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Abstract. The theory of a posteriori error estimates suitable for adaptive
refinement is well established. This work focuses on the fundamental, but

less studied, issue of convergence rates of adaptive algorithms. In particular,
this work describes a simple and general adaptive algorithm applied to or-
dinary, stochastic and partial differential equations with proven convergence
rates. The presentation has three parts: The error approximations used to
build error indicators for the adaptive algorithm are based on error expansions
with computable leading order terms. It is explained how to measure optimal
convergence rates for approximation of functionals of the solution, and why

convergence of the error density is always useful and subtle in the case of sto-
chastic and partial differential equations. The adaptive algorithm, performing
successive mesh refinements, either reduces the maximal error indicator by a

factor or stops with the error asymptotically bounded by the prescribed accu-
racy requirement. Furthermore, the algorithm stops using the optimal number

of degrees of freedom, up to a problem independent factor.

1. Introduction to the Adaptive Algorithm

This work presents an overview of the authors work on the convergence rate of
an adaptive algorithm to compute functionals of solutions to ordinary, stochastic
and partial differential equations. The main ingredient of the adaptive algorithm
is an error expansion of the form

Global error =
∑

local error · weight + higher order error,(1)

with computable leading order terms. The weight is the sensitivity of the func-
tional of the solution with respect to perturbations in the differential equation. For
an ordinary differential equation, the error expansion (1) can be derived by the
variational principle in [9] and for weak approximation of stochastic differential
equations the error expansion (1) can be derived based on computable stochastic
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flows and discrete dual backward problems in [12]. For partial differential equa-
tions, [6] derives an asymptotic expansion of the error using the dual weighted
residual method.

The goal of the adaptive algorithm for differential equations based on these
error expansions, is to approximate the desired quantity of interest with an adapted
mesh using as few mesh elements as possible, for a given level of accuracy using a
given approximation method, for instance the Euler method or piecewise bilinear
finite elements with varying mesh size. Based on the a posteriori error expansions
of the form (1) the global error can be asymptotically approximated by

(2) Global error ≈
∑
K

error indicator,

where K is a set of time steps or elements. A typical adaptive algorithm does two
things iteratively :

(i) if the error indicators satisfy an accuracy condition, then it stops; oth-
erwise

(ii) the algorithm chooses where to refine the mesh, recomputes the error
indicators and then makes an iterative step to (i).

Therefore the indicators not only estimate the localization of the global error but
also give information on how to refine the mesh in order to achieve optimal efficiency.

Despite the wide use of adaptive algorithms and the well developed theory of
a posteriori error estimates, less is known theoretically on the behavior of adaptive
mesh refinement algorithms, see [8, 6, 10] for brief overviews of previous work. To
introduce the main ingredients, let us consider a simple integration problem, namely
for a given function X : [0, T ] → R approximate the integral g(X) =

∫ T
0
X(t)dt.

Let us first discretize the time interval [0, T ] into N subintervals 0 = t0 < t1 < · · · <
tN = T with corresponding time steps hn := tn+1 − tn. Now, if we approximate
g(X) using the left point rule (forward Euler) denoted by ḡ, our global discretization
error becomes

(3) Global Error = g(X)− ḡ =
N−1∑
n=0

(hn)2ρn + higher order terms,

with the error density function ρ defined by ρn := dX
dt (tn)/2. From the definition

of the number of time steps

(4) N(h) :=
∫ T

0

1
h(τ)

dτ,

the number Nu of uniform steps to reach a given level of accuracy TOL turns out
to be asymptotically proportional to the L1-norm of the function ρ, i.e.

Nu '
T

TOL
‖ρ‖L1(0,T ).

On the other hand, by minimizing the number of steps in (4) subject to an accuracy
constraint, i.e. imposing the leading order of (3) to be TOL, a standard Lagrangian
relaxation yields the optimal choice

h2
n ρn = constant for alln
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and as a consequence the number Na of adaptive steps becomes proportional to the
smaller L

1
2 quasi-norm of the error density, i.e.

Na '
1

TOL
‖ρ‖

L
1
2 (0,T )

.

For instance, if we have a singular case, X(t) = 1/
√
t, we can instead compute with

Xε(t) = 1/
√
t+ ε, choosing the positive parameter ε such that∣∣∣∣∣

∫ T

0

(X(t)−Xε(t)) dt

∣∣∣∣∣ = o(TOL)

i.e. ε1/2 . o(TOL). Therefore, the number of uniform time steps becomes

Nu '
T/4
TOL

∫ T

0

dt

(t+ ε)3/2
' T/4

TOL
1
ε1/2

& O(TOL−2)

while the number of adaptive time steps is the smaller

Na '
1/4

TOL

(∫ T

0

dt

(t+ ε)3/4

)2

≈ O(TOL−1)

which clearly shows the advantage of an adaptive approach. In the sequel we will
consider multiscale problems, i.e. problems that have very different scales so that
the error density, although being bounded, may be very large, e.g. 1

ε3/2
.

Thus, having motivated the need for adaptivity in the previous example, we
now state the main questions to answer, namely
What is the notion of error density for ordinary, stochastic and partial differential
equations?
What is a suitable approximation for such an error density?
What can be concluded about the convergence rate of the adaptive algorithm?

In this paper, Section 2 describes an adaptive algorithm based on previously
derived a posteriori error expansions for ODEs [9], SDEs [10], and PDEs [6]. Then,
Section 3 presents results on the convergence rates of the adaptive algorithm.

2. Convergence of the Error Density and the Adaptive Algorithm

2.1. An Error Expansion for ODEs. Let us consider an ordinary differen-
tial equation (ODE) of the form

(5)
dX(t)
dt

= a(t,X(t)), 0 < t ≤ T,

with an initial value X(0) = X0 ∈ Rd and a given flux a : [0, T ]× Rd → R
d. First

discretize the time interval [0, T ] into N subintervals 0 = t0 < t1 < . . . < tN = T
and let X be an approximation of X in (5) by any p-th order accurate numerical
method, satisfying the same initial condition X(0) = X(0) = X0.

We are interested in computing a function value g(X(T )) for a given general
function g : Rd → R, which may represent the quantities of physical interest. Using
the variational principle, we show in [9] that the global error has the expansion

(6) g(X(T ))− g(X(T )) =
N∑
n=1

(
ē(tn), Ψ̄(tn)

)
+
∫ T

0

o(hp(t))dt,
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where (·, ·) is the standard scalar product on Rd. Here the approximate local error
is defined by ē(tn) := γ(X̄(tn) − X(tn)), where γ is a Richardson extrapolation
constant and the approximate local exact solution X̄ is computed with smaller
time steps or a higher order method than X. The weight Ψ̄ is an approximation of
Ψ, which solves the dual equation

− dΨ(s)
ds

= (a′)∗(s,X(s))Ψ(s), s < T,(7)

Ψ(T ) = g′(X(T )),

where (a′)∗(s, x) is the transpose of the Jacobian matrix.
Therefore the leading order term in (6) has the approximate error density

ρ̄n :=

(
ē(tn), Ψ̄(tn)

)
hp+1
n

,

which is then used in the adaptive algorithm, see Section 2.4.

2.2. An Error Expansion for SDEs. Let us consider an Itô Stochastic
differential equation (SDE) of the form

dXk(t) = ak(t,X(t))dt+
`0∑
`=1

b`k(t,X(t))dW `(t), t > 0,(8)

where k = 1, . . . , d and (X(t;ω)) is a stochastic process in Rd, with randomness gen-
erated by the independent one dimensional Wiener processes W `(t;ω), ` = 1, . . . , `0,
on the probability space (Ω,F , P ). The functions a(t, x) ∈ Rd and b`(t, x) ∈ Rd,
` = 1, . . . , `0, are given drift and diffusion fluxes.

The goal is to construct approximations to the expected value E[g(X(T ))]
by a Monte Carlo method, for a given function g : Rd → R. Examples of such
an expected value are the computation of option prices in mathematical finance,
stochastic climate prediction, wave propagation in random media, etc. The Monte
Carlo Euler method approximates the unknown process X by the Euler method
X(tn) which is a time discretization based on the nodes 0 = t0 < t1 < · · · < tN = T
where

(9) X(tn+1)−X(tn) = hna(tn, X(tn)) +
`0∑
`=1

∆W `
nb
`(tn, X(tn)),

and hn ≡ tn+1− tn, ∆W `
n ≡W `(tn+1)−W `(tn), n = 0, 1, 2, . . . , N −1. The aim of

the adaptive algorithm is to choose the size of the time steps, hn, and the number of
independent identically distributed samples X(·, ωj), j = 1, 2, . . . ,M , such that the
computational work, N ·M , is minimal while the approximation error is bounded
by a given error tolerance, TOL, i.e. the event

(10)

∣∣∣∣∣∣E[g(X(T ))]− 1
M

M∑
j=1

g(X(T ;ωj))

∣∣∣∣∣∣ ≤ TOL

has a probability close to one. A priori error estimates of the computational error
in (10) was first derived by Talay and Tubaro in [13]. The work [12] modified Ta-
lay’s and Tubaro’s error expansion to an expansion with computable leading order
term in a posteriori form, based on computable stochastic flows and discrete dual
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backward problems. Stopped diffusion, including for example the barrier option, is
an example where adaptive time steps improve the convergence rate, see [7].

Assume that the process X satisfies (8) and its approximation, X, is given by
(9), we have, see [12, 10]

Theorem 2.1 (Error expansion for SDEs). Suppose there are positive constants
k and C and an integer m0 with the bounds

g ∈ Cm0
loc (Rd), |∂αg(x)| ≤ C(1 + |x|k), for all |α| ≤ m0,

E
[
|X(0)|2k+d+1 + |X(0)|2k+d+1

]
≤ C,

and
a and b are bounded in Cm0([0, T ]× Rd).

Assume that X is constructed by the forward Euler method with step sizes hn pro-
duced by the stochastic time step version of the adaptive algorithm in Section 2.4
and the corresponding ∆Wn ≡W (tn+1)−W (tn) are generated by Brownian bridges.
Assume also that X(0) = X(0) and E[|X(0)|k0 ] ≤ C for some k0 ≥ 16. Then the
time discretization error has the expansion

E[g(X(T )) − g(X(T ))] = E

[
N∑
n=1

ρ̄n(hn)2

]
(11)

+O

(√
TOL
c(TOL)

(
C(TOL)
c(TOL)

)8/k0
)
E

[
N∑
n=1

(hn)2

]
with computable leading order terms, where

ρ̄n(tn, X) ≡ 1
2

(
∂

∂t
ak + ∂jakaj + ∂ijakdij

)
ϕk(tn+1)

+
1
2

(
∂

∂t
dkm + ∂jdkmaj + ∂ijdkmdij + 2∂jakdjm

)
ϕ′km(tn+1)(12)

+∂jdkmdjrϕ′′kmr(tn+1),

and the terms in the sum of (12) are evaluated at the a posteriori known points
(tn, X(tn)), i.e.

∂αa ≡ ∂αa(tn, X(tn)), ∂αb ≡ ∂αb(tn, X(tn)), ∂αd ≡ ∂αd(tn, X(tn)).

Here ϕ ∈ Rd is the solution of the discrete dual backward problem

ϕi(tn) = ∂icj(tn, X(tn))ϕj(tn+1), tn < T,
ϕi(T ) = ∂ig(X(T )),

(13)

with

ci(tn, x) ≡ xi + hnai(tn, x) + ∆W `
nb
`
i(tn, x)(14)

and its first and second variation

ϕ′ij ≡ ∂xj(tn)ϕi(tn) ≡ ∂ϕi(tn;X(tn) = x)
∂xj

,(15)

ϕ′′ikm(tn) ≡ ∂xm(tn)ϕ
′
ik(tn) ≡ ∂ϕ′ik(tn;X(tn) = x)

∂xm
,(16)
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which satisfy

ϕ′ik(tn) = ∂icj(tn, X(tn))∂kcp(tn, X(tn))ϕ′jp(tn+1)
+∂ikcj(tn, X(tn))ϕj(tn+1), tn < T,

ϕ′ik(T ) = ∂ikg(X(T )),
(17)

and

ϕ′′ikm(tn) = ∂icj(tn, X(tn))∂kcp(tn, X(tn))∂mcr(tn, X(tn))ϕ′′jpr(tn+1)
+∂imcj(tn, X(tn))∂kcp(tn, X(tn))ϕ′jp(tn+1)
+∂icj(tn, X(tn))∂kmcp(tn, X(tn))ϕ′jp(tn+1)
+∂ikcj(tn, X(tn))∂mcp(tn, X(tn))ϕ′jp(tn+1)
+∂ikmcj(tn, X(tn))ϕj(tn+1), tn < T,

ϕ′′ikm(T ) = ∂ikmg(X(T )),

(18)

respectively.

The previous result can also be directly applied to the particular case of deter-
ministic time steps. Observe that the error expansion in Theorem 2.1 has the form

(19) E[g(X(T ))− g(X(T ))] = E

[
N∑
n=1

ρ̄nh
2
n

]
+ higher order terms

and due to the almost sure convergence of the density ρ̄n as we refine the discretiza-
tion, see [10], it is suitable for use in the adaptive algorithm.

The computational error in (10) naturally separates into the time discretization
error and the statistical error

E[g(X(T ))]− 1
M

M∑
j=1

g(X(T ;ωj))(20)

=
(
E[g(X(T ))− g(X(T ))]

)
+

E[g(X(T ))]− 1
M

M∑
j=1

g(X(T ;ωj))


≡ ET + ES .

The time steps for the realizations of the approximate solution X are determined
from statistical approximations of the time discretization error, ET , and the number,
M , of realizations of X is determined from the statistical error, ES . The statistical
error and the time discretization error are combined in order to bound the compu-
tational error (20). Therefore we split a given error tolerance TOL into a statistical
tolerance, TOLS , and a time discretization tolerance, TOLT . The computational
work is roughly O(N ·M) = O(TOL−1

T TOL−2
S ), therefore we use

TOLT =
1
3

TOL and TOLS =
2
3

TOL,(21)

by minimizing TOL−1
T TOL−2

S under the constraint TOLT + TOLS = TOL.
From the central limit theorem, the statistical error is bounded by the following

quantity, i.e. the event

|ES(X;M)| ≤ ES(X;M) ≡ c0

S(X;M)√
M

(22)
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has probability close to one, where S(X;M) is the sample standard deviation of X
and c0 ia a constant related to the confidence interval.

The time discretization error is approximated by (19) and its contribution from
each of the realizations controlled according to the adaptive algorithm described in
Section 2.4.

2.3. An Error Expansion for PDEs. Consider a problem to compute a
linear functional

g(u) :=
∫
D

uGdx

for a given function G ∈ L2(D) and u is the solution of a second order elliptic
partial differential equation of the form

(23) −div(a∇u) = f

in a given open bounded domain D ⊂ Rd with Dirichlet boundary data u|∂D = 0.
The finite element approximation uh, of u in (23), is based on the standard

variational formulation in the function set Vh of continuous piecewise isoparametric
bilinear quadrilateral functions in H1

0 (D), using an adaptive quadrilateral mesh
with hanging nodes cf. [1]. The Sobolev space H1

0 (D) is the usual Hilbert space
of functions on D, vanishing on ∂D, with bounded first derivatives in L2(D). Let
T denote the set of convex quadrilaterals K and let hK be the local mesh size, i.e.
the length of the longest edge of K. Then the variational problems for u ∈ H1

0 (D)
and uh ∈ Vh are ∫

D

a∇u · ∇v dx =
∫
D

f v dx, ∀v ∈ H1
0 (D),∫

D

a∇uh · ∇v dx =
∫
D

f v dx, ∀v ∈ Vh.(24)

A central role in the dual weighted error representation for g(u) − g(uh) is played
by the dual function ϕ ∈ H1

0 (D) which satisfies

(25)
∫
D

a∇ϕ · ∇v dx =
∫
D

Gv dx, ∀v ∈ H1
0 (D).

Besides, its finite element approximation ϕh ∈ Vh, defined by∫
D

a∇ϕh · ∇v dx =
∫
D

Gv dx, ∀v ∈ Vh(26)

is used to construct the error density ρ̄ in Theorem 2.2.
For general meshes the convergence of the error density does not hold, since the

orientation of the elements varies. Thus, here the analysis considers the asymptotic
behavior of the error density ρ̄ for adaptive refinements, with general quadrilateral
initial meshes: successive division of reference square elements into four similar
squares generates hanging node meshes consisting of unions of structured adapted
meshes, where each structured mesh has the domain of an initial element; viewed
in the initial reference element the structured adaptive mesh is an adaptive hanging
node mesh with square elements. We restrict the study to such unions of structured
adaptive hanging node meshes. The use of quadrilaterals can directly be extended
to higher space dimension using tensor reference elements. Other refinements using
e.g. subdivision of a simplex, in three and higher dimensions cf. [4], generate new
edges which are not parallel to the old and would require additional analysis.
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There is a smooth mapping of each initial element to a square, so that the re-
fined initial element is mapped to a square hanging node mesh. Let TI denote the
subset of elements with an edge on the initial mesh. Theorem 2.2 states that the er-
ror density has a precise expansion using that the isoparametric bilinear coordinate
transformation X−1 : [0, 1]2 → KI maps the square and the square hanging node
mesh to the initial element KI and its refined hanging node quadrilateral mesh.

Let us now study the transformation of the variational formulation under such
a mapping X : KI → [0, 1]2∑

ij

∫
KI

(aij
∂uh
∂xj

∂v

∂xi
− fv)dx =

∫
[0,1]2

(aX ′u′h ·X ′v′ − fv)Jdx′

where X ′ is the Jacobian of X and J is the Jacobian determinant. Here we abuse
the notation by writing v instead of (v ◦ X−1) and similarly for a, uh, and f , for
x ∈ KI . Besides, we write v′ = ∂v

∂x′i
instead of ∂(v◦X−1)

∂x′i
.

Therefore the variational equation in the transformed coordinates, x′, takes the
same form with a and f replaced by a∗ ≡ J(X ′)taX ′ and f∗ ≡ Jf , respectively.
Note that a∗ and f∗ are as smooth on X(KI) as the functions a and f are on KI .
To avoid messy notation, we will not always use the prime notation for coordinates
obviously in the reference elements; we will also avoid notation for the dependence
of X on the initial element KI and assume that we for a point x ∈ D choose the
mapping X that corresponds to the initial element KI which contains x. We will
use the set of transformed elements T ′ ≡ {X(K) : K ∈ T }.

To define the approximate error density, ρ̄, we will use averages of second differ-
ence quotients as follows. Consider a function w which is defined on a discretization
of an interval [0, L] with nodes {xj : j = 0, . . . , N̄ + 1} =: N̄ , where x0 = 0 and
xN̄+1 = L. Let h+ ≡ xj+1 − xj and h− ≡ xj − xj−1 denote two consecutive edge
sizes. Then define the average mesh size h̄ and the difference quotients

h̄j ≡ h+ + h−
2

=
xj+1 − xj−1

2
,

Dw(xj) ≡ w(xj + h+)− w(xj)
h+

(27)

D2w(xj) ≡ 1
h̄j

(
w(xj + h+)− w(xj)

h+
− w(xj)− w(xj − h−)

h−

)
.

Define D2w ∈ RN̄ , implicitly as the solution Y ∈ RN̄+2 of an auxiliary equation,
i.e.

(28)
D2wn ≡Yn, n = 1, . . . , N̄ , where

Yn − α2D2Yn =D2wn, n = 1, . . . , N̄ ,

with homogeneous Neumann boundary conditions, Y0 = Y1, YN̄ = YN̄+1. The
work [6] reports numerical results of different alternative averages, including the
fast nearest neighbor variant. The convergence proof requires α to be sufficiently
large compared to the mesh size, cf. (34).

Let us define h̄D2
iw as the difference quotients h̄D2w, in (27), with respect to

the x′i reference directions i = 1, 2, respectively, and analogously for Diw. The
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approximate error density, ρ̄, in the transformed coordinates is now defined by

ρK ≡
1
48

4∑
j=1

(
a∗11D

2
1uh D

2
1ϕh + a∗22D

2
2uh D

2
2ϕh

)
(xKj )(29)

where xK1 , x
K
2 , x

K
3 , x

K
4 are the four corners of the square K ∈ T ′ illustrated in

Figure 1.

eK21 eK22

eK11

eK12

K

xK4

xK1

xK3

xK2

t t

tt

Figure 1. Corners xKj and edges eKij of a square K ∈ T ′

Let TH denote the subset of elements with hanging nodes in neighbors and let
T̄H ≡

⋃
K∈TH K. Let W 1,∞(D) denote the usual Sobolev space of functions with

bounded first order derivatives in L∞(D) and let hmax be the maximal edge length
in the mesh of Vh. Sometimes we drop the set and write W 1,∞ and L∞ also for
functions in the reference set [0, 1]2. The main result in [6] is

Theorem 2.2. Assume that a ∈ C1(D̄) and that the solutions u ∈ C3(D̄), ϕ ∈
C3(D̄) of (23) and (25), respectively, are for some γ ∈ (0, 1) approximated uni-
formly with error

‖u− uh‖W 1,∞(D) + ‖ϕ− ϕh‖W 1,∞(D) = O(hmax),

‖u− uh‖L∞(D) + ‖ϕ− ϕh‖L∞(D) = O(h2γ
max),

(30)

using piecewise isoparametric bilinear quadrilateral elements and a refined mesh,
with at most one hanging node per edge, obtained by successively dividing the refer-
ence square elements into four similar squares. Assume also that all second order
difference quotients of uh are uniformly bounded and that the total area of the el-
ements with a hanging node on a neighbor or with an edge on the initial mesh is
asymptotically zero:

(31)
∫
T̄H∪T̄I

dx = o(1), as hmax → 0 + .

Then the global error has the expansion

(32) g(u)− g(uh) =
∑
K∈T ′

(
ρK +O(hγmax/α+ α)

)
h4
K +O(hmax)

∫
T̄H∪T̄I

hKdx
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with uniformly convergent computable leading order error density ρ̄, defined by (29)
and (27)-(28) for α−1 = o(h−γmax), satisfying

(33) ρ̄ = ρ̃+O(hγmax/α+ α)

where

ρ̃ ≡ 1
12

(
a∗11

∂2u

∂x2
1

∂2ϕ

∂x2
1

+ a∗22

∂2u

∂x2
2

∂2ϕ

∂x2
2

)
is evaluated in the transformed coordinates on [0, 1]2.

Note that the convergence of ρ̄ is uniform while the convergence of ρ̌, defined
by g(u)− g(uh) ≡

∑
K∈T ′ ρ̌h

4
K , is in L1(D) by assumption (31). It is important to

notice that our restriction of the data, required by u, ϕ ∈ C3(D̄), includes examples
with substantial adaptive gain. Section 3 shows that the optimal number of adaptive
elements is Nopt ' TOL−1‖ρ̄‖d/2

L
d
d+2

, while the number of uniform elements becomes

Nuni ' TOL−1‖ρ̄‖d/2L1 to achieve the same error TOL. Although u, ϕ ∈ C3(D̄) their
norms in these spaces may be large so that ‖ρ̄‖

L
d
d+2
� ‖ρ̄‖L1 .

In general, second order difference quotients of the interpolant on meshes with
hanging nodes do not converge uniformly on D and this why the averages are needed
[6].

Finite element approximations of the coercive linear problems (23) and (25),
with piecewise isoparametric bilinear quadrilateral elements, satisfy the estimate

‖u− uh‖L∞ + ‖ϕ− ϕh‖L∞ = O(h2
max log h−1

max),

‖u− uh‖W 1,∞ = O(hmax),

provided u, ϕ ∈ C2(D̄), see [2], [3]. This estimate and the proof of Theorem 2.2
imply that the choice

(34) α−1 = o((hmax
√

log h−1
max)−1),

yields convergent error densities.
Theorem 2.2 proves that the error expansion

g(u)− g(uh) =
∑
K∈T ′

(ρK +O(
hγmax
α

+ α))h2+d
K +O(hmax)

∑
K∈T ′H∪T ′I

h1+d
K(35)

has a well defined leading order error density ρ which converges uniformly as
hmax → 0+. We now assume that α has been chosen such that

(36)
hγmax
α

+ α = O(hγ̂max),

where γ̂ > 0.

2.4. The Adaptive Algorithm. To motivate the approximate equidistribu-
tion of the error indicators in an adaptive algorihtm, consider an asymptotic error
expansion

error '
∑
n

ρnh
p+d
n ,

where h is the local isotropic mesh size and ρ is independent of h. The number of
elements that corresponds to a mesh with size h can be determined by

N(h) ≡
∫
D

dx

hd(x)
.(37)
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It seems hard to use the sign of the error indicators for constructing the mesh.
Instead, we minimize the number of elements N in (37) under the more stringent
constraint

N̄∑
n=1

|ρn|hd+p
n =

∫
D

|ρ(x)|hpdx = TOL,(38)

with D = [0, T ] and d = 1 for ODEs and SDEs. The global order of convergence
satisfies p = 1 for the Euler-Maruyama SDE approximation and p = 2 for the
d-linear finite elements approximations used here. A standard application of a
Lagrange multiplier yields the optimum

(39) |ρ|(h∗)d+p = constant

and

h∗ ≡ TOL
1
p

|ρ|
1
d+p

(∫
D

|ρ(x)|
d
d+p dx

)− 1
p

.(40)

This condition is optimal only for density functions ρ with one sign, and in the
PDE case, for meshes with shape regular elements, i.e. non stretched elements. To
use the sign of the density or orientation of stretched elements in an optimal way
is not considered here.

In the adaptive algorithm below we will use the positive approximate error
density ρ̂K defined by

ρ̂|K ≡ ρ̂K ≡ min
(
max (|ρK |, δ) ,TOL−r

)
(41)

with r > 0 and where the lower bound, δ > 0, is chosen according to

Remark 2.3 (Lower bound for the error density).

δ ≡ TOLγ̄(42)

where the parameter γ̄ is 0 < γ̄ < 1/(p+ 1) for ODEs, γ̄ = 1/9 for SDEs, and for
PDEs it is chosen such that satisfies the two lower bounds

(43) γ̄ <
γ̂

γ̂ + 2
and

∫
T̄H∪T̄I

dx/δ = o(1) as TOL→ 0+,

and the upper bound δ = o(1) as TOL → 0 + . The lower bounds on δ > 0 are
motivated by the requirements that hmax → 0 as TOL→ 0, that the bounds for the
error density in (50) hold and that the error from hanging node elements becomes
asymptotically negligible, see Theorem 3.2. The convergence of ρ̂ towards the exact
density requires the upper bound δ → 0.

The goal of the adaptive algorithm described below is to construct a mesh such
that

(44) ρ̂nh
d+p
n ≈ TOL

N
, n = 1, . . . , N,

which is an approximation of the optimal (39). Let the index [k] refer to the
refinement level in the sequence of adaptively refined meshes. For a mesh with
elements {K1,K2,K3, . . . ,KN}, we consider the piecewise constant error density
and mesh functions ρ|Kn ≡ ρn ≡ ρKn , ρ̂|Kn ≡ ρ̂n ≡ ρ̂Kn and h|Kn ≡ hn ≡ hKn .
To achieve (44) let s1 ≈ 1 be a given constant, start with an initial mesh of size
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h[1] and then specify iteratively a new mesh h[k+ 1], from h[k], using the following
dividing strategy:

for all intervals (elements) n = 1, 2, . . . , N [k]

r̄n[k] ≡ ρ̂n[k](hn[k])d+p

if r̄n[k] > s1
TOL
N [k]

then

mark interval (element) n for division.

(In addition, for the PDE case mark recursively all neighbors
that need division due to the hanging node constraint:

at most one hanging node per edge.)
endif

endfor

divide every marked interval (element) into 2d uniform sub intervals (elements).

(45)

With this dividing strategy, it is natural to use the stopping criterion:

(46) if
(

max
1≤n≤N [k]

r̄n[k] ≤ S1
TOL
N [k]

)
then stop.

Here S1 is a given constant, with S1 > s1 ≈ 1, determined more precisely as
follows: we want that the maximal error indicator decays quickly to the stopping
level S1TOL/N , but when almost all error indicators r̄n satisfy r̄n < s1

TOL
N the

reduction of the error may be slow. Theorem 3.1 shows that a slow reduction is
avoided if S1 satisfies (51).

Remark 2.4 (SDE case: Stochastic Time Steps). Let g ≡
∑M
j=1 g(X̄(T );ωj)

be the sample average approximation of the expected value E[g(X(T ))] and let
N [m] be the sample average of the final number of time steps in the m-th batch
of M [m] realizations. In this case (45), is used iteratively for each of the real-
izations, j = 1, . . . ,M [m], with TOLT instead of TOL and with N instead of N ,
see [10]. Replacing the integrals

∫
D
. . . dx by

∫ ∫
. . . dt dP = E

∫
. . . dt for-

mally motivates the equidistribution of the error indicators for each realization of
the Brownian motion.

3. Convergence Rates for the Adaptive Mesh Algorithm

This section presents results on the stopping, accuracy and efficiency properties
of adaptive algorithm introduced in Section 2.

3.1. Adaptive Refinements and Stopping. To analyze the decay of the
maximal error indicator, it is useful to understand the variation of the density ρ̂ at
different refinement levels, in particular we will consider an element or time step
K[k] and its parent on a previous refinement level, p(K, k), with the corresponding
error density ρ̂(K)[p(K, k)]. It is possible to verify that the choice (42) of δ implies
that hmax → 0 as TOL→ 0+, see [6], [8], [10]. Hence Theorem 2.2 shows, for the
PDE, that there is a limit error density ρ̃ such that

(47) ρ̌
L1

−−→ ρ̃, ρ→ ρ̃ and ρ̂→ |ρ̃|, as TOL→ 0 + .
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Similarly, the choice (42) of δ is used to show in [8] for ODEs that

(48) ρ̂→ |ρ̃|, as TOL→ 0+,

and in [10] that for each realization of the SDE, with 0 < α < 1/2,

(49) lim
TOL→0+

h−αmax(ρ̂− |ρ̃|) = 0, almost surely.

A consequence of the uniform convergence ρ̂ → |ρ̃| , as TOL → 0+, and (41) is
that for all elements K and all refinement levels k there exists positive functions ĉ
and Ĉ close to 1 for sufficiently refined meshes, such that the error density satisfies

(50)
ĉ(K) ≤ ρ̂(K)[p(K, k)]

ρ̂(K)[k]
≤ Ĉ(K),

ĉ(K) ≤ ρ̂(K)[k − 1]
ρ̂(K)[k]

≤ Ĉ(K),

provided maxK,k hK [k] is sufficiently small. In other words, (50) holds with e.g.
ĉ = 2−1 = Ĉ−1 for sufficiently small maxK,k hK [k]. For SDEs the functions ĉ and
Ĉ are close to 1, almost surely.

Theorem 3.1 (Stopping). Suppose the adaptive algorithm uses the strategy
(45)-(46). Assume that ĉ satisfies (50), for the elements or time steps corresponding
to the maximal error indicator on each refinement level, and that

(51) S1 ≥
2d

ĉ
s1, 1 >

ĉ−1

2d+p
.

Then each refinement level either decreases the maximal error indicator with the
factor

max
1≤n≤N [k+1]

r̄n[k + 1] ≤ ĉ−1

2d+p
max

1≤n≤N [k]
r̄n[k],(52)

or stops the algorithm.

Here, the global order of convergence is p = 1 for the Euler-Maruyama SDE
approximation and p = 2 for the d-linear finite elements approximations.

3.2. Accuracy of the Adaptive Algorithm. The adaptive algorithm guar-
antees that the estimate of the global error is bounded by a given error tolerance,
TOL. An important question is whether the true global error is bounded by TOL
asymptotically. Using the upper bound (46) of the error indicators and the con-
vergence of ρ and ρ̄ in Theorem 2.2, or the convergence (48), (49) respectively, the
global error has the following estimate.

Theorem 3.2 (Accuracy). Suppose (41)–(42) hold and that, for PDEs (36)
and the assumptions of Theorem 2.2 hold, or, for ODEs and SDEs, (48) and (49)
holds, respectively. Then the adaptive algorithm (45)–(46) satisfies

lim sup
TOL→0+

(
TOL−1

∣∣g(X(T ))− g(X(T ))
∣∣ ) ≤ S1, for the ODE,

lim sup
TOL→0+

(
TOL−1

∣∣g(u)− g(uh)
∣∣ ) ≤ S1, for the PDE,
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and, for the SDE, with the number of realizations M and any c0 > 0 determined
by (22),

lim inf
TOL→0+

P

 1
TOL

∣∣∣∣∣∣E[g(X(T ))]− 1
M

M∑
j=1

g(X(T ;ωj))

∣∣∣∣∣∣ ≤ S1 + 2
3

≥∫ c0

−c0

e−x
2/2

√
2π

dx.

3.3. Efficiency of the Adaptive Algorithm. An important issue for the
adaptive method is its efficiency; we want to determine a mesh with as few elements
or time steps as possible providing the desired accuracy. From the definition (37)
and the optimality condition (40), the number of optimal adaptive elements, Nopt,
satisfies

(53) Nopt =
∫
D

dx

(h∗(x))d
=

1

TOL
d
p

(∫
D

|ρ[k](x)|
d
d+p dx

) d+p
p

=
1

TOL
d
p

‖ρ‖
d
p

L
d
d+p

.

On the other hand, for the uniform mesh with elements h = constant, the number
of elements, Nuni, to achieve

∑N
i=1 |ρi|hd+p = TOL becomes

(54) Nuni =
∫
D

dx

hd(x)
=

∫
D
dx

TOL
d
p

(∫
D

|ρ[k](x)|dx
) d
p

=

∫
D
dx

TOL
d
p

‖ρ‖
d
p

L1 .

Hence, the number of uniform elements is measured in the L1-norm while the
optimal number of elements is measured in the L

d
d+p quasi-norm. Jensen’s in-

equality implies ‖f‖
L

d
d+p
≤ (

∫
D
dx)

p
d ‖f‖L1 , therefore an adaptive method may

use fewer elements than the uniform element size method. For the SDE we get

the optimal expected number of adaptive steps E[Nopt] = 1
TOL

(
E
∫ T

0

√
|ρ| dt

)2

=
1

TOL‖ρ‖L 1
2 (dtdP )

while with uniform time steps E[Nuni] = T
TOL

∫ T
0
E|ρ| dt.

The following theorem uses a lower bound of the error indicators, obtained
from the refinement criterion (45) for the refined parent error indicator and the
ratio of the error density (50), to show that the algorithm (45)-(46) generates a
mesh which is optimal, up to a multiplicative constant independent of the data. In
order to guarantee that, for sufficiently small TOL, all elements on the initial mesh
are refined, the initial mesh size is assumed to obey

(55) hK [1] ≥ TOLs,

where the parameter s has the upper bound s < 1−γ̄
p and the lower bounds 0 < s,

for ODEs and SDEs, and γ̄
γ̂ < s, for PDEs.

Theorem 3.3 (Efficiency). Assume that Ĉ = Ĉ(t), Ĉ(t, ω) or Ĉ(x) satisfies
(50) for all elements at the final refinement level, that the assumptions of Theorem
3.2 hold, and that the initial mesh satisfies (55) for all elements K. Then there
exists a constant C > 0, bounded by ( 2d+p

s1
)
d
p , such that, for sufficiently small TOL,

the final number of adaptive time steps or elements N , of the algorithm (45)-(46)
for ODEs or PDEs, satisfies

(TOL
d
pN) ≤ C ‖Ĉρ̂‖

d
p

L
d
d+p
≤ C

(
max
x∈D

Ĉ(x)
d
p

)
‖ρ̂‖

d
p

L
d
d+p

,(56)
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and

lim
TOL→0+

‖ρ̂‖
L

d
d+p

= ‖ρ̃‖
L

d
d+p

,

lim
TOL→0+

max
x∈D

Ĉ(x)
d
p = 1,

i.e. the number of elements is asymptotically optimal up to the problem indepen-
dent factor C ≤ ( 2d+p

s1
)
d
p . For the SDE case the final sample average N̄ [m] =

1
M [m]

∑M [m]
j=1 N(ωj) of the number of adaptive steps of the algorithm (45)-(46) sat-

isfies

TOLT N̄ [m]2

N̄ [m− 1]
< C2

∫ T

0

1
M [m]

M [m]∑
j=1

√
ρ̂Ĉ dt

2

and asymptotically

lim sup
TOLT→0+

TOLTE[N ] ≤ C2‖ρ̃‖
L

1
2 (dtdP )
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