ ρ̄
c

∣∣∣ 1
p+1

dt

which together with Hölder’s inequality proves the theorem

N [k] ≤
(

Mp+1

s1

) 1
p ( 1

TOL

) 1
p ‖ ρ̄

c
‖

1
p

L
1

p+1

≤
(

Mp+1

s1

) 1
p ( 1

TOL

) 1
p (‖c−1‖L∞‖ρ̄‖

L
1

p+1
)

1
p .

�
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2.5 Implementation of the Adaptive Algorithm

This subsection presents a detailed implementation, called MSTZ, of
the adaptive algorithm (2.18)-(2.20). The division strategy (2.19) is
applied iteratively until the approximate solution is sufficiently re-
solved, in other words, until the approximate error density ρ̄ and the
time steps satisfy the stopping criteria (2.20):

Initialization. The user chooses
1. an initial error tolerance, TOL,
2. a number, N [1], of initial uniform steps Δt[1] for [0, T ],
3. an integer number, M , of uniform subdivisions of each refined

time step, and
4. a number, s1, in (2.19) and a rough estimate of c in (2.22) to

compute S1 using (2.23).
Set the iteration number k to 0.

Step I. Increment the iteration number k by 1. For n = 1, . . . , N [k],
compute the approximation X(tn) of (1.2) using a p-th order ac-
curate numerical method (2.1), and to obtain the local error, com-
pute the approximate local exact solution X(tn) of (2.5) using a
higher accuracy than for X(tn). Compute the approximation of
the local error ē(tn) by (2.7) and the approximate weight Ψ(tn),
for n = N [k], . . . , 1, using the p-th order accurate method (2.2).

Step II. If (a local roundoff error condition, (2.25) or (2.26) in [28],
holds) then terminate the program due to too large roundoff
error

elseif
(

max
1≤i≤N [k]

r̄i[k] ≤ S1TOL
N [k]

)
then stop the program

else
do for all time steps i = 1, . . . , N [k]

if
(
r̄i[k] > s1

TOL
N [k]

)
then

Δt(t)[k + 1] =
Δti[k]

M
, ti−1[k] < t ≤ ti[k],

else
Δt(t)[k + 1] = Δti[k], ti−1[k] < t ≤ ti[k],

endif

enddo
go to Step I.

endif
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2.6 Decreasing Tolerance

This subsection studies an adaptive algorithm allowing the tolerance
to decrease slightly as the mesh is refined. The decreasing tolerance
is motivated by efficiency –the efficiency of the algorithm depends
on the total work including all refinement levels. If the number of
elements in each refinement iteration increases only very slowly, the
total work becomes proportional to the product of the number of
steps in the finest mesh times the number of refinement levels. The
condition (2.15) shows that the number of refined levels, J , satisfies

min Δt = M−JT/N [1] = O(TOL1/p). (2.38)

A relation min Δt = O(TOLα), α > 0, still holds for many singular
densities, as in Example 3.2. Therefore, J = O(1

p log(TOL−1)) �
log N , so that the total number of steps for the algorithm (2.18-2.20)
would be essentially bounded by

N log N. (2.39)

A more efficient refinement algorithm is obtained by successively de-
creasing the tolerance, TOL[k + 1] < TOL[k], in each refinement so
that

N [k]
N [k + 1]

≤ c̄ < 1 (2.40)

always holds. The condition (2.40) would imply that the total number
of steps satisfy

J∑
k=1

N [k] ≤ N [J ]
1 − c̄

. (2.41)

Therefore, a slightly decreasing tolerance may be more efficient than
a constant tolerance, which yields the total work (2.39). Including
the assumption

c′ ≤ TOL[k + 1]
TOL[k]

≤ 1 (2.42)

and replacing c by c′c in (2.23) directly generalizes Theorems 2.1, 2.4
and 2.5 to slightly varying tolerance, where TOL in (2.32) and (2.37)
then denotes the final stopping tolerance. However, an unattractive
consequence of varying tolerance is that the stopping tolerance be-
comes a priori uncertain, see Remark 2.6 and Theorem 2.7.
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Remark 2.6 A decreasing tolerance is useful if there are few steps
with their error indicators, r̄i, in the set (s1TOL/N,∞). To include a
decreasing tolerance, modify the algorithm by adding the command
“Set V = 0” in the end of Step I and replace the statement “ go to
Step I” after enddo in the end of Step II by:

if (N [k]/N [k + 1] > c̄ &V = 0), then
TOL ≡ TOL[k](1 − c̄−1−1

M−1 ), V = 1 and go to Step II,
else

go to Step I.
endif

Include in the initialization also a choice of the factor c̄ to increase
the number of steps in (2.40).

Assume that the set (c′s1TOL/N, s1TOL/N ] contains a fraction
c′′N of the steps, where M−p < c′ < 1; for instance, if the error
indicators, r̄i, are uniformly distributed in [0, s1TOL/N ], with a neg-
ligible part outside of this set, there holds c′′ = 1 − c′, which yields
c̄ = 1

1+c′′(M−1) = 1
1+(1−c′)(M−1) and motivates c′ = 1 − c̄−1−1

M−1 in the
algorithm. A refinement approximately maps the set

(c′s1TOL/N, s1TOL/N ]

to
(c′s1TOL/(NMp+1), s1TOL/(NMp+1)].

Then the next refinement continues with essentially a similar distri-
bution of the error indicators, provided c′ is not too small. When the
algorithm stops, the final tolerance satisfies

TOL[0] ≥ TOL[J ] ≥ TOL[0](c′)J = TOL1+O( | log c′|
p

)
,

which for c′ close to 1 is only a slight change. �

Let us now show that the total number of steps can be bounded by
a constant times the number of steps in the finest mesh, in the case
of decreasing tolerance. The proof uses that the tolerance decreases
sufficiently, which simplifies the analysis. A more refined study, with
less demanding assumptions on the tolerance, following the idea in
Remark 2.6 would need deeper understanding of the distribution of
the error indicators r̄i. In contrast to the basic Theorems 2.1, 2.4
and 2.5, the following result has the drawback that it uses a uniform
bound in (2.22) which yields a condition, on c′, that in practice can be
too restrictive although it seems reasonable for very small tolerances.
The proof is also more complicated and less natural than the previous
proofs.
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Theorem 2.7 The total number of steps satisfies the bound

J∑
k=1

N [k] = O(N [J ]),

for a variant of MSTZ where all levels have decreasing tolerance

TOL[k + 1] = TOL[k]c′

satisfying 0 < c′ < c, provided all initial steps are divided, S1 ≥
s1M/(cc′) and (2.22) holds uniformly for all time steps.

Proof. Let s2 ≡ s1c/(c′Mp+1) and N0[k] ≡ {i : s2TOL[k]/N [k] ≤
r̄i[k] ≤ s1TOL[k]/N [k]}. We shall first show that minn,k(r̄nN/TOL)[k] ≥
s2. Assume first that minn r̄n[k] > s1TOL/N [k], then all time steps
are divided on level k + 1 and by (2.22)

r̄(tn)[k + 1] = (|ρn|Δtp+1
n )[k + 1]

≥ c|ρ(tn)[k]|Δt(tn)p+1[k]
Mp+1

=
c

Mp+1
r̄(tn)[k]

>
cs1TOL[k]
Mp+1N [k]

therefore

min
n

r̄n[k + 1] >
cs1TOL[k + 1]
c′Mp+1N [k + 1]

=
s2TOL[k + 1]

N [k + 1]
.

Then if n ∈ N0[k] the time step Δtn is not divided on level k + 1 so
that

r̄n[k + 1] ≥ c r̄n[k]
≥ c s2 TOL[k]/N [k]

≥ c

c′
s2 TOL[k + 1]/N [k + 1]

> s2 TOL[k + 1]/N [k + 1].

Therefore we conclude, by induction, that the error indicators satisfy

min
n,k

(
r̄nN

TOL

)
[k] ≥ s2.
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The next step is show that at most m consecutive levels can have
the slow increase N [k]/N [k + 1] > c̄. This will imply that the total
number of steps is bounded by a constant times the final number of
steps. Assume the contrary that

N [k]
N [k + 1]

> c̄, k = K, . . . ,K + m, (2.43)

where m and c̄ satisfy

(c′)m

c
<

s2

s1
, (2.44)

1 < c̄−1 < M1/(m+1), (2.45)

and let N0[k] ≡ #N0[k] and N+ ≡ N −N0. The condition (2.43) and

N [k + 1] = N0[k] + MN+[k]

show that the number of divided steps, N+[k], satisfies

N+[k] <
c̄−1 − 1
M − 1

N [k]. (2.46)

The tolerance decreases, so that after m levels the dividing barrier is

s1TOL[K + m]/N [K + m] < (c′)ms1TOL[K]/N [K].

All elements in N0[K] must have been divided after m levels, since if
they have not all been divided some error indicators are larger than
cs2TOL[K]/N [K] and condition (2.44) gives the contradiction

s1
TOL[K + m]
N [K + m]

< (c′)ms1
TOL[K]
N [K]

< cs2
TOL[K]
N [K]

.

Dividing of all steps in N0[K] shows that N0[K] must be smaller than
the sum of divided steps

N0[K] ≤
m∑

j=1

N+[K + j] (2.47)

which also leads to a contradiction, since by (2.46)

N0[K] = N [K] − N+[K] >
M − c̄−1

M − 1
N [K]
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and by combining (2.46) and (2.43)

N+[K + j] <
c̄−1 − 1
M − 1

N [K + j]

<
c̄−1 − 1
M − 1

c̄−1N [K + j − 1]

<
c̄−1 − 1
M − 1

c̄−jN [K],

so that by the assumption (2.45)

N0 −
m∑

j=1

N+[K + j] >
M − c̄−m−1

M − 1
N [K] > 0,

which contradicts (2.47). Hence, the number of consecutive levels,
where N [k]/N [k + 1] > c̄, must be smaller than m + 1 and therefore

J∑
k=1

N [k] ≤ mN [J ]
1 − c̄

= O(N [J ]).

�

2.7 Remarks

We end this section with four remarks on adaptive dividing and merg-
ing of steps, individual Δt for each component of the solution, the
statement of Bakhvalov and Smolyak’s theorem discussed on the in-
troduction, and Besov spaces for adaptive integration.

Remark 2.8 The work [25] generalizes the present algorithm based
only on dividing to also include merging of steps. These two adap-
tive algorithms perform similarly and analogous theoretical results
are proved. A theoretical advantage without merging is that stop-
ping requires (2.22) only at the maximal error indicator on each level
and that fewer parameters are used. The dividing-merging adaptive
algorithm takes the form: for i = 1, 2, . . . , N [k] let

r̄i[k] ≡ |ρ̄i[k]|(Δti[k])p+1
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and

if
(

r̄i[k] > s1
TOL
N

)
then

divide Δti[k] into M uniform substeps,

elseif max (r̄i[k], r̄i+1[k]) < s2
TOL
N

, then

merge Δti[k] and Δti+1[k] into one step
and increase i by 1,

else let the new step be the same as the old.
endif

With this the dividing and merging strategy it is natural to use the
following stopping criteria:

if
(

r̄i[k] ≤ S1
TOL
N

, ∀ i = 1, . . . , N
)

and(
max (r̄i[k], r̄i+1[k]) ≥ S2

TOL
N

, ∀ i = 1, . . . , N − 1
)

then stop.

Here 0 < S2 < s2 < s1 < S1 are given constant determined more
precisely in [25]. �

Remark 2.9 Here the time steps are chosen to be the same for all
components of the solution. Logg [23] uses the more efficient and flex-
ible choice of independent steps for each component of the solution.
The error estimate (2.8) would also be applicable to such multi adap-
tive time steps Δtn,i by replacing Δtp+1

n ρn with
∑

n

∑
i Δtp+1

n,i ρn,i,
where ρn,i ≡ ēi(tn)Ψ i(tn)/Δtp+1

n,i . �

Remark 2.10 The discussion on the non convex sets (1.6) in the
introduction is inspired by the work [30], which includes an elegant
proof of Bakhvalov and Smolyak’s result following [4]: assume that
F is a convex symmetric subset of a normed linear function space
and that S : F → R is a linear functional with an approximation
SN (f) = φ(L1(f), ..., LN (f)), based on N linear functionals Lk : F →
R, which may depend on f ∈ F , and a linear or nonlinear mapping
φ : R

N → R. Let the worst case error for SN be defined by

Δmax(SN ) ≡ sup
f∈F

|S(f) − SN (f)|,
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and assume that SN uses the linear functionals {L0
k}N

k=1 for f ≡ 0 ∈
F . Then there exists a = (a1, . . . , aN ) ∈ R

N and a linear non-adaptive
method

S∗
N (f) ≡

N∑
k=1

akL
0
k(f),

such that
Δmax(S∗

N ) ≤ Δmax(SN ).

As an illustrative example consider the computation of integrals
S(f) =

∫ 1
0 f(t)dt with the approximation SN (f) based on N point

values Lk(f) = f(tk) at mesh points tk, k = 1, . . . , N. The method
is adaptive if tk depends on f and non adaptive otherwise. �

Remark 2.11 Let us consider integration of a function by the first
order accurate Euler method. Then the integration error is the same
as the L1 approximation error by piecewise constant functions. De-
Vore points out in [10] that this L1 approximation error of a function
f , with N non-adaptive steps, is O(N−α) provided f belongs to the
Besov space Bα∞(L1[0, T ]), α ≤ 1. With N adaptive steps the error is
O(N−α′

) provided f belongs to the Besov space Bα′
∞(Lγ [0, T ]), α′ ≤

1, for some γ > (α′ + 1)−1. For α′ → 1−, this explains that adap-
tive integration is better when ‖f ′‖

L
1
2 (0,1)

<< ‖f ′‖L1(0,1), cf. (2.35),

(2.36). �

3 Numerical Experiments

This section presents numerical experiments with the adaptive algo-
rithm MSTZ in Section 2, using the MATLAB version 5.3 software pack-
age, cf. [19]. To study its performance, we choose the Lorenz problem
and a problem with a singularity and we compare the results to the
adaptive algorithm ODE45 in MATLAB and to a constant step size al-
gorithm, denoted Uniform. In particular, we study the quality of the
error estimate, by comparing the ratio between the exact error and
the approximate error in (2.16), defined by

Γ ≡ |ET|
|g(X(T )) − g(X(T ))| . (3.1)
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fig1.eps

Fig. 3.1. Example 3.1: Approximate X1-component from MSTZ with TOL =
10−1.

We also compare the final number of time steps, Nf ≡ N [J ], and the
total number of time steps, defined by

N tot ≡
J∑

k=1

N [k], (3.2)

where J is the total number of refinement levels of MSTZ. Similarly,
the total number of steps, N tot, for Uniform is the total sum of the
numbers of steps increasing a factor of 2 on each level, from the same
initial number of step N [1], until Error ≤ TOL. Finally, the N tot for
ODE45 is the total sum of the numbers of steps with TOL decreasing
a factor of 10, from the same TOL as MSTZ, until Error ≤ TOL.

We initialize MSTZ by setting s1 = 2 in (2.19), S1 = 2Ms1 by
(2.23), and M = 2.

Example 3.1 Consider the well-known Lorenz system, which is the
three dimensional system of ordinary differential equations,

a1(t, x) = −σx1 + σx2,

a2(t, x) = rx1 − x2 − x1x3, 0 ≤ t ≤ T, x ∈ R
3,

a3(t, x) = x1x2 − bx3

(3.3)

where σ , r and b are given positive constants.

The Lorenz system was introduced to show the limitation of large
time prediction for a simplified model of weather forecast, see [24]
and Figure 3.1. In our experiments, the coefficient values are σ = 10,
b = 8/3 and r = 28 and the initial value is X(0) = (1, 0, 0), cf. [7]
and [16]. The computed function is g(x) = x1, i.e., we study the
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fig2.eps

fig3.eps

Fig. 3.2. Example 3.1: Comparison of the mesh functions of MSTZ and ODE45.
The minimum value of Δt of MSTZ is 0.0016 which is 22 times larger than the
minimum of ODE45.

global error |X1(T ) − X1(T )| at the final time T = 30. A reference
computation with a Fortran implementation of MSTZ in quadruple
precision gives the approximate value X1(30) � −3.892637 ≡ g1, with
TOL = 10−7.

ODE45 is based on an explicit Runge-Kutta (5,4) formula, the
Dormand-Prince pair, see [11]. In order to compare with ODE45, the
program MSTZ also uses the same 5-th order explicit Runge-Kutta
method to compute X(tn+1), Ψ(tn) and X(tn+1). The approximate
local “exact” solution X is computed with the half mesh size, i.e.,
γ = 25/(25 − 1) in (2.7). The program Uniform uses a constant step
size, Δt = constant, based on the same 5-th order explicit Runge-
Kutta method. Table 1 and Figure 3.2 show that the algorithm MSTZ
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Tolerance Error Nf N tot

MSTZ TOL = 10−1 0.01 6000 20000
TOL = 10−2 0.003 9000 34000

Uniform TOL = 10−1 0.06 10000 19000
TOL = 10−2 0.002 19000 38000

ODE45 TOL= 10−10 0.04 34000 92000
TOL= 10−11 0.004 53000 144000

Table 1. Example 3.1: Comparisons of the final number of steps, Nf , and the
total number of steps, N tot, with the global error, Error ≡ |g1 − g(X(T ))|, using
a 5-th order explicit Runge-Kutta method with adaptive steps for MSTZ or ODE45

and uniform steps for Uniform.

achieves higher accuracy with around half the final number of time
steps compared to Uniform and with one fifth of the final number
of steps compared to ODE45. The total number of steps for ODE45
is around four times the total number of steps of MSTZ, including
all 7 and 8 refinement levels with N [1] = 300. Table 1 also shows
the difference between the tolerance parameter TOL in MSTZ and the
parameter TOL in ODE45: TOL measures the global error, while TOL
measures a combination of the relative local error and absolute local
error.

The function c defined by (2.22) is used in the assumptions of all
theorems. Figure 3.3 motives our effort to not only base the assump-
tions on max c−1, which can be very large. The assumptions based on
the c−1 for the step with maximal error indicator and the weighted
average ‖ ρ̄

c‖L
1

p+1
/‖ρ̄‖

L
1

p+1
give better estimates, since these measures

of c−1 are close to 1.

Example 3.2 Consider (1.2) with

a(t, x) =
x√|t − ω| , 0 ≤ t ≤ T, x ∈ R (3.4)

where ω ∈ [0, T ] is a constant, and let g(x) = x and X(0) = e−2
√

ω.
The exact solution is then X(t) = esign(t−ω) 2

√
|t−ω|.

The function a in (3.2) has a singularity at t = ω. The correspond-
ing error density (2.10), ρp ≡ ρ for a p-th order method, satisfies
‖ρp‖L1 = ∞ for p ≥ 1 and interpolation between the first order ρ1

and the zero order ρ0 ≡ a shows ‖ρp‖L1 < ∞ for p < 1/2, so that
by (2.36) the number of uniform steps becomes N uni ∼ TOL−2. In
contrast, the convergence rate for adaptive approximation remains
by (2.35) optimal N = O(TOL−1/p), since ‖ρp‖

L
1

p+1
< ∞ for p > 0.
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fig4.eps

Fig. 3.3. Example 3.1: Comparison between max c−1, the c−1 for the step with
maximal error indicator and the weighted average ‖ ρ̄

c
‖

L
1

p+1
/‖ρ̄‖

L
1

p+1
. We see

that the last two are close to 1, while max c−1 is very large, which motivates the
assumptions in the theorems.

fig5.eps

fig6.eps

Fig. 3.4. Example 3.2: Approximate solution (up) and mesh function (down)
of MSTZ using a 5-th order explicit Runge-Kutta method with TOL = 10−4 and
ω = 5/3.
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fig7.eps

Fig. 3.5. Example 3.2: The ratio of the approximate and exact error, Γ , converges
to 1 as TOL → 0+ with the stopping condition (2.20), while Γ does not converge
to 1 with the alternative stopping condition |ET| ≤ TOL. In general the condition
|ET| ≤ TOL stops the program earlier and for some examples the error ratio Γ is
not as accurate as with the condition (2.20).

Consider the case ω = 5/3 with T = 4, N [1] = 25 and TOL =
10−1, 10−4. Table 2 and Figure 3.4 show that MSTZ and ODE45 are
much more efficient than Uniform, as expected.

Tolerance Error Nf N tot

MSTZ TOL = 10−1 0.02 50 820
TOL = 10−4 2.6 × 10−5 130 3880

Uniform TOL = 10−1 0.06 130000 260000
0.015 2100000 4200000

ODE45 TOL= 10−5 0.02 210 480
TOL= 10−8 4.8 × 10−6 710 1800

Table 2. Example 3.2: Comparisons of the final number of steps, Nf , and the
total number of steps, N tot, with the global error, Error ≡ |X(T )−X(T )|, using
a 5-th order explicit Runge-Kutta method with adaptive steps for MSTZ or ODE45

and uniform steps for Uniform. Adaptive approximation is more efficient for this
singularity.

Figure 3.5 compares stopping by (2.20) and the alternative |ET| ≤
TOL. In general, the condition |ET| ≤ TOL stops the program earlier
than with the stopping condition (2.20) and sometimes this yields a
less accurate error estimate as in Figure 3.5.
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fig8.eps

Fig. 3.6. Example 3.1: The error indicators and the first component of the
weights and the local errors from MSTZ with TOL = 10−1. The other two compo-
nents have a similar behavior. Note that the local errors and the weights oscillate,
but their product does not give a significant error cancellation, see Table 3.

Remark 3.3 If a time node, say tm+1, hits the singularity at t = ω,
the approximation X(tm+1) becomes an infinite number. A rem-
edy for this is to change the time steps, i.e tm := tm + α and
tm+1 := tm+1 + β where α and β are sufficiently small numbers,
e.g. Δtm/M , and then recompute X(tm) and X(tm+1). Using this
technique, we solve Example 3.2 for w = 1 and T = 4 and we get
|g(X(T )) − g(X(T ))| = 1.3065 × 10−4 with 113 final time steps and
2567 total time steps using a 5-th order explicit Runge-Kutta method
and TOL = 10−3, N [1] = 40. �

Lorenz (Example 3.1) Singularity (Example 3.2)

Tolerance 10−1 10−2 10−1 10−4

Γ 0.991 0.997 1.325 2.31

Γ 1.707 1.220 1.325 2.66

Table 3. Example 3.1 and 3.2: Comparisons of the ratio, Γ and Γ , between the
exact error and the approximate error using error density, ρ̄ and |ρ̄| respectively,
for MSTZ.

Remark 3.4 The algorithm MSTZ does not use the sign of the er-
ror density. Therefore the computational error, ET ≡ ∑N

i=1 ρ̄iΔtp+1
i

in (2.16) could be much smaller than TOL ≥ (1/S1)
∑N

i=1 |ρ̄i|Δtp+1
i ,
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when it stops. Table 3 compares the quantities Γ in (3.1) and Γ ≡
|∑N

i=1 |ρ̄i|Δtp+1
i |/|g(X(T )) − g(X(T ))| for the Examples 3.1 and 3.2.

Figure 3.6 shows the error indicators and the first component of the
weights and the local errors in Example 3.1. We observe that the
cancellation of the error in

∑N
i=1 ρ̄iΔtp+1

i only yields a factor of two
reduction compared to

∑N
i=1 |ρ̄i|Δtp+1

i . Therefore the time steps de-
termined by the error bound

∑N
i=1 |ρ̄i|Δtp+1

i , ignoring the sign and
the cancellation of the error, are also almost optimal taking cancel-
lation into account, for these two examples. The cancellation of the
error is very important for Itô stochastic differential equations. In
[33] we use properties of Brownian motion to derive an error density
which takes cancellation into account. �
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