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STOCHASTIC HYDRODYNAMICAL LIMITS OF PARTICLE
SYSTEMS

MARKOS A. KATSOULAKIS † AND ANDERS SZEPESSY ‡

Abstract. Even small noise can have substantial influence on the dynamics of differential
equations, e.g. for nucleation/coarsening and interface dynamics in phase transformations. The aim
of this work is to establish accurate models for the noise in macroscopic differential equations, related
to phase transformations/reactions, derived from more fundamental microscopic master equations.

For this purpose the mathematical paradigm of the dynamic Ising model is considered in the
relatively tractable case of stochastic spin flip dynamics and long range spin/spin interactions. More
specifically, this paper shows that localized spatial averages, with width ε, of solutions to such Ising
systems with long range interaction of range O(1), are approximated with error O(ε+(γ/ε)2d) in
distribution by a solution of an Ito stochastic differential equation, with drift as in the corresponding
mean field model and a small diffusion coefficient of order (γ/ε)d/2, generating noise with spatial
correlation length ε, where γ is the distance between neighboring spin sites on a uniform periodic
lattice in Rd. To determine the correct noise is subtle in the sense that there are expected values, i.e.
observables, that require different noise: the expected values that can be accurately approximated
by the Einstein-diffusion and the expected values that need an alternative diffusion related to large
deviation theory are identified; for instance dendrite dynamics up to a bounded time needs Einstein
diffusion while transition rates need a different diffusion model related to invariant measures.

The elementary proofs use O((γ/ε)2d) consistency of the Kolmogorov-backward equations for
the averaged spin and the stochastic differential equation and that the long range interaction yields
smoothing, which contributes with the O(ε) error. A new aspect of the derivation is that the error,
based on residuals and weights, is computable and suitable for adaptive refinements and modeling.

Key words. hydrodynamical limit, stochastic coarse-graining, mean-field approximation, mas-
ter equation, Ising model, large deviation theory, kinetic Monte Carlo method, fluctuation, dendrite,
invariant measure
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1. Introduction to Hydrodynamical Limits and Spin Systems
What is the right noise in an Allen-Cahn/Ginzburg-Landau equation

∂tm=∆m−V ′(m)+noise? (1.1)

This stochastic partial differential equation is a model used for the description of
dynamic phase transformations in materials science. Noise is important e.g. for nu-
cleation/coarsening effects of clusters [19, 20] [8], reaction rates [22], and dendrite
dynamics in phase transformations [24, 27]. The aim of this work is to derive macro-
scopic continuum models with noise, i.e. stochastic differential equations (SDEs),
from more fundamental master equation models given on smaller (nano or micro)
scales. A motivation for continuum models is their advantage to be more compu-
tational efficient on larger scales; an additional purpose here is to introduce tools
for adaptive coarse-graining in computations, coupling microscopic and macroscopic
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models. It turns out that the SDE-noise model depends on the type of expected value
one wants to approximate: an application of our derivation suggests that the SDE
approximation for lattice gas dendrite dynamics, up to a bounded time, is related
to the Einstein diffusion; while the SDE-model to compute long transition times,
e.g. for reaction rates, instead is based on invariant measures for processes in equi-
librium. Our work also finds that such noise has small positive correlation length,
which implies well posedness for several stochastic partial differential equations, cf.
[3], as compared to the often ad hoc suggested space-time white noise model in partial
differential equations, which lacks mathematical well posedness theory for nonlinear
problems in higher than one space dimension.

One of our primary motivations is the series of papers [4, 5, 6], by De Masi,
Orlandi, Presutti and Triolo, on a stochastic Ising model, with long range interaction
on length scales of order one and Glauber flip rates [16]; they prove that spacial
averages σ̄, of the spin variable on distance of order one, converge in distribution to
the mean field solution, m, of a deterministic Allen-Cahn related equation

∂tm=−m+tanh
(
β(J0 ∗m+h)

)
,

as the distance of neighboring spin sites γ tends to zero, in a uniform lattice in Rd.
Their proof is a kind of law of large numbers. Here J0 :Rd→R is the interaction
potential, β is the inverse temperature and ∗ denotes the standard convolution in
L2(Rd). They also prove a central limit theorem: the scaled deviation γ−d/2(σ̄−
m) tends to an Ornstein-Uhlenbeck process with space-time (Einstein) white noise,
linearized around the mean field solution. The work [15] provides an inspiring overview
on asymptotic limits of stochastic interacting particle models with deterministic and
stochastic differential equations in different scalings; for example, the central limit
result can be scaled differently to include non linear effects. By writing the flux in
the mean field ordinary differential equation as

−m+tanh(βJ0 ∗m)=
(
−m+J0 ∗m

)
+
(

tanh(βJ0 ∗m)−J0 ∗m
)
,

we identify, on scales larger than the interaction length, a diffusion related first term
and a second nonlinear reaction term as in the partial differential equation (1.1), with
J0 scaled such that J0 ∗1=1, see [39].

In the physical chemistry literature, [23] is a paper related this work, where
the authors study stochastic lattice systems with long range interactions modeling
the adsorption/ desorption and surface diffusion mechanisms on a catalytic surface.
These micro mechanisms are essentially identical to the spin flip and spin exchange
lattice dynamics studied in [4, 5, 6, 15], except for the choice of the spin flip/exchange
rate functions, where a more appropriate (for surface processes modeling) Arrhenius
rate is selected. In [23] the authors include random fluctuations in the mesoscopic
mean field equations by a formal derivation of stochastic partial differential equations
with space/time white noise which is of Einstein-diffusion type; their approach relies
on direct derivation from the microscopic Ising systems by means of a small noise,
or equivalently large system-size, expansion in the corresponding high dimensional
Fokker-Planck equation. Another important background result for our work is [21],
by Hanggi, Grabert, Talkner and Thomas who show in the case of small noise, by
direct calculation for a 1D example with uniform interactions, that accurate SDE
approximation of transition rates for a master equation requires different diffusion
than the Einstein-diffusion for jump process in [4, 5, 6]: instead of a small noise
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expansion in a Fokker-Planck equation, which results in the Einstein noise, the work
[21] points out that correct approximation of the corresponding invariant measures is
essential to obtain consistent transition rates in the small noise limit.

Our work focuses mainly on the stochastic Ising model in [4, 5, 6], with long range
interaction and Glauber flip rates; we identify which expected values that can accu-
rately approximated by Einstein-diffusion and which expected values that need the
approximation in [21]. We present in section three a variant of the combination of the
law of large numbers and central limit theorem results in [4]; we show an elementary
derivation of an approximating Einstein-SDE for spacial averages of the spin variable,
with averaging width ε, where γ� ε�1. The drift term in the approximating SDE
coincides with the mean field drift and the diffusion coefficient of order O((γ/ε)d/2)
generates noise with correlation length ε. The main result is a simple proof that the
solution to the SDE approximates these ε-localized spacial averages of the spin, up
to a bounded time, with error O(ε+(γ/ε)2d), while the mean field approximation has
the larger error O(ε+(γ/ε)d). The proof is based on three ideas:

- No law of large numbers is applied; instead the proof uses O((γ/ε)2d) consis-
tency of the Kolmogorov-backward equations for the averaged spin variable
and the SDE, following the work on adaptive methods for SDE in [42].

- the assumption of regular long range interaction yields smoothing and con-
tributes with the O(ε) error,

- derivatives of the solution to the Kolmogorov backward equation are esti-
mated by stochastic flows.

Similar expansions have been applied before; the problem to replace a high rate of
small jump process with a diffusion process is classical: the first derivation of an
approximating diffusion equation from a master equations was by Einstein [9], con-
tinued by Kolmogorov in the mathematical foundation of diffusion processes [33], with
numerous applications cf. [43]. Our approach follows along well-known ideas from
real space renormalization methods [26] using localized averages, in contrast to the
usual expansions in the global system size [43]; in comparison, the new aspect here
is to have a mathematically precise a priori error estimate, based on a general er-
ror representation, that is also computable and suitable for adaptive refinements and
modeling. Computable means that the error representation is based on residuals and
weights which can be computed with similar amount of work as the solution itself, as
the adaptive SDE method in [42].

A similar hierarchical approach that avoids hydrodynamic limits and law of large
numbers-type asymptotics [32], was taken in [28] where the authors developed coarse–
grained Monte Carlo methods by deriving an approximating stochastic process to
the detailed microscopic Monte Carlo algorithm. On the other hand this type of
renormalization for non equilibrium stochastic systems is related to and inspired by
the work on hydrodynamic limits of interacting particle systems, where a PDE is
obtained in the asymptotic limit of a locally averaged quantity, corresponding for
instance to density and described probabilistically by an empirical measure [32]. A
key estimate needed in hydrodynamic limits is to show that in a suitable rescaling the
joint probability distribution function of the particle system is in local equilibrium,
i.e. that the process is close to it’s invariant measure parameterized by the solution
of a macroscopic PDE, in direct analogy to such ideas in kinetic theory, cf. [40], [45].

The alternative diffusion, needed for accurate simulation of transition rates, is
obtained by a WKB expansion of the probability density, relevant for large deviation
of rare events and long time approximation: the diffusion is chosen so that the SDE



4 SDE from IPS

invariant measure is consistent with the master equation invariant measure. We show
in Section 5 that a WKB expansion of the expected exit time leads to consistent
Hamilton-Jacobi equations for the SDE and the master equation.

Asymptotic Ito stochastic differential equations have also been derived from dif-
ferential equations with stochastic parameters from a Markov process and well sepa-
rated fast and slow time scales, using asymptotic expansions, see [35] which includes
a master equation as an example. A related setting with deterministic differential
equations with well separated fast and slow time scales gives asymptotic Ito stochas-
tic differential equations when the fluxes averaged over the invariant measure for the
fast dynamics vanish in the leading order term [44]; the invariant measure corresponds
to the probability measure for the Markov process in [35].

Stochastic interacting particle models, such as the Ising model, are used not only
to gain qualitative theoretical understanding of noise-driven physical phenomena like
nucleation and coarsening of clusters, but also for quantitative prediction, e.g. of phase
transformations and reactions in physical chemistry, materials science, biochemistry.
The key ingredient of such Monte Carlo simulation is to determine order parame-
ters, interaction potentials and rates, which is a demanding modeling task including
quantum calculations or fitting to experimental data, cf. [46].

Kinetic Monte Carlo computations of interacting particle models are computa-
tionally expensive for large scale effects, cf. [25]. The systematic coarse-grained
kinetic Monte Carlo method introduced in [28] and [29] offers more efficient approx-
imations to larger systems by reducing the number of variables, while at the same
time it gives rise to the asymptotically correct invariant measure, at least for po-
tentials with long enough interactions, see [28]. In addition, rigorous approximation
estimates on the loss of information in the transition from finer to coarser descrip-
tions in a non-equilibrium setting were also obtained in [31]; however these estimates
involve, as a measure of the loss of information, the specific relative entropy between
the fine and coarse-grained PDFs, which is a computationally intractable quantity for
high dimensional systems such as most interacting particle systems. In contrast, the
approach presented in this paper is based on estimations of arbitrary observables (i.e.
weak convergence estimates) which are computationally verifiable. The Ito stochas-
tic differential equation developed here is a further step in model simplification: the
stochastic differential equation is a small noise perturbation of the mean field equation
and avoids therefore the small time scale in the coarse-grained Monte Carlo process
due to its high rate of small jumps. The coarse-grained Monte Carlo method and its
relation to stochastic differential equations is discussed in Section 3.3 and Section 4
on invariant measures. Further coarse-graining of the stochastic differential equation
can be obtained by adaptive methods, see Remark 3.9.

Our presentation focuses on the stochastic Ising model with Glauber dynamics,
however the proof uses nothing particular for this example and seems applicable to
more general master equations with long range interaction potentials. Further work in
this direction and on spin exchange dynamics will appear in a forthcoming publication.

The next two sections introduce the model, prove the main approximation result
for projected averages and end with some remarks on dendrite dynamics, coarse-
grained Monte Carlo methods, reflected diffusion and alternative approximations.
Section 3.1 derives required estimates of the solution to the high dimensional Kol-
mogorov equation, and shows how to handle the complication that the identity matrix
becomes a delta function in high dimension, so that the standard L2 analysis needs
to be modified. Section 4 presents a comparison between the two invariant measures
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for the coarse grained Monte Carlo method and the stochastic differential equation,
for the Curie-Weiss model. Section 5 shows that computation of some exit time prob-
lems for mean transition times needs a different approximating stochastic differential
equation. The Appendix partly extends the results on projected averges in Section 3
to centered averages.

2. Stochastic Interacting Particle Systems
Define a periodic lattice L :=γZd/Zd, with neighboring sites on distance γ, and

consider spin configurations σ :L× [0,T ]→{−1,1} defined on this lattice. Introduce a
stochastic spin system where the spin σt(x), at site x∈L and time t, will flip to −σt(x)
with the rate c

(
x,σt(·)

)
dt, in the time interval (t,t+dt), independent of possible flips

at other sites, cf. [34]. Let σx denote the configuration of spins after a flip at x of
state σ, i.e.

σx(y)=
{

σ(y) y 6=x
−σ(x) y =x,

the probability density P (σ,t) of finding the spin system in configuration σ∈{−1,1}L
at time t then solves the master equation

dP (σ,t)
dt

=
∑
x∈L

(
c(x,σx)P (σx,t)−c(x,σ)P (σ,t)

)
, (2.1)

where the gain term
∑

x c(x,σx)P (σx,t) is the probability of jumping to state σ at
time t and the loss term

∑
x c(x,σ)P (σ,t) is the probability to leave state σ. Similar

master equations are used for microscopic models of chemical reactions and phase
transformations, cf. [43, 18], where lattice sites are occupied by different species of
particles. For instance with two species the state space could be {0,1}×{0,1} instead
of {−1,1} for the classical spin model above.

We want a spin system that has statistical mechanics relevance, which can be
achieved e.g. by choosing the rate function c as follows. Consider the Hamiltonian

H(σ)=−1
2

∑
x,y∈L

J(x−y)σ(x)σ(y)−
∑
x∈L

h(x)σ(x)

J =γdJ0, J0(x)=0 for |x|≥1,

where the long range interaction potential, J0∈C2(Rd), is compactly supported and
the function h∈C2(Rd) is a given external field. Define the Glauber Markov process
on {−1,1}L with generator

d

dt
E[f(σt)|σ]=Lf(σ)=

∑
x∈L

c(x,σ)
(
f(σx)−f(σ)

)
(2.2)

for f :{−1,1}L→R and the flip rate

c(x,σ)=
e−βU(x)σ(x)

e−βU(x) +eβU(x)

=
1
2

(
1−σ(x)tanh

(
βU(x)

))
,

U(x)=h(x)+
∑

y

J(x−y)σ(y)=:h(x)+J ∗σ(x),

(2.3)
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where β >0 is the inverse temperature. This flip rate has built in invariance of the
Gibbs measure, e−βH(σ)/

∑
σ e−βH(σ), since it satisfies the detailed balance

c(x,σ)e−βH(σ) = c(x,σx)e−βH(σx),

which implies that this Gibbs measure is a time independent (invariant) solution to
(2.1). Having this invariant Gibbs measure implies that the model has statistical
mechanics relevance, cf. [16],[34],[15]. For example in a neighborhood of x∈L, where
h and J ∗(1,...,1) are positive, the construction of the flip rate c makes the system
favor phases with spins mostly equal to 1 as compared to phases with spins mostly
equal to −1.

We will study two types of localized averages of σ on scale ε: a projection average
over fixed subdomains, and a centered average, respectively. The projection average
is simpler to analyze, but yields a somewhat larger error estimate. In particular we
will find approximations to expected values of such averages. The error analysis uses
consistency with the backward equation

∂tũ+Lũ=0 t<T, ũ(·,T )=g.

corresponding to the master equation (2.1) for expected values

ũ(ξ,t) :=E[g(σT ) | σt = ξ].

3. Projected Averages Define the coarse periodic lattice L̄ := qγZd/Zd with
neighboring sites on distance qγ =: ε, where q is an even positive integer and qd is
the number of fine sites projected to a coarse site: the lattice points y∈L̄ define the
coarse cells

Cy ={x∈L :−qγ/2≤xi−yi <qγ/2},

of qd neighbooring points in the fine lattice and the averaging operator

Aε(z,x)=
{

1/qd if x and z are in the same coarse cell Cy

0 if x and z are in different coarse cells .

We will study the behavior of the localized projection averages

X̄(σ;z) :=
∑
x∈L

Aε(z,x)σ(x), (3.1)

for z∈L. The coarse-grained average X̄(σ;·) can be interpreted as a function on the
coarse lattice since the restriction of X̄(σ;·) to each coarse cell Cz is constant, i.e
X̄(σ;·)=

∑
x∈C·

σ(x)/qd. We will sometimes omit the first argument σ in X̄. Define
the averaged interaction potential J̄ : L̄→R, of J ,

J̄(y) :=
∑

z∈Cy

γdJ0(z)= εdJ0(y′) for some y′∈Cy,

and the convolution on L̄

J̄ ∗X̄(x)=
∑
y∈L̄

J̄(x−y)X̄(y) for all x∈L̄.
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We shall show that the average spin, X̄, can be approximated by the solution, X :
L̄× [0,T ]×Ω→R, to the Ito stochastic differential equation

dXt(x)=a(Xt)(x)dt+b(Xt)(x)dW x, X0 = X̄0, (3.2)

with the drift, a :RL̄→RL̄, and diffusion, b :RL̄→RL̄, coefficients given by

a(X)=−X +tanh
(
β(J̄ ∗X +h)

)
,

b(X)(x)=(
γ

ε
)d/2

√
|1−X tanh

(
β(J̄ ∗X +h)

)
(x)| η

(
X(x)

)
,

η(r)=
{

1 for x∈ [−1,1],
0 for x∈ (−∞,−r̂)∪(r̂,∞),

r̂ :=min(1+e−2β(2|J0|L1+‖h‖L∞ ),3/2)

(3.3)

and a Wiener process W : L̄× [0,T ]×Ω→R on a probability space (Ω,P,{Ft}T
t=0),

with the set of outcomes Ω, probability measure P and sigma algebra Ft of events up
to time t. Here W x are independent one dimensional standard Brownian motions for
x∈L̄, so that formally

E[dW x
t ]=0,

E[dW x
s dW y

t ]=0 for s 6= t,

E[dW x
t dW y

t ]=0 for x 6=y, and
E[dW x

t dW x
t ]=dt.

The C∞ cut-off function η :R→ [0,1], with compact support, is introduced to han-
dle the complication that |X(x)| may be larger than 1, although |X̄(x)| is not, so
that 1−X tanh

(
β(J̄ ∗X +h)

)
(x) may be close to zero causing large values on deriva-

tives of
√
|1−X tanh

(
β(J̄ ∗X +h)

)
(x)|; note that we have |X̄(x)|≤1 and conse-

quently the cut-off η improves the approximation by switching off the noise before
1−X tanh

(
β(J̄ ∗X +h)

)
(x) becomes zero making b a C∞ function, see Remark 3.4.

An alternative with instantaneous reflection is presented in Remark 3.5.
The approximation uses that the high dimensional value function u :RL̄× [0,T ]→

R defined by

u(ξ,t)=E[g(XT ) | Xt = ξ] (3.4)

solves a corresponding Kolmogorov backward equation, where the drift and diffusion
coefficients in (3.3) are chosen to minimize the error E[g(X̄T )]−E[g(XT )], for some
suitable chosen functions g :RL̄→R, where X̄T := X̄(σT ). To define the Kolmogorov
backward equation introduce the scalar products

w ·v :=
∑
y∈L̄

wyvy for w,v∈RL̄,

w ·v :=
∑

x,y∈L̄

wxyvxy for w,v∈RL̄2
,

w ·v :=
∑

x,y,z∈L̄

wxyzvxyz for w,v∈RL̄3
.



8 SDE from IPS

Then u satisfies the Kolmogorov backward equation

∂tu+a ·u′+D ·u′′=0, for t<T,

u(·,T )=g,

with the diagonal diffusion matrix

Dxy =
{(

1−X tanh
(
β(J ∗X +h)

)
(x)
)
η2(X(x)) y =x,

0 y 6=x,

and the first and second order derivatives u′(ξ,t)=∂ξu(ξ,t)=(u′1,u
′
2,...,u

′
|L̄|) and

u′′(ξ,t)=(∂xyu). We write ∂g(ξ)/∂ξx =∂xg =g′x and similarly for higher order deriva-
tives.

We consider expected values of three times differentiable functions g satisfying
the bounds

sup
ξ∈RL̄

|g′i(ξ)|=O(εd)

sup
ξ
|g′′ii(ξ)|=O(εd), sup

ξ
|g′′ij(ξ)|=O(ε2d) j 6= i

sup
ξ
|g′′′iii(ξ)|=O(εd), sup

ξ
|g′′′ijj(ξ)|=O(ε2d) j 6= i

sup
ξ
|g′′′ijk(ξ)|=O(ε3d) j 6= i,k 6= i.

(3.5)

This means that g measures global properties, related to thermodynamic observables.
For instance, the potential energies

∑
x,y ∈L̄ J̄(x−y)X(x)X(y)εd,

∑
x∈L̄h(x)X(x) and∑

x∈L̄h(x)f(X(x)) satisfy (3.5), for h(x)= εdh0(x) with h0 a continuous function on
the periodic unit cube and f ∈C3(R).

Our main result is
Theorem 3.1. Assume g :RL̄→R satisfies (3.5). At a fixed time T , the average
spin, X̄T , can be approximated by the solution, XT , to the Ito stochastic differential
equation (3.2) with error

E[g(X̄T )]−E[g(XT )]=O
(
ε+(γ/ε)2d

)
, as ε and γ tend to zero. (3.6)

Note that a=0 gives O(1) error, while b=0 gives O
(
(γ/ε)d

)
error so that b defined

by (3.3) is justified for γ� ε�γ2d/(2d+1), with T fixed. The stochastic differential
equation (3.2) has C∞ coefficients, where perturbations of solutions may grow ex-
ponentially in time. In Sections 4 and 5 we study long time approximations using
invariant measures.

Proof. The proof is in three streps: first to derive an error representation based
on u(ξ,t)=E[g(XT ) | Xt = ξ] along ξ = X̄t, then to estimate the error using the long
range interaction and finally to bound derivatives of u(ξ,t) in Lemma 3.2.
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Step 1. The definitions of u, the generator (2.2) and the average (3.1) imply

E[g(X̄T )]−E[g(XT )]=E[u(X̄T ,T )]−E[u(X0,0)]

=E[
∫ T

0

du(X̄t,t)]=
∫ T

0

E[Lu+∂tu]dt=
∫ T

0

E
[
E[Lu−a ·u′−D ·u′′ | X̄t]

]
dt

=
∫ T

0

E
[
E[
∑
x∈L

c(x,σt)
(
u
(
X̄(σx

t ),t
)
−u
(
X̄(σt),t

))
−a ·u′

(
X̄(σt),t

)
−D ·u′′

(
X̄(σt),t

)
|X̄t]

]
dt

=
∫ T

0

E
[
E[
∑
x∈L

c(x,σt)
(
u
(
X̄t−2Aε(x,·)σt(x),t

)
−u(X̄t,t)

)
−a ·u′(X̄t,t)−D ·u′′(X̄t,t) | X̄t]

]
dt.

(3.7)

The first step to estimate this error is to write the difference of u in terms of its
derivatives by Taylor expansion, for some s∈ [0,1],

u
(
X̄(σ)−2Aε(x,·)σ(x),t

)
−u
(
X̄(σ),t

)
=−2u′(X̄,t) ·Aε(x,·)σ(x)

+2u′′(X̄,t) ·Aε(x,·)Aε(x,·)σ2(x)

− 4
3
u′′′
(
X̄−2sAε(x,·)σ(x),t

)
·Aε(x,·)Aε(x,·)Aε(x,·)σ3(x),

(3.8)

so that the error representation (3.7) becomes

E[g(X̄T )]−E[g(XT )]

=
∫ T

0

E
[
E
[
u′(X̄t,t) ·

(
−2
∑
x∈L

c(x,σt)Aε(x,·)σt(x)−a
)

+u′′(X̄t,t) ·
(∑

x∈L
2c(x,σt)Aε(x,·)Aε(x,·)σ2

t (x)−D
)

− 4
3

∑
x∈L

u′′′
(
X̄t−2sAε(x,·)σt(x),t

)
·c(x,σt)Aε(x,·)Aε(x,·)Aε(x,·)σ3

t (x) | X̄t

]]
dt.

We note that the matrix Fyz :=−2
∑

x∈L c(x,σ)Aε(x,y)Aε(x,z)−Dyz is diagonal (i.e
Fyz =0 for y 6=z) and the tensor Ryzv := c(x,σ)Aε(x,y)Aε(x,z)Aε(x,v)σ3(x) is also
diagonal (i.e Ryzv =0 if not y =z =v). Therefore the error representation reduces to

E[g(X̄T )]−E[g(XT )]

=
∫ T

0

E
[
E
[∑

y∈L̄

u′y(X̄t,t)
(
−2
∑
x∈L

c(x,σt)Aε(x,y)σt(x)−a(y)
)

+
∑
y∈L̄

u′′yy(X̄t,t)Fyy−
4
3

∑
x∈L

∑
y∈L̄

u′′′yyy

(
X̄t−2sAε(x,y)σt(x),t

)
Ryyy(x) | X̄t

]]
dt.

(3.9)

Step 2. The next step is to determine the optimal a and b which minimize the
error (3.9). For this purpose we shall in the flipping rate approximate the coupling
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J ∗σ by J̄ ∗X̄, using the long range O(1) interaction distance of J . We have∑
x

Aε(x,y)=1,∑
x

Aε(x,y)Aε(x,y)=(γ/ε)d,∑
x

Aε(x,y)Aε(x,y)Aε(x,y)=(γ/ε)2d.

(3.10)

The definition of the average (3.1) implies

J ∗X̄ =
∑

z,y∈L
J(·−y)Aε(y,z)σ(z)

and consequently the coupling has the uniform error estimate

J ∗σ(x)−J ∗X̄(x)=
∑
z∈L

(
J(x−z)−

∑
y∈L

J(x−y)Aε(y,z)
)
σ(z)

=
∑

y,z∈L

(
J(x−z)−J(x−y)

)
Aε(y,z)σ(z)=O(ε),

(3.11)

since, for any of the γ−d points z, either Aε(y,z)=0 or Aε(y,z)=(γ/ε)d and

|J(x−z)−J(x−y)|=O(ε)γd

for (ε/γ)d points y∈Cz. The definition of J̄ shows

J ∗X̄(x)=
∑
y∈L̄

∑
z∈Cy

γdJ0(x−z)X̄(y)= J̄ ∗X̄(x)

and consequently

sup
x∈L

|J ∗σ(x)− J̄ ∗X̄(x)|=O(ε). (3.12)

This error estimate and the flip rate (2.3) imply

−
∑
x∈L

2c(x,σ)Aε(x,·)σ(x)=−X̄ +Aε ·tanh
(
β(J ∗σ+h)

)
=−X̄ +tanh

(
β(J̄ ∗X̄ +h)

)
+O(ε),

(3.13)

and ∑
x∈L

2c(x,σ)Aε(x,·)Aε(x,·)σ2(x)=(
γ

ε
)d
[
1−X̄ tanh

(
β(J̄ ∗X̄ +h)

)]
+O

(
(γ/ε)2d +ε2

)
.

(3.14)

We have X̄t∈ [−1,1]L̄, therefore we need estimates of the derivatives of u in this
set. Lemma 3.2 in Section 3.1 shows that

sup
ξ∈[−1,1]L̄

∑
x∈L̄

|u′x(ξ,t)|+ sup
ξ∈[−1,1]L̄

∑
x∈L̄

|u′′xx(ξ,t)|+ sup
ξ∈[−1,1]L̄

∑
x∈L̄

|u′′′xxx(ξ,t)|=O(1),

(3.15)
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as ε,γ→0+, which together with the expansions (3.9), (3.10),(3.13) and (3.14) proves
the theorem.

We also have
Lemma 3.1. Assume g :RL̄→R satisfies (3.5) and that the initial spin σ0 has expected
value m, where σ0(x)−mx are i.i.d. with bounded variance and second order difference
quotients |d2m/dx2|=O(1). Then the deterministic mean field solution, X̂ :RL̄×
[0,T ]→R,

dX̂/dt=−X̂ +tanh
(
β(J̄ ∗X̂ +h−J(0)X̂)

)
, X̂0 =E[X̄0],

depends on ε only through the initial data and satisfies

E[g(X̄T )]−E[g(X̂T )]=O
(
ε+(γ/ε)d

)
provided the drift a is defined by (3.3).

Proof. Think of X̂ as an X with b=0 and apply the corresponding expansion
(3.7), (3.8) and (3.10). Then it remains to verify that the initial data satisfy

E[u(X̄0,0)−u(X̂0,0)]=O
(
(γ/ε)d

)
,

but this is a direct consequence of the central limit theorem and the initial σ0−E[σ0]
being i.i.d. with bounded variance.

The following variant of error estimates is a direct consequence of the proof of
Theorem 3.1, where ‖w‖`1 :=

∑
x∈Ln |w(x)|.

Corollary 3.2. Suppose the first to the third order derivatives of u are uniformly
bounded in `1, independent of T , up to time T , then

1
T

∫ T

0

E[G(X̄t,t)]dt− 1
T

∫ T

0

E[G(Xt,t)]dt=O
(
ε+(γ/ε)2d

)
(3.16)

with the value function u(ξ,t)=E[
∫ T

t
G(Xt,t)dt | Xt = ξ] satisfying

∂tu+a ·u′+D ·u′′=−G, t≤T,

u(·,T )=0.

When the processes X̄ and X are ergodic and T →∞, the expected value in the left
hand side of (3.16) can be removed.

3.1. Estimates of the Value Function
This section proves the bound (3.15) of the value function u, namely

Lemma 3.2. Assume g :RL̄→R satisfies (3.5), then the function u, defined by (3.4),
satisfies

sup
ξ∈[−1,1]L̄

∑
x∈L̄

|u′x(ξ,t)|+ sup
ξ∈[−1,1]L̄

∑
x∈L̄

|u′′xx(ξ,t)|+ sup
ξ∈[−1,1]L̄

∑
x∈L̄

|u′′′xxx(ξ,t)|=O(1),

as ε,γ→0+.
Proof. The proof is divided into three steps: to find representation of u′,u′′,u′′′

in terms of variations of the process X; to estimate the first variation X ′ by splitting
into diagonal and non diagonal contributions; and to combine the representations and
the X ′ estimate to derive bounds on the `1 norms of u′,u′′ and u′′′.
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Step 1. The proof uses variations up to order three of the process X, defined
by (3.2). To define these variations consider a process Y depending on X. Define
the first variation of Y (t) with respect to a perturbation in the initial location of the
solution X, to (3.2) at time s<t, by the gradient

Y ′(t;s)=∂ξ(Y (t);Xs = ξ).

Then, with Y =X and fixed s, the first variation X ′(·;s) : [s,T ]→RL̄2
solves the Ito

stochastic differential equation

dX ′
xy(t)=

∑
z∈L̄

X ′
zy(t)

(
∂Xzax

(
X(t)

)
dt+∂Xzbx

(
X(t)

)
dW x

t

)
, t>s,

X ′
xy(s)= δ(x−y) :=

{
0 x 6=y,
1 x=y.

(3.17)

We have

u′x(Xt,t)=E[X ′
rx(T ;t)g′r(X(T )) | Xt], (3.18)

where we use the summation convention to sum over the index set when an index
appears in different factors of a product

X ′
zyg′z :=

∑
z∈L̄

X ′
zyg′z.

Let a′xz =∂Xzax denote the Jacobian of a and define the matrix

Aij :=
∫ t

s

b′ijdW i +
∫ t

s

(a′ij−
1
2
b′2ij)dt;

note that there is no sum over i in the dW i measure here and below. Ito’s formula
implies that the matrix

X ′(t,s)=eA := I +
∞∑

n=1

1
n!

An

solves (3.17).
Differentiation of (3.17) shows that the second variation X ′′ :=∂ξξ(XT ;Xs = ξ),

defined to be the first variation of Y =X ′, is

X ′′
ijj(T,t)=

∫ T

t

X ′
kj(s,t)

(
a′′ikmds−b′ikb′′ikmds+b′′ikm(Xs)dW i

s

)
X ′

mj(T,t)

and

u′′ii(Xt,t)=E[X ′′
kii(T,t)g′k(X(t))+X ′

ki(T,t)X ′
mi(T,t)g′′km(X(T )) | Xt]. (3.19)

Similarly u′′′ is determined by the third variation of X, which is

X ′′′
ijjj(T,t)=

∫ T

t

X ′
kj(s,t)

(
a′′ikmds−b′ikb′′ikmds+b′′ikm(Xs)dW i

s

)
X ′′

mjj(T,t)

+
∫ T

t

X ′′
kjj(s,t)

(
a′′ikmds−b′ikb′′ikmds+b′′ikm(Xs)dW i

s

)
X ′

mj(T,t)

+
∫ T

t

X ′
kj(s,t)X

′
rj(s,t)

(
(a′′′ikmr−b′′ikrb

′′
ikm−b′ikb′′′ikmr)ds+b′′′ikmr(Xs)dW i

s

)
X ′

mj(T,t)
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and

u′′′iii(Xt,t)=E
[
X ′′′

kiii(T,t)g′k(X(t))+3X ′′
kii(T,t)X ′

mi(T,t)g′′km(X(t))

+X ′
ki(T,t)X ′

mi(T,t)X ′
ri(T,t)g′′′kmr(X(T ))

∣∣∣ Xt

]
.

Step 2. The standard estimates of Ito differential equations in Rn, with smooth
uniformly bounded coefficients, use the Frobenius norm to estimate the matrix norm
of X ′. The fact that X ′(s;s)= δ has unbounded Frobenius norm√ ∑

(x,y)∈L̄2

(X ′
xy)2 =O(ε−d/2)

as ε→0+, shows that the standard mean square proof needs to be modified; with the
aim to estimate X ′ we split A into its diagonal and non diagonal parts

Dij =
{

0 i 6= j,
Aii i= j,

Nij =
{

Aij i 6= j,
0 i= j,

so that

X ′=eNeD =(eN −I)︸ ︷︷ ︸
=:M

eD +eD (3.20)

where (eD)ij is the diagonal matrix with di in the diagonal. Since the matrix elements
|a′ij | and |b′ij | are uniformly bounded, there is for each p≥2 a constant C such that
the diagonal elements can be bounded

E[dp
i ]=E

[
exp

(∫ T

t

pa′ii−(
p

2
− p2

2
)b′2iidt

)
exp

(
−
∫ T

t

p2

2
b′2iidt+

∫ T

t

pb′iidW i
)]

≤CE
[
exp

(
−
∫ T

t

p2

2
b′2iidt+

∫ T

t

pb′iidW i
)]

=CE
[
exp

(
−
∫ t

t

p2

2
b′2iidt+

∫ t

t

pb′iidW i
)]

=C,

(3.21)

where the two last equalities are a consequence of exp(−
∫ T

t
p2

2 b′2iidt+
∫ T

t
pb′iidW i)

being a martingale, as a function of T .
To estimate the non diagonal part M of X ′, we will use standard Lp estimates

applied to the matrix M for even positive integers p. Introduce the notation

ã′ij =
{

aij i 6= j,
0 i= j,

b̃′ij =
{

b′ij i 6= j,
0 i= j.

We have M +I =exp(N), therefore Ito’s formula yields

dMij =Mkj(ã′ikdt+ b̃′ikdW i)+ ã′ijdt+ b̃′ijdW i

so that∑
ij

E[Mp
ij ]=

∑
ij

E[pMp−1
ij dMij ]+

∑
ij

E[
p(p−1)

2
Mp−2

ij dMijdMij ]

=p
∑
ij

E[Mp−1
ij Mkj ã

′
ik]dt+p

∑
ij

E[Mp−1
ij ã′ij ]dt

+
p(p−1)

2

∑
ij

E[Mp−2
ij (Mkj b̃

′
ik + b̃′ij)

2]dt.

(3.22)
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The next step is to use Hölder estimates for the three sums in the right hand side.
Let q =p/(p−1), then

|
∑
ij

Mp−1
ij ã′ij |≤ (

∑
ij

Mp
ij)

1/q(
∑
ij

(ã′ij)
p)1/p≤

∑
ij

Mp
ij +

∑
ij

(ã′ij)
p.

Similarly

|
∑
ijk

Mp−1
ij Mkj ã

′
ik|≤

∑
ij

Mp−1
ij (

∑
k

Mp
kj)

1/p(
∑

k

|ã′ik|q)1/q

≤
∑

i

(
∑

j

Mp
ij)

1/q(
∑
kj

Mp
kj)

1/p(
∑

k

|ã′ik|q)1/q

≤ (
∑
ij

Mp
ij)

1/p+1/q
(∑

i

(∑
k

|ã′ik|q
)p/q

)1/p

.

The last sum in (3.22) we split into two

1
2
(Mkj b̃

′
ik + b̃ij)2≤ (Mkj b̃

′
ik)2 +(b̃′ij)

2

and let r =p/(p−2) to obtain

|
∑
ij

M
(p−2)
ij (b̃′ij)

2|≤
∑

i

(
∑

j

Mp
ij)

1/r
(∑

j

(b̃′ij)
p
)2/p

≤ (
∑
ij

Mp
ij)

1/r
(∑

ij

(b̃′ij)
p
)2/p

≤
∑
ij

Mp
ij +

∑
ij

(b̃′ij)
p,

and finally∑
ij

Mp−2
ij (Mkj b̃

′
ik)2≤

∑
ij

Mp−2
ij (

∑
k

Mp
kj)

2/p(
∑

k

|b̃′ik|q)2/q

≤
∑

i

(
∑

j

Mp
ij)

1/r(
∑
kj

Mp
kj)

2/p(
∑

k

|b̃′ik|q)2/q

≤ (
∑
ij

Mp
ij)

1/r+2/p
(∑

i

(∑
k

|b̃′ik|q
)p/q

)2/p

.

The reason we split X ′ into diagonal and non diagonal parts is that the non diagonal
part has small matrix elements

sup
X,ij

|ã′ij(X)|+sup
X,ij

|b̃′ij(X)|=O(εd)

due to the long range interaction, i.e. ∂Xi J̄ ∗X =O(εd), and consequently, as ε→0+,
for p≥2

sup
X

∑
ij

(
ã′ij(X)

)p +sup
X

∑
ij

(b̃′ij(X))p =O
(
ε(p−2)d

)
,

sup
X

(∑
i

(∑
k

|ã′ik(X)|q
)p/q

)1/p

+sup
X

(∑
i

(∑
k

|b̃′ik(X)|q
)p/q

)2/p

=O(1).
(3.23)
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The combination of (3.22), (3.23), 1/q+1/p=1, 1/r+2/p=1 and the Hölder esti-
mates show that there is a constant C such that

dE[
∑
ij

Mp
ij ]≤C(E[

∑
ij

Mp
ij ]+ε(p−2)d)dt

so that Grönwall’s lemma and the initial condition M(s,s)=0 imply

E[
∑
ij

Mp
ij ]=O(ε(p−2)d). (3.24)

Step 3. The final step is to use the representations (3.18) and (3.20) combined
with the estimates (3.21) and (3.24) of X ′. The estimate of u′ becomes

u′i(x,t)=E[X ′
kig

′
k | Xt =x]=E[(M +I)kidkg′k | Xt =x]

so that, with E[·] denoting E[· | Xt =x] and C a positive constant (not necessary the
same at each occurrence) the splitting into diagonal and non diagonal terms of X ′

leads to the claimed `1 bound on u′∑
i

|u′i|≤
∑

i

(√
E[d2

i ]
√

E[(g′i)2]+
√

E[d2
k(g′k)2]

√
E[M2

ki]
)

≤C
∑

i

εd +Cεd
∑
ik

√
E[d2

k]
√

E[M2
ki]

≤C
(
1+εd

∑
ik

√
E[M2

ki]
)

≤C
(
1+
√∑

ik

E[M2
ki]
)
≤C.

As for the Jacobian of a and b we see that each additional derivative in a non
diagonal component gain a factor εd

b′′iii =O(1)

b′′iij = b′′iji =O(εd), j 6= i

b′′ijk =O(ε2d), j 6= i,k 6= i

and similarly for a′′

a′′iii =O(1)

a′′iij =a′′iji =O(εd), j 6= i

a′′ijk =O(ε2d), j 6= i,k 6= i.

The estimate of u′′ has several terms, let us start with the term (and no summation
over k and j here)

|E[
∫ T

0

X ′
kjb

′′
ikmdW iX ′

mjg
′
i]|

≤
(∫ T

0

E[(X ′
kj)

2(b′′ikm)2]dt
)1/2(

E[(X ′
mj)

2(g′i)
2]
)1/2

.



16 SDE from IPS

It turns out that a main contribution to the `1 norm of u′′ comes from the diagonal
term b′′′iii

∑
ij

(∫ T

0

E[(X ′
ij)

2(b′′iii)
2]dt

)1/2(
E[(X ′

ij)
2(g′i)

2])1/2

≤Cεd
∑
ij

sup
s≤T

E[(X ′
ij(s,t))

2]

≤Cεd
∑

i

E[d2
i ]+Cεd

∑
ij

E[M2
ijd

2
i ]

≤C +Cεd
∑
ij

(E[M4
ij ])

1/2(E[d4
i ])

1/2

≤C +C(
∑
ij

E[M4
ij ])

1/2≤C.

(3.25)

The non diagonal terms b′′ijk similarly give the same bound, where the sum over
more terms is compensated by additional powers of εd in b′′. The other type of term
X ′

kjX
′
mjg

′′
km in (3.19) also yields the contribution

∑
jk

εdE[(X ′
kj)

2]+
∑
jkm

ε2dE[|X ′
kjX

′
mj |]

which is bounded and we can conclude that the `1 norm of u′′ is bounded.
The proof of the estimate of E[Mp

ij ] applied to an Ito integral
∫ T

0
ftdW , i.e.

replacing Mij by
∫ T

0
ftdW , shows that

E[(
∫ T

0

ftdW )p]≤p(p−1)eTp(p−1)/2

∫ T

0

E[fp
t ]dt,

which we will use to estimate u′′′. The estimate of u′′′ has several terms, we start
with E[

∫ T

0
X ′

kjb
′′
ikmdW iX ′′

mjjg
′
i] which has a main term

∑
k,m,r,n

|E[
∫ T

0

X ′
kjb

′′
ikmdW i

∫ T

0

X ′
rjb

′′
mrndW rX ′

njg
′
i]|

≤
∑

k,m,r,n

C(
∫ T

0

E[(X ′
kj)

2(b′′ikm)2]dt)1/2

×(
∫ T

0

E[(X ′
rj)

4(b′′mrn)4]dt)1/4(E[(X ′
nj)

4(g′i)
4])1/4.

As for u′′, the diagonal terms yield

|E[
∫ T

0

X ′
ijb

′′
iiidW i

∫ T

0

X ′
ijb

′′
iiidW iX ′

ijg
′
i]|

≤Cεd(
∫ T

0

E[(X ′
ij)

2]dt)1/2(
∫ T

0

E[(X ′
ij)

4]dt)1/4(E[(X ′
ij)

4])1/4
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so that using (3.25)

∑
ij

|E[
∫ T

0

X ′
ijb

′′
iiidW i

∫ T

0

X ′
ijb

′′
iiidW iX ′

ijg
′
i]|

≤Cεd sup
s≤T

∑
ij

E[(X ′
ij)

2]+Cεd sup
s≤T

∑
ij

E[(X ′
ij)

4]≤C.

The remaining terms in u′′′ can be bounded similarly.

3.2. Dendrites with Einstein Diffusion
We see by Theorem 3.1 and Lemma 3.1 that the mean field differential equation

solution is also an accurate approximation to the spin dynamics; this indicates that
the stochastic differential equation (3.2) then only offers a small quantitative improve-
ment. However, if the derivatives of the value function would be large, coupled to
the small scale ε, the mean field solution may give a qualitatively wrong answer, with
O(1) error as γ/ε→0+, while the stochastic differential equation still could yield an
asymptotically correct limit; such an example is dendrite formation in phase trans-
formations, cf. [27, 24, 1], [18].

Let us try to motivate why the noise in Theorem 3.1 seems applicable to dendrite
formation. Dendrite dynamics can be formulated by the phase field method with
an Allen-Cahn/Ginzburg-Landau equation coupled to a diffusion equation for the
energy, determining the temperature, and by master equations coupled to the energy
equation, cf. [18]. Mean field equations related to such a phase field system have been
derived from a spin system coupled to a diffusion equation, see [7]; a related model is
to let the coarse-grained potential energy be defined by

m(σ,z) :=
∑

x

(∑
y 6=x

1
2
J(x−y)σ(y)−h

)
σ(x)Aε(x,z),

where A is the average in (3.1), and replace the Glauber dynamics with Arrhenius
dynamics. That is, the microscopic dynamics is given by independent spins σ(x)∈
{0,1}, for each lattice point x∈L, flipping with adsorption rate

ca(x)=d0

(
1−σ(x)

)
,

from states 0 to 1, and with desorption rate

cd(x)=d0σ(x)exp
(
− 1

kBT

(∑
y 6=x

J(x−y)σ(y)−h
))

,

from states 1 to 0, where h is a surface binding energy or an external field and d0 is a
given rate, cf. [28]. Arrhenius dynamics also satisfies detailed balance with the same
Gibbs density

e

(P
x

P
y 6=x J(x−y)σ(x)σ(y)/2−

P
x hσ(x)

)
/(kBT )

as for Glauber dynamics. The dynamics for the potential energy variable can then be
coupled to the macroscopic energy equation

∂t(cvT +m)=div(k∇T )
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by letting the temperature T vary on the coarse-grained scale.
The dendrite grows with a positive non vanishing speed. Without noise in the

model there is no side branching, while the side branching is present with added noise
to the phase field model, cf. [1], or to the mean field model derived in [18]. This
noise induced side branching is explained by the high sensitivity with respect to small
perturbations at the dendrite tip, cf. [27]. Therefore the derivatives of an appropriate
value function are large. Here the value function, u, could for instance measure the
total dendrite surface at a fixed time. The inconsistent approximation of the mean
field solution could by Lemma 3.1 be explained by having

(γ/ε)d‖u′′‖`1 =O(1). (3.26)

The smallest scale in the problem is the dendrite tip radius ρ; with a bounded value
function its derivatives could then be

‖u′‖`1 =O(1/ρ),

‖u′′‖`1 =O(1/ρ2),

‖u′′′‖`1 =O(1/ρ3).

Consequently (3.26) yields (γ/ε)d/2 =ρ, so that the noise error for the stochastic dif-
ferential equation with the Einstein diffusion of Theorem 3.1 would be bounded by
(γ/ε)2d‖u′′′‖`1 =O

(
(γ/ε)d/2

)
, which tends to zero as γ/ε→0+. Therefore, this ad-

sorption/desorption kinetic Monte Carlo model with long range interaction generates
an approximating stochastic differential equation, which could be applicable also to
coupling with the energy equation if the derivation remains valid with slowly varying
temperature. An essential and maybe more difficult question is to find accurate ki-
netic Monte Carlo methods for real systems with dendrite dynamics, e.g. using ideas
from the molecular dynamics coarse-graining.

3.3. Coarse-Grained Monte Carlo
Let now ū(ξ,t) be the solution to a Kolmogorov backward equation for a coarse-

grained stochastic interacting particle model

∂tū+ L̄ū=0.

Let Cη be the set of all x∈L in a coarse cell with X̄ =
∑

x∈η σ(x)/qd, where qd =(ε/γ)d

is the number of sites in a coarse cell. Then the KMC-CGMC error between the
averaged spin X̄ and the coarse grained Monte Carlo solution X

E[g(X̄T )−g(XT )]=
∫ T

0

E[dū(X̄(σt),t)]=
∫ T

0

E[Lū+∂tū]dt

=
∫ T

0

E[Lū(X̄(σt),t)− L̄ū(X̄t,t)]dt

=
∫ T

0

E
[∑

x∈L
c(x,σ)

(
ū(X̄(σx),t)− ū(X̄(σ),t)

)
−
∑
η∈L̄

c̄(η,X̄)
(
ū(X̄η,t)− ū(X̄,t)

)]
dt

=
∫ T

0

E
[∑

η∈L̄

(∑
x∈η

c(x,σ)− c̄(η,X̄)
)(

ū(X̄η,t)− ū(X̄,t)
)]

dt

(3.27)
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is at most of order ε, cf. remark 3.6, since the coarse grained Monte Carlo has the
transition rates

c̄(η,X̄)=


qd(1−X̄)

4

(
1+tanh

(
β(J ∗X̄ +h−J(0)X)

))
, X̄ to X̄ +1/qd,at η

qd(1+X̄)
4

(
1−tanh

(
β(J ∗X̄ +h−J(0)X)

))
, X̄ to X̄−1/qd,at η.

which implies ∑
x∈η

c(x,σ)− c̄(η,X̄)=O(qdε) (3.28)

and

|X̄η−X̄|=2/qd.

Note that the error KMC -SDE splits to KMC-CGKMC + CGKMC -SDE which
is O(ε)+O((γ/ε)2d). The computational gain of the coarse-grained Monte Carlo
method is to reduce the number of variables, see [28]. However, this coarse-graining
does not change the number of spin jumps. Therefore the coarse-grained model has
a high rate, O(qd), of small jumps, 2/qd, which implies a fast time scale. The SDE
approximation further improves the computational efficiency by avoiding this fast
time scale, replacing the high rate of small jumps with small diffusion.

3.4. Lattice Systems with Finite-Range Interactions
Here we discuss a straighforward extension to lattice systems with finite-range

interaction potentials of the form

J(x−y)=
1
Ld

J0

(
x−y

γL

)
,

where Ld denotes the number of interacting neighbors and J0(x)=0, if ‖x‖≥1.
A closer inspection of the proof of Theorem 3.1 along with the observation that

−
∑
x∈L

2c(x,σ)Aε(x,·)Aε(x,·)Aε(x,·)σ3(x)=

(
γ

ε
)2d
[
−X̄ +tanh

(
β
(
J ∗X̄ +h)

)
+E1

]
yield the following, where ‖w‖`∞ :=supx |w(x)|,
Theorem 3.3. The average spin, X̄, can be approximated by the solution, X, to the
Ito stochastic differential equation (3.2) with error

E[g(X̄T )]−E[g(XT )]=T
(
E1 +E2

)
where

E1≤CβE[‖J ∗σ−J ∗X̄‖`∞ ]=βO
(
ε/(Lγ)

)
and

E2 =CE[‖−X̄ +tanh
(
β
(
J ∗X̄ +h

))
‖`∞ ]O

(
(γ/ε)2d

)
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where C depends on the `1(L̄i) norms of the derivatives, u′(X̄t,t),u′′(X̄t,t) and
u′′′(X̄t,t) on the path X̄, up to time T .

The form of the error terms E1 and E2 suggests that, if the constant C in the
Theorem remains uniformly bounded, then the SDE approximation can perform well
even if we do not necessary have long range interactions. For instance, we can employ
the a priori knowledge of the behavior of the approximated exact spin flip dynamics
to ensure the errors in Theorem 3.3 are small:

• In a high temperature regime, β�1, the error term E1 is small and provides a
good approximation even if the involved potentials are short ranged. Similarly
the prefactor E[‖−X̄ +tanh

(
β
(
J ∗X̄ +h

))
‖`∞ ]�1, since in that regime we

know that E[‖X̄‖]�1.
• In the presence of a strong external field, |h|�1, the SDE dynamics also

provides a good approximation even for short ranged interactions. In this case
the spins are all aligned, hence with large probability σ(·)≈ X̄≈±1; therefore
we have that E[‖J ∗σ−J ∗X̄‖`∞ ]�1, E[‖−X̄ +tanh

(
β
(
J ∗X̄ +h

))
‖`∞ ]�

1.

3.5. Other Remarks on Theorem 3.1
Remark 3.4 (Bounds on X). Let us verify that 1−X tanh

(
β(J ∗X +h)

)
is

positive on the support of η, so that b becomes a C∞ function. Let

r =min(1+2e−2β(2|J|`1+|h|`∞ ),2).

Assume that maxx |X(x)|≤ r, then

1−X tanh
(
β(J ∗X +h)

)
≥1−rtanh(β(r|J |`1 + |h|`∞))
≥1−rtanh(β(2|J |`1 + |h|`∞))

≥1−r(1−2e−2β(2|J|`1+|h|`∞ ))> (r−1)2 >0

which shows that b is a C∞ function. For |X(x)|>1 we note that the drift push X(x)
towards the set [−1,1], in particular if |X(x)|= r we have b(x)=0, by the construction
of the cut-off function η, and consequently the drift prevents X(x) from leaving the
set [−r,r], so that the assumption maxx,t |Xt(x)|≤ r indeed holds.

If one think of m=tanh(β(J ∗X +h−J(0)X)) as constant, the process for X
has a drift as in an Ornstein-Uhlenbeck process with mean m, however with small
non constant diffusion depending on X; therefore the values X will approach m, as
γ→0+. A rigorous statement in this direction is E[g(XT )−g(X̂T )]=TO(ε2 +(γ/ε)d)
obtained from Lemma 3.1 and Theorem 3.1. Note that |X̂(y)|≤1.

Remark 3.5 (Reflected diffusion). An alternative to the η cut-off in the diffusion
coefficient (yielding a gradual reflection of X(y) to the set [−1,1]) is to let X be a
diffusion process which is instantaneously reflected at the two boundaries X =±1

dXx(t)=ax

(
X(t)

)
dt+bx

(
X(t)

)
dW x +n

(
Xx(t)

)
dZx(t),

where

Zx(t) := lim
δ→0+

1
2δ

∫ t

0

1{Xx(s)−1>−δ or Xx(s)+1<δ}(s)ds

is the local time X spends at the boundary and n
(
Xx(t)

)
is the inward normal at

Xx(t). The work [13] includes an introduction to reflected diffusion processes. The
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first two steps in the proof of Theorem 3.6 is applicable also for this case of reflected
diffusion, since the generator is the same. The reason that we do not only present
this reflected case is that we do not know how to derive the corresponding mean
square estimates of variations of reflected X, as established for the non reflected case
in Section 3.1. The obstacle is the second and higher order variations, which include
stopped diffusion problems that are not differentiable in the same sense as for the
problem without boundary.

Remark 3.6 (Improved KMC-CGKMC rate). Using asymptotic independence
of σ(x), established in [4], the rate in (3.28) improves to O(qdε2), which yields the
KMC-CGKMC error O(ε2). This is also established directly in [30], without using
the results in [4], again through a derivation in the spirit of the calculation (3.27), by
reversing the role of u and ū and letting X be a jump process on the fine lattice with
the coarse rates; the proof is based on an error estimate of u′− ū′ and that the flips
of X in the same cell are independent by construction.

Remark 3.7 (Approximation of probability measures). A uniform error estimate
(3.6), for all g, would give an estimate of the error of the probability measures of the
KMC and SDE: by varying g in E[g(X̄T )|X̄t = ξ]=

∫
g(ζ)dpξ(ζ). Section 4 presents

an example of invariant measures.
Remark 3.8 (Bounds on u). Assume that the mean field equation is stable in

the sense that the characteristics, Y , solving Y ′=a(Y ) are stable. Then the back-
ward equation for u can to leading order be integrated by the characteristics and
consequently the solution, u, to equation (3.16) will typically grow at least as O(T ),
so that u is not bounded uniformly in T . In the neighborhood of a local unstable
equilibrium, converging backward characteristics may give large derivatives of u, see
Section 4.4. In Section 5 we give an exit time example where the derivatives of u are
growing exponentially as eC(ε/γ)d

.
Remark 3.9 (Adaptivity). The CGMC and the SDE can be adaptively approx-

imated in x and t by computing also approximations to u′,u′′,u′′′. Such algorithms
for time adaptivity of ordinary and stochastic differential equations are presented in
[42, 36],[37]. Spatial adaptivity of partial differential equation with this setting is pre-
sented in [38]. Furthermore, some initial work on spatial adaptivity for KMC based
on a posteriori bounds and using variable-size CGMC simulations is demonstrated in
[2]. Ongoing work uses the separation into KMC-CGMC and CGMC-SDE error in
(3.27) to construct adaptive methods for master equations and its hybrid coupling to
SDE.

4. The Curie-Weiss Model and Invariant Measures

4.1. The Curie-Weiss Model
The Curie-Weiss model in one space dimension consists of the usual lattice system

where the interaction potential is constant:

J(x−y) :=
J

N
, x,y∈L (4.1)

and N = 1
γ is the total number of lattice sites on L. Then the microscopic Hamiltonian

H(σ)=−1
2

∑
x∈L

∑
y∈L

J(x−y)σ(x)σ(y)+
∑
x∈L

hσ(x), (4.2)

can be written exactly as the coarse-grained Hamiltonian

H(σ)= H̄(η) :=N
(
− J

2
η2 +hη

)
, (4.3)
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where the coarse variable η is defined as

η :=
1
N

∑
x∈L

σ(x). (4.4)

The meaning of the previous calculation is that in the Curie-Weiss example the Hamil-
tonian can be coarse-grained exactly.

The microscopic dynamics is given by independent spins σ(x)∈{0,1}, for each
lattice point x∈L, flipping with adsorption rate c̃a(x)=1−σ(x), from states 0 to
1, and with desorption rate c̃d(x)=σ(x)exp

(
−β(Jη−h)

)
, from states 1 to 0, where

β = 1
kT is the inverse temperature with the Boltzmann constant k and temperature

T >0, cf. [28].
Remark 4.1 (Alternative Curie-Weiss model). The usual Curie-Weiss model

with the Hamiltonian

H(σ)=−1
2

∑
x∈L

∑
y 6=x

J(x−y)σ(x)σ(y)+
∑
x∈L

hσ(x)=N
(
− J

2
η(η−N−1)+hη

)
excluding self interaction, can be handled analogously to (4.2).

4.2. Coarse-Grained Monte Carlo Dynamics and Invariant Measures
In the Curie-Weiss case the microscopic spin flip dynamics coarse grain exactly:

since the interaction potential is constant, the corresponding error in (3.28) becomes
zero instead of O(qdε); this is described in more detail in [28] where the process
described in ([28] pages 256-259) is exact, i.e. there is no error in ([28]-3.15) due to
the lack of error in ([28]-3.10). Thus for the coarse variable η = 1

N

∑
xσ(x)∈ [0,1] we

have the Markov process defined in terms of a generator as:

d

dt
Eg(η)=EL̄g(η) :=E

[
ca(η)

(
g(η+

1
N

)−g(η)
)
+cd(η)

(
g(η− 1

N
)−g(η)

)]
, (4.5)

where

ca(η)=N(1−η), cd(η)=Nηexp
[
−β(Jη−h)

]
. (4.6)

Let µ denote the density of the invariant measure for the coarse-grained dynamics;
its detailed balance

cd(η+N−1)µ(η+N−1)= ca(η)µ(η)

implies that the invariant measure is

µ(η)=µ(0)
ηN∏
i=1

ca

(
(i−1)/N

)
cd(i/N)

=µ(0)e
PηN

i=0

(
β(Ji/N−h)−log(i/N)+log

(
1−(i−1)/N

))

= Z̄−1e−N
(
βH̄(η)+η log(η)+(1−η)log(1−η)+O(N−1)

)
=: Z̄−1e−NβU(η),

(4.7)

using Stirling’s formula in the right hand side and Z̄ :=N−1
∑N

i=1e−NβU(i/N).
A consequence of the exact coarse-graining of the Hamiltonian is that the

coarse-grained invariant measure is obtained from the microscopic Gibbs measure,
exp(−βH(σ))/Z̄ =exp(−βH̄(η))/Z̄, by

µ(η)=
1
Z̄

exp(−βH̄(η))PN (η),
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where the product binomial distribution

PN

(
η =

k

N

)
=

N !
k!(N−k)!

(1
2

)N

is the prior distribution arising from the microscopic prior by including N independent
sites, see [28], which by Stirling’s formula yields (4.7). In the case of a general long
range interaction potential, the work [28] shows that the invariant measure for the
coarse-grained dynamics converges to the one from the exact microscopic invariant
measure.

4.3. SDE/MC Approximating Dynamics
We now derive an SDE approximation of (4.5) in the spirit of the derivations in

the previous section. We expand the smooth function g in (4.5) so that

g(η± 1
N

)−g(η)=± 1
N

g′(η)+
1

2N2
g′′(η)+O(N−3).

Substitution in (4.5) gives the approximation

d

dt
Eg(η)=E[

ca(η)−cd(η)
N

g′(η)+
ca +cd(η)

2N2
g′′(η)]+O(N−2) (4.8)

where ca,cd are given by (4.6). Thus we have the approximating SDE

dη =a(η)dt+b(η)dWt , (4.9)

where

a(x)=1−x−xexp(−β(Jx−h)), b(x)=

√
|1−x+xexp(−β(Jx−h))|

N
.

The density ν of the invariant measure of the 1-D stochastic differential equation
(4.9) satisfies

(aν)′−(
b2ν

2
)′′=0

and by detailed balance

aν =(
b2ν

2
)′

the solution is

ν(η)=
1
Z

exp
(
2
∫ η

0

a(x)
b2(x)

dx− logb2(η)
)

=:
1
Z

exp
(
−NV (η)

) (4.10)

where

V (η)=−2
∫ η

0

1−x−xexp(−β(Jx−h))
1−x+xexp(−β(Jx−h))

dx

+
1
N

log
(
1−η+ηexp(−β(Jη−h))

)
,

Z =
∫

R
exp

(
−NV (η)

)
dη.
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4.4. Comparison of the SDE/MC Invariant Measures
We compare the asymptotics of the MC and the SDE by the corresponding differ-

ent invariant measures (4.7) and (4.10). Looking carefully at the derivatives of U and
V one notices that U and V have the same critical points up to order O(N−1). These
critical points mi are precisely the equilibrium points for the mean field equation

d

dt
m(t)=a

(
m(t)

)
.

We see that either there is one stable equilibrium point or there are two stable, m±,
and one unstable, m0, equilibrium. At these equilibrium points there holds

U ′′(m)=V ′′(m)+O(N−1),

so that the stable points are local minima of U and V .
In the special case when U and V have only one local equilibrium point, which is

a global minimum, the expansion∫ 1

0

G(x)e−NU(x)dx/Zc,β'
∫ 1

0

(
G(m)+G′(m)(x−m)+

1
2
G′′(m)(x−m)2 + ...

)
×e−N

(
U(m)+U ′′(m)(x−m)2/2+...

)
dx/Z̄

=
∫ 1

0

(
G(m)+G′(m)(x−m)+

1
2
G′′(m)(x−m)2 + ...

)
×e−N

(
V (m)+V ′′(m)(x−m)2/2+...

)
dx/Z +O(N−2)

=
∫ 1

0

G(x)e−NV (x)dx/Z +O(N−2)

(4.11)

verifies that ∫ 1

0

Gdµ=
∫ 1

0

Gdν +O(N−2), (4.12)

in accordance with Corollary 3.16 and (4.8).
The functions U and V can have two global minimum points m± when h=J/2

and J is sufficiently large; then to leading order U and V are even around η =1/2.
For other values of h, the functions U and V may have their global minimum at
different points, making the the derivation (4.11) invalid. In this case when U has a
local equilibrium point y′′, which is not a local minimum, the backward characteristic
paths {Y (t;x) |t<T, x∈Ω}

Y ′(t)=a
(
Y (t)

)
t<T, Y (T )=x,

may converge, in a neighborhood Ω of y′′. This can give rise to large derivatives of u
so that the assumption in (3.16) do not hold for long time; the solution u is related
to a linearized shock wave problem, cf. [17].

We see also that the deterministic mean field solution satisfies

lim
t→∞

m(t)=m+ if m(0)>m0,

lim
t→∞

m(t)=m− if m(0)<m0,

m(t)=m0 if m(0)=m0.
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Therefore the mean field behavior can be bistable, but if U has only one global
minimum point, say m+ and m(0)>m0, then∫ 1

0

Gdµ=G(m+)+O(N−1)= lim
t→∞

G
(
m(t)

)
+O(N−1). (4.13)

in accordance with Corollary 3.16 and Lemma 6.2.
In conclusion:
• the two different invariant measures for the stochastic differential equations

and the coarse-grained Monte Carlo method, respectively, have almost the
same most likely states mi, corresponding to the minima of the potentials U
and V, which are the equilibrium mean states, a(mi)=0, with the mean field
approximation (4.13);

• at the most likely states also the second derivatives of U and V are almost
the same, so that the two invariant measures generate similar statistics (4.12)
provided the derivatives of value function u remains bounded for all time;

• although the coarse-grained Monte Carlo method is expected to be compu-
tationally more costly than the SDE-based methods described in this paper,
it generates an asymptotically correct invariant measure for potentials with
long enough interactions, even in regimes that exhibit bistability, see [28] for
more detailed estimates.

5. Mean Transition Times with Invariant Measure Diffusion
Not all expected values E[g(X̄T )] can be approximated using the stochastic dif-

ferential equation (3.2), due to the required bounds on the derivatives of u; such
an example is to determine the expected first exit time τ(Y )= inf{t :Yt 6∈A} from a
neighborhood A of an equilibrium point y′∈A, where a(y′)=0 and Y0∈A. Then the
expected exit time is exponentially large, i.e.

limγ/ε→0+(γ
ε )d logE[τ(X̄)] and limγ/ε→0+(γ

ε )d logE[τ(X)]
are both strictly positive.

(5.1)

These expected values are related to transition rates k, called reaction rates in chem-
istry; and E[τ ]≈1/k in simple cases, see [22], [14]. Hanggi et. al. [21] have proposed
a remedy by approximating the master equation by a different stochastic differential
equation with the same asymptotic drift but a modified diffusion, to leading order,
chosen so that the SDE invariant measure Z−1e−U/(γ/ε)d

is asymptotically the same
as for the master equation; we will apply this to the coarse-grained master equation.
Consequently the asymtotics of the CGMC invariant measure is used to define the
diffusion. Because of (5.1) the theory of large deviations for rare events is relevant,
cf. [14].

Let γ1 :=γ/ε. Consider an SDE

dXt(x)=
(
a(Xt)+γd

1c(Xt)
)
(x)dt+γ

d/2
1 b̃(Xt)(x)dW x

t ,

with the generator

Lf =(a+γd
1c) ·f ′+γd

1D̃ ·f ′′, Dij = b̃ib̃jδij ;

the idea in [21] is to find c and D so that the corresponding SDE asymptotically
has the same invariant measure e−U/γd

1 /Z as the master equation. Hanggi et.al. [21]
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determines the diagonal diffusion matrix D̃ and the small contribution to the drift,
γd
1c, by

D̃ii =−ai/U ′
i

ci =−∂xiD̃ii;
(5.2)

note that since a and U have the same zeros, the constructed function D̃ii is positive
in general. The equation (5.2) can be obtained by the WKB expansion

0'L∗e−U/γd
1 =
(
γ−d
1 (aiU

′
i +D̃iiU

′
iU

′
i)

+γ0
1(∂iai +2U ′

i∂iD̃ii +U ′′
iiD̃ii +ciU

′
i)

+γd
1 (∂ic−∂iiD̃ii)

)
e−U/γd

1

together with the two leading order conditions that the terms of order γ−d
1 and γ0

1

vanish; here L∗ is the Fokker-Planck operator adjoint to L. Consequently the choice
(5.2) will in general generate an SDE with an invariant measure e−Ũ/γd

1 /Z, where
|Ũ−U |=O(γ2d

1 ).
Let us motivate why good approximation of the invariant measure implies that

also the expected values, E[τ ], for exit problems related to rare events, are accurately
computed: the work [14] shows that

lim
γ1→0+

γd
1 logE[τ(X)]= inf

y∈∂A
U(y)−U(y′), (5.3)

for the case D̃ii =1 and one stable attracting equilibrium point y′∈A; the following
section extends this to D given by (5.2) and shows that also

lim
γ1→0+

γd
1 logE[τ(X̄)]= inf

y∈∂A
U(y)−U(y′). (5.4)

Remark 5.1 (Einstein-diffusion versus invariant measure diffusion). Although
the invariant measure diffusion (5.2) does not achieve the same high accuracy as
the Einstein-diffusion (3.2) for bounded time approximation, the invariant measure
diffusion solution will have the same order of accuracy as the mean field solution in
Lemmas 3.1 for bounded times. On the other hand, the Einstein-diffusion (3.2) yields
by (5.3) inconsistent approximation to exit times since its invariant measure (4.10) is
different from the invariant measure (4.7) for the master equation. Note however that
when the mean field equation is slightly unstable, such as for the dendrite dynamics
in Section 3.2, the Einstein diffusion may be consistent for short times while others
are not. The Einstein diffusion, valid for short time approximation, and the invariant
measure diffusion, valid for very long time, leaves a gap of intermediate time where
an accurate diffusion approximation remains to be found.

5.1. Asymptotic agreement of Exit Times for SDE’s and Master Equa-
tions

This section proves that the exit time for SDE’s with invariant measure diffusion
is asymptotically the same as for the master equation for the 1D Curie-Weiss Model
with the generator (4.5). More specifically assume that the master equation has
the invariant measure density exp(−Ũ/γ1) with Ũ→U as γ1→0+ and consider a
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stochastic differential equation

dXt = ã(Xt)dt+
√

γ1D̃(Xt)dW,

D̃ =D+O(γ1)
ã=−DU ′+O(γ1).

(5.5)

We show that

lim
γ1→0+

γd
1

(
logE[τ(X)]− logE[τ̄(X̄)]

)
=0, (5.6)

where E[τ̄(X̄)] and E[τ(X)] denote the mean exit time of the Curie-Weiss and the
invariant measure diffusion respectively. Our technique to establish this asymptotic
agreement is to use logarithmic (Hopf-Cole) transformations of the two mean exit
times, as functions of the initial location, which transforms the corresponding two
linear Kolmogorov backward equations to two nonlinear Hamilton-Jacobi equations,
cf. [12]. The two processes give rise to two different asymptotic Hamilton-Jacobi
equations (see (5.11) below), however the key observation is that they have the same
viscosity solution since they are both convex and have the same set of zeros. Of course,
the result (5.6) does not imply that the corresponding expected times will have the
same pre factor in their WKB expansion. In order to compare these pre factors, a
more detailed WKB expansion of the corresponding Hamilton-Jacobi equations would
be necessary, following the asymptotic series results in [12], Section VI.7 and [11].

Next we describe in detail these results. The value function

u(x,t)=E[τ(X);Xt =x]− t,

with exit from the domain (a,b)=A, solves

∂tu+ ãu′+γ1D̃u′′+1=0 in (a,b)×(0,T ), u(a,·)=u(b,·)=0, u(·,T )=0.

By definition, u and ū are non negative functions. Assume that ã(y′)=0 for precisely
one point y′∈ (a,b). The time independent one dimensional first order equation for
v =u′ can be solved explicitly, but we will instead derive an approximating technique
that can be applied to the master equation and in higher dimension, based on a WKB
transformation. Assume that maxx,tu(x,t)=M . Since u is non negative, we can
uniquely define the non negative function w (depending on γ1) by u=M +1−ew/γ1 .
Similarly, let maxū=M̄ , then ū=M̄ +1−ew̄/γ1 defines the non negative function w̄.
The definitions of w and w̄ yield

∂tw+ ãw′+D̃w′w′+γ1D̃w′′−γ1e
−w/γ1 =0,

∂tw̄+γ1ca

(
e

(
w̄(x+γ1)−w̄(x)

)
/γ1−1

)
+γ1cd

(
e

(
w̄(x−γ1)−w̄(x)

)
/γ1−1

)
−γ1e

−w̄/γ1 =0

with the boundary condition that w=γ1 log(M +1) on
(
a×(0,T )

)
∪
(
b×(0,T )

)
∪(

(a,b)×T
)
, the boundary values of w are constant independent of x and t, and likewise

for w̄ we have on the boundary w̄=γ1 log(M̄ +1). In some sense, it is the unknown
constants M and M̄ we want to determine.

The advantage with these two Hamilton-Jacobi equations is that their limit as
γ1→0+ is well behaved in the viscosity solution theory. To understand these limits,
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observe first that a=−DU ′+O(γ1) from condition (5.5), derived by the detailed
balance in (5.2). The master equation corresponding to (4.5) has the detailed balance

cd(x+γ1)e−Ũ(x+γ1)/γ1 = ca(x)e−Ũ(x)/γ1

so that

cd(x)
ca(x)

=
cd(x+γ1)

ca(x)
+O(γ1)=e

(
Ũ(x+γ1)−Ũ(x)

)
/γ1 +O(γ1)=eU ′(x) +O(γ1).

Therefore, using also that w and w̄ are non negative and differentiable, the two func-
tions w and w̄ have limits as γ1→0+ and these limit functions (w,w̄) satisfy in
viscosity solutions sense, cf. [12], the equations

∂tw+D(−U ′w′+w′w′)︸ ︷︷ ︸
=:H(w′,·)

=0, (5.7)

and

∂tw̄+γ1ca

(
ew̄′−1+eU ′(e−w̄′−1)

)︸ ︷︷ ︸
=:H̄(w̄′,·)

=0, (5.8)

respectively, with the boundary conditions (for the outward normal n)

w(α)=γ1 log(M0 +1) if Hw′(w′(α),α) ·n(α)≥0 α∈∂A

w̄(α)=γ1 log(M̄0 +1) if H̄w̄′(w̄′(α),α) ·n(α)≥0 α∈∂A
(5.9)

or

w(α)≥γ1 log(M0 +1) if Hw′(w′(α),α) ·n(α)≤0 α∈∂A

w̄(α)≥γ1 log(M̄0 +1) if H̄w′(w̄′(α),α) ·n(α)≤0 α∈∂A,
(5.10)

where M0 and M̄0 are the limits of M and M̄ . We see that strict inequality in the
second case (5.10) are not possible values for w,w̄, therefore we need that the solu-
tions satisfy Hw′ ·n|∂A≥0. These boundary conditions come from the related optimal
control setting, where (5.9) means that a controlled path hits the boundary ∂A; while
if a controlled path instead exits at T =∞ the terms −γ1e

−w/γ1 and −γ1e
−w̄/γ1 in

the Hamilton-Jacobi equations for w and w̄ give an additional cost −∞ making such
paths non optimal. We seek time independent solutions of the equations

H(w′,·)=0
H̄(w̄′,·)=0

(5.11)

obtained by first taking the limit T →∞ and then γ1→0+. The equations (5.11)
determine w and w̄ only up to an unknown additive constant. The boundary condition
(5.9) sets the constant, but since M0 and M̄0 are unknown, the right constant is better
found by the condition lima,b→y′w=0. Since the two Hamilton-Jacobi equations
(5.11) have convex Hamiltonians with the same zeros and boundary condition, the
equations are equivalent and their viscosity solutions are the same. In the domain
where the solution is differentiable, we have w′ and w̄′ equal to 0 or U ′.
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Fig. 5.1. The functions w = w̄ (solid) for U(x)=x2 +1 (dashed), with (a,b)=(−1,2), y′ =0,
and c=

√
3.

Now let c>y′ be defined by U(a)−U(y′)=U(b)−U(c). Then the unique solution
to (5.11) and (5.9) is

w(x)= w̄(x)=U(x)−U(y′) for x<y′,
w(x)= w̄(x)=0 for y′≤x<c,
w(x)= w̄(x)=U(x)−U(c) for c<x<b,

see Figure 5.1, which solves (5.11) with the boundary condition (5.9). We have proved
Theorem 5.2. The master equation corresponding to (4.5) and the stochastic equa-
tion (5.5) have to leading order the same mean transition times, i.e. for x∈A=(a,b)

lim
γ1→0+

γ1 logE[τ(X̄) | X̄0 =x] = lim
γ1→0+

γ1 logE[τ(X) | X0 =x] = min
y∈∂A

(
U(y)−U(y′)

)
.

Remark 5.3 (Higher dimensions). The coarse grained Ising model in Section
3.3 takes a similar form as the adsorption desorption model. Note that by detailed
balance, the derivation of (5.3) and (5.4) can be extended to multi-dimensional master
equations with coarse-grained adsorption-desorption model; in higher dimension the
two Hamiltonians still have the common zeros U ′ and 0, but there are other non
common zeros in general so that the two time independent Hamilton-Jacobi equations
are not equivalent. However, in a domain A where U has only one equilibrium point
the solutions w and w̄ will, as in the one dimensional case, have the gradient equal to
U ′ or 0. Therefore (5.3) and (5.4) seems to hold also in several dimensions.

6. APPENDIX: Centered Averages
This section partly extends the results on projected averages in Section 3 to

localized centered averages on scale ε

X̄ :=Aε ∗σ =
∑
y∈L

Aε(·−y)σ(y) (6.1)
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where Aε is the symmetric mollifier

Aε(x)=CAe−|x|
2/(2ε2) (6.2)

with CA chosen such that ∑
x∈L

Aε(x)=1, (6.3)

and ∑
x∈L

xAε(x)=0.

We assume that ε>γ. In this section we consider a Hamiltonian which excludes self
interaction, so that H(σ)=

∑
x

∑
y 6=xJ(x−y)X(x)X(y).

We shall show that the average spin, X̄, can be approximated by the solution, X,
to the Ito stochastic differential equation

dXt =a(Xt)dt+
∑
z∈L

bz(Xt)dW z, X0 = X̄0, (6.4)

with the drift and diffusion coefficients given by

a(X)=−X +tanh
(
β(J ∗X +h−J(0)X)

)
,

bz
x(X)=Aε(x−z)

√
|1−X tanh

(
β(J ∗X +h−J(0)X)

)
(x)| η

(
X(x)

)
,

η(r)=
{

1 for x∈ [−1,1],
0 for x∈ (−∞,−r̂)∪(r̂,∞),

r̂ :=min(1+e−2β(2|J|`1+‖h‖L∞ ),3/2)

(6.5)

and a Wiener process W :L× [0,T ]→R, where W x are independent one dimensional
standard Brownian motions for x∈L,

The approximation uses that the value function

u(ξ,t)=E[g(XT )|Xt = ξ]

solves a corresponding Kolmogorov backward equation, where the drift and diffusion
coefficients in (6.5) are chosen to minimize the error E[g(X̄T )]−E[g(XT )]. Introduce
the weighted scalar products

w ·v :=
∑
y∈L

wyvyγd for w,v∈RL,

w ·v :=
∑

x,y∈L
wxyvxyγ2d for w,v∈RL2

,

w ·v :=
∑

x,y,z∈L
wxyzvxyzγ

3d for w,v∈RL3
.

(6.6)

Then u satisfies the Kolmogorov backward equation

∂tu+a ·u′+D ·u′′=0, for t<T,
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u(·,T )=g,

where

Dxy =
1
2

∑
z∈L

bz
xbz

y

=
√

1−X tanh
(
β(J ∗X +h)

)
(x)
√

1−X tanh
(
β(J ∗X +h)

)
(y)

×
∑
z∈L

Aε(x−z)Aε(y−z)︸ ︷︷ ︸
=A√2ε(x−y)

η(X(x))η(X(y)),
(6.7)

and u′(ξ,t)=∂ξu(ξ,t) and u′′(ξ,t) are the first and second order Gâteaux derivatives
of u in the weighted scalar products (6.6) on L and L2, respectively. The definition
of the weighted scalar product implies that the Gâteaux derivative u′i(ξ,t) is a factor
of γ−d larger than the standard partial derivative ∂u(ξ,t)/∂ξi , i.e.

u′(ξ,t)=γ−d∂u(ξ,t)/∂ξ

u′′(ξ,t)=γ−2d∂2u(ξ,t)/∂ξ2

u′′′(ξ,t)=γ−3d∂3u(ξ,t)/∂ξ3.

Note that the stochastic process W̃ defined by

W̃ x =
∑
z∈L

Aε(x−z)W z,

implies ∑
z∈L

bz
xdW z =

√
1−X tanh

(
β(J ∗X +h)

)
(x)η(X(x)) dW̃ x,

where W̃ is a `2(L) valued A√
2ε-Wiener process with covariance A√

2ε =O
(
(γ/ε)d

)
, cf.

[3]. The covariance A√
2ε has bounded trace and exponentially decaying eigenvalues.

Introduce the weighted `1(Li) norms ‖w‖`1(Li) :=
∑

x∈Li |wx|γid. The main result
in this section is
Theorem 6.1. The average spin, X̄, can be approximated by the solution, X, to the
Ito stochastic differential equation (6.4) with error

E[g(X̄T )]−E[g(XT )]=O
(
Tε2 +(Tε2)2 +(T +T 2)(γ/ε)2d

)
(6.8)

provided that the Gâteaux derivatives, u′(X̄t,t),...,u′′′′(X̄t,t) on the path X̄, are
bounded in the weighted norms `1(Li) up to time T and the initial spin σ0 has ex-
pected value m, where σ0(x)−mx are i.i.d. with bounded variance and second order
difference quotients |d2m/dx2|=O(1).

Note that a=0 gives O(1) error, while b=0 gives O
(
(γ/ε)d

)
error so that b de-

fined by (6.5) is justified for γ� ε�γd/(d+1), with T fixed. The stochastic differential
equation (6.4) has C∞ coefficients, where perturbations of solutions may grow expo-
nentially in time, cf. Section 3.1. The method to estimate derivatives of u, for the
projection averages in Section 3.1, could in principle be used also for the analogous
stochastic differential equation for centered averages.
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Proof. The proof proceeds as for the analogous one for the projected average in
Theorem 3.1: the definitions of u, the generator (2.2) and the average (6.1) imply

E[g(X̄T )]−E[g(XT )]=E[u(X̄T ,T )]−E[u(X0,0)]

=E[
∫ T

0

du(X̄t,t)]=
∫ T

0

E[Lu+∂tu]dt=
∫ T

0

E
[
E[Lu−a ·u′−D ·u′′|X̄t]

]
dt

=
∫ T

0

E
[
E[
∑
x∈L

c(x,σt)
(
u(X̄(σx

t ),t)−u
(
X̄(σt),t

))
−a ·u′−D ·u′′|X̄t]

]
dt

=
∫ T

0

E
[
E[
∑
x∈L

c(x,σt)
(
u
(
X̄(σt)−2Aε(x−·)σt(x),t

)
−u
(
X̄(σt),t

))
−a ·u′(X̄t,t)−D ·u′′(X̄t,t) | X̄t]

]
dt.

(6.9)

The first step to estimate this error is to write the differences in u in terms of its
derivatives by Taylor expansion for some s∈ [0,1]

u
(
X̄(σt)−2Aε(x−·)σt(x),t

)
−u
(
X̄(σt),t

)
=−2u′(X̄t,t) ·Aε(x−·)σt(x)

+2u′′(X̄t,t) ·Aε(x−·)Aε(x−·)σ2
t (x)

− 4
3
u′′′
(
X̄t−2sAε(x−·)σt(x),t

)
·Aε(x−·)Aε(x−·)Aε(x−·)σ3

t (x).

(6.10)

The next step is to determine the optimal a and b which minimize the error (6.9).
For this purpose we shall in the flipping rate approximate the coupling J ∗σ and
J(0)σ =O(γd) by J ∗X̄ and J(0)X̄, using the long range O(1) interaction distance of
J . The definition of the average (6.1) implies

J ∗X̄ =(J ∗Aε)∗σ

and consequently the centered coupling improves (3.11) to the uniform error estimate

|J ∗σ−J ∗X̄|≤‖J0−J0 ∗Aε‖`1‖σ‖`∞ =O(ε2). (6.11)

This error estimate, the flip rate (2.3) and J(0)=O(γd) imply

−
∑
x∈L

2c(x,σ)Aε(x−·)σ(x)=−X̄ +Aε ∗tanh
(
β
(
J ∗σ+h−J(0)σ

))
=−X̄ +tanh

(
β
(
J ∗X̄ +h−J(0)X̄

))
+O(ε2 +γ2d).

(6.12)

The condition (6.3) shows that CA =O((γ/ε)d) and therefore∑
x

Aε(x−·)Aε(x−·)=O((γ/ε)d),∑
x

Aε(x−·)Aε(x−·)Aε(x−·)=O((γ/ε)2d),
(6.13)

which together with the expansions (6.9) and (6.10) imply
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Lemma 6.2. Suppose the assumptions in Theorem 6.1 hold. The deterministic mean
field solution, X̂,

dX̂/dt=−X̂ +tanh
(
β(J ∗X̂ +h−J(0)X̂)

)
, X̂0 =E[X̄0], (6.14)

depends on ε only through the initial data and satisfies

E[g(X̄T )]−E[g(X̂T )]=O
(
ε2 +(γ/ε)d

)
(6.15)

provided the drift a is defined by (6.5).
Proof. [Proof of Lemma 6.2] We may consider X̂ similarly to an X with b=0 and

apply the corresponding expansion (6.9), (6.10) and (6.13). Then it remains to verify
that the initial data satisfy

E[u(X̄0,0)−u(X̂0,0)]=O
(
(γ/ε)d

)
,

but this is a direct consequence of the central limit theorem and the initial σ0−E[σ0]
being i.i.d. with bounded variance.

In order to derive the refined error (6.8), we shall now also use that the diffusion
coefficient b is chosen precisely so that the term

u′′ ·
(∑

x∈L
c(x,σ)Aε(x−y)Aε(x−z)σ2(x)−Dyz

)
in (6.9) and (6.10) becomes small. The definition (6.2) implies

Aε(x−y)Aε(x−z)σ2(x)=A√
2ε(y−z)A ε√

2
(x− y+z

2
) (6.16)

and consequently by (2.3)∑
x∈L

c(x,σ)Aε(x−y)Aε(x−z)σ2(x)

=A√
2ε(y−z)

(
1−A ε√

2
∗σ tanh(β(J ∗σ+h−J(0)σ))

)
(
y+z

2
)

=O((γ/ε)d).

(6.17)

Lemma 6.3. The following estimate holds

E
[
u′′(X̄t,t) ·

(∑
x∈L

c(x,σt)Aε(x−y)Aε(x−z)σ2
t (x)−Dyz

)]
=O((γ/ε)2d +ε4). (6.18)

The bound (6.13) implies the estimate∑
x∈L

c(x,σt)u′′′
(
X̄t−2sAε(x−·)σt(x)

)
·Aε(x−·)Aε(x−·)Aε(x−·)σ3

t (x)=O((γ/ε)2d)

which combined with (6.9), (6.10), (6.12) and (6.18) proves the Theorem.
Proof. [Proof of Lemma 6.3] Let X̄ ′ :=A ε√

2
∗σ =:A′ ∗σ. The first step is to use

Lemma 6.2 to relate X̄ =A′ ∗X̄ ′ and X̄ ′ to the mean field solutions X̂ε =: X̂ and
X̂ε/

√
2 =: X̂ ′, respectively, and then to use the smoothness of X̂ ′ to estimate the error

X̂−X̂ ′.
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Let fx(Y ) :=
√

1−Y tanh(β(J ∗A′ ∗Y +h−J(0)Y ))η(Y )(x). The estimate (6.15)
applied to the error between X̄ ′ and X̂ ′, with

g(ξ)=A√
2ε(x−y)f2

x+y
2

(ξ) ·u′′(A′ ∗ξ,t),

shows

E
[
A√

2ε(x−y)f2
x+y

2
(X̄ ′) ·u′′(A′ ∗X̄ ′,t)−A√

2ε(x−y)f2
x+y

2
(X̂ ′) ·u′′(A′ ∗X̂ ′,t)

]
=O(ε4 +(γ/ε)2d),

(6.19)

where (6.17) implies that the first term in the left hand sides of (6.18) and (6.19) are
the same. Similarly choose g(ξ)=A√

2ε(x−y)fx(ξ)fy(ξ) ·u′′(ξ,t) to obtain

E
[
A√

2ε(x−y)fx(X̂)fy(X̂) ·u′′(X̂)−A√
2ε(x−y)fx(X̄)fy(X̄) ·u′′(X̄,t)

]
=O((ε4 +(γ/ε)2d),

(6.20)

where definition (6.7) of D, |X̄|≤1 and |X̂|≤1, show that the second term in the
left hand sides of (6.18) and (6.20) are the same.

Finally, it remains to estimate the difference of the second term in (6.19) and the
first term in (6.20)

I :=A√
2ε(x−y)fx(X̂)fy(X̂) ·u′′(X̂,t)−A√

2ε(x−y)f2
x+y

2
(X̂ ′) ·u′′(A′ ∗X̂ ′,t),

which requires bounds on X̂−X̂ ′, to evaluate f for the same function, and on second
difference quotients d2X̂/dx2 and d2X̂ ′/dx2, to evaluate f at the same point (x+y)/2
and to estimate A′ ∗X̂ ′−X̂ ′. The assumed smoothness of the initial data E[X̄ ′

0]=
A′ ∗E[σ0] shows that

X̂(0)−X̂ ′(0)=A′ ∗X̂ ′(0)−X̂ ′(0)=O(ε2),

and the smoothness of the interaction potential J and the mean field equation (6.14)
imply that the mean field solution remains smooth with

X̂(t)−X̂ ′(t)=O(ε2),

|d
2X̂

dx2
|+ |d

2X̂ ′

dx2
|=O(1), for the second difference quotient d2/dx2.

Consequently, we have I =O
(
ε4 +(γ/ε)2d

)
, which together with (6.19) and (6.20)

and (6.11), to relate tanh(β(J ∗A′ ∗Y +h−J(0)Y )) and tanh(β(J ∗Y +h−J(0)Y ))
in (6.19) and (6.20), prove Lemma 6.3.

Remark 6.4 (Why a Gaussian average Aε). A crucial contribution to the er-
ror from the second order term including u′′ in (6.10) is

∑
xAε(x−z)Aε(x−y)σ(x),

which we need to relate to the average X̄ =Aε ∗σ. The reason we use the Gaus-
sian average Aε, defined in (6.2), is to have this product of two translated Gaussians
Aε(x−z)Aε(x−y) equal to an other Gaussian centered at the mid point between the
two, see (6.16). Then this centered Gaussian yields an averaged σ, which is related
to X̄ by Lemma 6.3.

Remark 6.5 (Alternative Approximations). Consider the alternative approxi-
mation X̃ defined by additive noise from the deterministic mean field solution X̂ to
(6.14)

dX̃t(z)=az(X̃t)dt+ b̃z(t)dW̃ z, X̃0 = X̄0, (6.21)
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b̃z(t)=
√

1−X̂t tanh
(
β(J ∗X̂t +h−J(0)X̂t)

)
(z).

The proof of the theorem shows that E[g(X̄T )−g(X̃T )]=O(ε2 +(γ/ε)2d).
A third alternative approximation X̃ is

dX̃t =a(X̃t)dt+
∑
z∈L

b̃z(X̃t)dW z, X̃0 = X̄0, (6.22)

with diffusion coefficients given by

b̃z
x =Aε(x−z)

√
1−X̃ tanh

(
β(J ∗X̃ +h)

)
(z)η(X̃(z)).

The proof of the theorem again shows that E[g(X̄T )−g(X̃T )]=O(ε2 +(γ/ε)2d).
Remark 6.6 (Wavelets). Finally we remark that the increments dW̃ can be

generated by a wavelet expansion, see [10].
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