Markov chain Monte Carlo for computing probabilities of rare events in a heavy-tailed random walk

Thorbjörn Gudmundsson and Henrik Hult

Department of Mathematics
KTH Stockholm
March 2013

Setup

■ Consider a random variable X with known distribution F and the objective of computing

$$
p=\mathbb{P}(X \in A),
$$

where $\{X \in A\}$ is thought as rare in the sense that p is small.

Setup

- Consider a random variable X with known distribution F and the objective of computing

$$
p=\mathbb{P}(X \in A)
$$

where $\{X \in A\}$ is thought as rare in the sense that p is small.
■ Example. Random walk $S_{m}=Y_{1}+\cdots+Y_{m}$ with non-negative steps Y 's with known heavy-tailed distribution F_{Y} and objective of computing

$$
p=\mathbb{P}\left(\frac{S_{m}}{m}>a\right)
$$

where a is much larger than $\mathbb{E}[Y]$.

Problem

$$
\text { Problem: compute } p=\mathbb{P}\left(\frac{s_{m}}{m}>a\right)
$$

Problem

Problem: compute $p=\mathbb{P}\left(\frac{S_{m}}{m}>a\right)$.
■ Sometimes no analytical solution known,

- Monte Carlo simulation approach computationally inefficient for small p.

Problem

Problem: compute $p=\mathbb{P}\left(\frac{S_{m}}{m}>a\right)$.
■ Sometimes no analytical solution known,
■ Monte Carlo simulation approach computationally inefficient for small p.
■ Goal: construct an efficient estimator \hat{p} in the sense that

$$
\operatorname{RE}(\hat{p}):=\frac{\mathbb{V} \operatorname{ar}(\hat{p})}{p^{2}}
$$

is bounded or tends to zero as $p \rightarrow 0$.

Importance sampling

Goal: construct an efficient estimator \hat{p}.

Importance sampling

Goal: construct an efficient estimator \hat{p}. The importance sampling approach (Dupuis et al 2007)

■ Generate n copies of X. independently from a sampling distribution G.

- Compute empirical estimate

$$
\hat{p}=\frac{1}{n} \sum_{k=1}^{n} \frac{d F}{d G}\left(X_{k}\right) \mathbb{I}\left\{X_{k} \in A\right\}
$$

Importance sampling continued

■ Reduces to finding a suitable sampling distribution G.

Importance sampling continued

■ Reduces to finding a suitable sampling distribution G.

- The zero-variance distribution

$$
F_{A}(x)=\mathbb{P}(X \leq x \mid X \in A)
$$

Seems difficult sampling directly from F_{A} since it requires knowledge of $\mathbb{P}(X \in A)$!

Idea

Want: sample from $F_{A}(x)=\mathbb{P}(X \leq x \mid X \in A)$.

Assuming the existence of a density, it takes the form

$$
f_{A}(x)=\frac{f(x) \mathbb{I}\{x \in A\}}{\mathbb{P}(X \in A)}
$$

Idea

Want: sample from $F_{A}(x)=\mathbb{P}(X \leq x \mid X \in A)$.
Assuming the existence of a density, it takes the form

$$
f_{A}(x)=\frac{f(x) \mathbb{I}\{x \in A\}}{\mathbb{P}(X \in A)}
$$

The main idea is to construct a Markov chain $\left(X_{k}\right)_{k \geq 1}$ for which f_{A} is the invariant density via MCMC. Then extract information about the normalising constant from the sample.

Estimator

■ Construct a Markov chain $\left(X_{k}\right)_{k \geq 1}$ via MCMC sampler, with the zero-variance distribution F_{A} as its invariant distribution.

Estimator

■ Construct a Markov chain $\left(X_{k}\right)_{k \geq 1}$ via MCMC sampler, with the zero-variance distribution F_{A} as its invariant distribution.
■ For any $v \geq 0$ such that $\int_{A} v(x) d x=1$, consider

$$
u\left(\left(X_{k}\right)_{k \geq 1}\right)=\frac{1}{n} \sum_{k=1}^{n} \frac{v\left(X_{k}\right) \mathbb{I}\left\{X_{k} \in A\right\}}{f\left(X_{k}\right)}
$$

Estimator continued

\square For $\int_{A} v(x) d x=1$ it holds

$$
\begin{aligned}
\mathbb{E}_{F_{A}}\left[\frac{1}{n} \sum_{k=1}^{n} \frac{v\left(X_{k}\right) \mathbb{I}\left\{X_{k} \in A\right\}}{f\left(X_{k}\right)}\right] & =\int_{A} \frac{v(x)}{f(x)} \frac{f(x)}{p} d x \\
& =\frac{1}{p} \int_{A} v(x) d x \\
& =\frac{1}{p}
\end{aligned}
$$

Estimator continued

- For $\int_{A} v(x) d x=1$ it holds

$$
\begin{aligned}
\mathbb{E}_{F_{A}}\left[\frac{1}{n} \sum_{k=1}^{n} \frac{v\left(X_{k}\right) \mathbb{I}\left\{X_{k} \in A\right\}}{f\left(X_{k}\right)}\right] & =\int_{A} \frac{v(x)}{f(x)} \frac{f(x)}{p} d x \\
& =\frac{1}{p} \int_{A} v(x) d x \\
& =\frac{1}{p}
\end{aligned}
$$

■ Define $\hat{p}=\left(\frac{1}{n} \sum_{k=1}^{n} \frac{v\left(X_{k}\right) \Pi\left\{X_{k} \in A\right\}}{f\left(X_{k}\right)}\right)^{-1}$.

Design issues

Estimator $\hat{p}=\left(\frac{1}{n} \sum_{k=1}^{n} \frac{v\left(X_{k}\right) \Pi\left\{X_{k} \in A\right\}}{f\left(X_{k}\right)}\right)^{-1}$.
■ Choice of v : controls the variance, set to ensure rare-event efficiency of the algorithm

Design issues

Estimator $\hat{p}=\left(\frac{1}{n} \sum_{k=1}^{n} \frac{v\left(X_{k}\right) \mathbb{I}\left\{X_{k} \in A\right\}}{f\left(X_{k}\right)}\right)^{-1}$.
■ Choice of v : controls the variance, set to ensure rare-event efficiency of the algorithm

- Choice of the MCMC sampler: crucial to control the dependence of the Markov chain

Controlling the variance

Goal: ensure $\operatorname{Var}(\hat{p}) / p^{2}$ is bounded as $p \rightarrow 0$.

Controlling the variance

Goal: ensure $\operatorname{Var}(\hat{p}) / p^{2}$ is bounded as $p \rightarrow 0$.
■ Taylor expansion of $g(Z)$ around $\mathbb{E}[Z]$ leads to

$$
\begin{aligned}
\mathbb{V} \operatorname{ar}(g(Z)) & \approx \mathbb{V a r}\left(g(\mathbb{E}[Z])+g^{\prime}(\mathbb{E}[Z])(Z-\mathbb{E}[Z])\right) \\
& =\left(g^{\prime}(\mathbb{E}[Z])\right)^{2} \mathbb{V} \operatorname{ar}(Z) .
\end{aligned}
$$

Controlling the variance

Goal: ensure $\operatorname{Var}(\hat{p}) / p^{2}$ is bounded as $p \rightarrow 0$.
■ Taylor expansion of $g(Z)$ around $\mathbb{E}[Z]$ leads to

$$
\begin{aligned}
\mathbb{V a r}(g(Z)) & \approx \mathbb{V a r}\left(g(\mathbb{E}[Z])+g^{\prime}(\mathbb{E}[Z])(Z-\mathbb{E}[Z])\right) \\
& =\left(g^{\prime}(\mathbb{E}[Z])\right)^{2} \operatorname{Var}(Z)
\end{aligned}
$$

■ Applied to $g(Z)=1 / Z$ and $Z=\frac{1}{n} \sum_{k=1}^{n} u\left(X_{k}\right)$ where

$$
u(x)=\frac{v(x) \mathbb{I}\{x \in A\}}{f(x)}
$$

then leads to

$$
\mathbb{V a r}_{F_{A}}(\hat{p}) \approx p^{4} \mathbb{V} \operatorname{ar}\left(\frac{1}{n} \sum_{k=1}^{n} u\left(X_{k}\right)\right) \leq C \cdot p^{4} \mathbb{V} \operatorname{ar}(u(X))
$$

Controlling the variance continued

Proposition

If $p^{2} \mathbb{V a r}_{F_{A}}(u(X)) \rightarrow 0$ as $p \rightarrow 0$ then \hat{p} has vanishing relative error (is sufficient).

How do we choose v to fulfill this proposition?

Controlling the variance continued

■ Consider the term

$$
\begin{aligned}
p^{2} \mathbb{V} \operatorname{ar}(u(X)) & =p^{2}\left(\mathbb{E}\left[u(X)^{2}\right]-\mathbb{E}[u(X)]^{2}\right) \\
& =p^{2}\left(\int_{A} \frac{v^{2}(x)}{f^{2}(x)} \frac{f(x)}{p} d x-1\right) \\
& =p \int_{A} \frac{v^{2}(x)}{f(x)} d x-1,
\end{aligned}
$$

Controlling the variance continued

■ Consider the term

$$
\begin{aligned}
p^{2} \mathbb{V} \operatorname{ar}(u(X)) & =p^{2}\left(\mathbb{E}\left[u(X)^{2}\right]-\mathbb{E}[u(X)]^{2}\right) \\
& =p^{2}\left(\int_{A} \frac{v^{2}(x)}{f^{2}(x)} \frac{f(x)}{p} d x-1\right) \\
& =p \int_{A} \frac{v^{2}(x)}{f(x)} d x-1,
\end{aligned}
$$

■ choosing $v(x)=f_{A}(x)=f(x) \mathbb{I}\{x \in A\} / p$ implies

$$
p^{2} \mathbb{V} \operatorname{ar}(u(X))=p \int_{A} \frac{f^{2}(x) / p^{2}}{f(x)} d x-1=\frac{1}{p} \int_{A} f(x) d x-1=0
$$

Controlling the variance continued

■ Consider the term

$$
\begin{aligned}
p^{2} \operatorname{Var}(u(X)) & =p^{2}\left(\mathbb{E}\left[u(X)^{2}\right]-\mathbb{E}[u(X)]^{2}\right) \\
& =p^{2}\left(\int_{A} \frac{v^{2}(x)}{f^{2}(x)} \frac{f(x)}{p} d x-1\right) \\
& =p \int_{A} \frac{v^{2}(x)}{f(x)} d x-1,
\end{aligned}
$$

■ choosing $v(x)=f_{A}(x)=f(x) \mathbb{I}\{x \in A\} / p$ implies

$$
p^{2} \mathbb{V} \operatorname{ar}(u(X))=p \int_{A} \frac{f^{2}(x) / p^{2}}{f(x)} d x-1=\frac{1}{p} \int_{A} f(x) d x-1=0
$$

Choose v as an approximation of the zero-variance density!

Recipe

■ Sample $\left(X_{k}\right)_{k \geq 1}$ under F_{A} via MCMC

Recipe

■ Sample $\left(X_{k}\right)_{k \geq 1}$ under F_{A} via MCMC
■ Show $p^{2} \mathbb{V} \operatorname{ar}(u(X)) \rightarrow 0$ as $p \rightarrow 0$

Recipe

■ Sample $\left(X_{k}\right)_{k \geq 1}$ under F_{A} via MCMC
■ Show $p^{2} \mathbb{V} \operatorname{ar}(u(X)) \rightarrow 0$ as $p \rightarrow 0$
■ Show $\left(X_{k}\right)_{k \geq 1}$ is geometric ergodic

Setup

■ Consider a random walk $S_{m}=Y_{1}+\cdots+Y_{m}$ with non-negative steps Y 's with known heavy-tailed distribution F_{Y} and objective of computing

$$
p=\mathbb{P}\left(\frac{S_{m}}{m}>a\right)
$$

where a is much larger than $\mathbb{E}[Y]$.

Setup

■ Consider a random walk $S_{m}=Y_{1}+\cdots+Y_{m}$ with non-negative steps Y 's with known heavy-tailed distribution F_{Y} and objective of computing

$$
p=\mathbb{P}\left(\frac{S_{m}}{m}>a\right)
$$

where a is much larger than $\mathbb{E}[Y]$.

- Construct $\left(\mathbf{Y}_{k}\right)_{k \geq 1}$ via MCMC with invariant density

$$
f_{A}(\mathbf{y})=\frac{f_{\mathbf{Y}}(\mathbf{y}) \mathbb{I}\left\{y_{1}+\cdots+y_{m}>a m\right\}}{\mathbb{P}\left(S_{m}>a m\right)}
$$

Setup

■ Consider a random walk $S_{m}=Y_{1}+\cdots+Y_{m}$ with non-negative steps Y 's with known heavy-tailed distribution F_{Y} and objective of computing

$$
p=\mathbb{P}\left(\frac{S_{m}}{m}>a\right)
$$

where a is much larger than $\mathbb{E}[Y]$.

- Construct $\left(\mathbf{Y}_{k}\right)_{k \geq 1}$ via MCMC with invariant density

$$
f_{A}(\mathbf{y})=\frac{f_{\mathbf{Y}}(\mathbf{y}) \mathbb{I}\left\{y_{1}+\cdots+y_{m}>a m\right\}}{\mathbb{P}\left(S_{m}>a m\right)}
$$

■ A typical such a random walk has a $m-1$ number of "small" steps and one "large" step.

Gibbs sampler

Initial state $\mathbf{Y}_{0}=\left(Y_{0,1}, \ldots, Y_{0, m}\right)$ such that $Y_{0,1}>$ am and $Y_{0, i}=0$ for other indices. Given $\mathbf{Y}_{k}=\left(Y_{k, 1}, \ldots, Y_{k, m}\right)$, $k=0,1, \ldots$ the next state \mathbf{Y}_{k+1} is sampled as follows
$■$ Take a copy of the current state, let $Y_{k+1, i}=Y_{k, i}$,

Gibbs sampler

Initial state $\mathbf{Y}_{0}=\left(Y_{0,1}, \ldots, Y_{0, m}\right)$ such that $Y_{0,1}>$ am and $Y_{0, i}=0$ for other indices. Given $\mathbf{Y}_{k}=\left(Y_{k, 1}, \ldots, Y_{k, m}\right)$, $k=0,1, \ldots$ the next state \mathbf{Y}_{k+1} is sampled as follows
$■$ Take a copy of the current state, let $Y_{k+1, i}=Y_{k, i}$,
■ Draw a random index $j \in\{1, \ldots, m\}$,

Gibbs sampler

Initial state $\mathbf{Y}_{0}=\left(Y_{0,1}, \ldots, Y_{0, m}\right)$ such that $Y_{0,1}>a m$ and $Y_{0, i}=0$ for other indices. Given $\mathbf{Y}_{k}=\left(Y_{k, 1}, \ldots, Y_{k, m}\right)$, $k=0,1, \ldots$ the next state \mathbf{Y}_{k+1} is sampled as follows

■ Take a copy of the current state, let $Y_{k+1, i}=Y_{k, i}$,
■ Draw a random index $j \in\{1, \ldots, m\}$,
■ Sample $Y_{k+1, j}$ from the conditional distribution of Y given that the sum exceeds the threshold,

$$
\mathbb{P}\left(Y_{k+1, j} \in \cdot\right)=\mathbb{P}\left(Y \in \cdot \mid Y+\sum_{i \neq j} Y_{k, i}>a m\right)
$$

Gibbs sampler

Initial state $\mathbf{Y}_{0}=\left(Y_{0,1}, \ldots, Y_{0, m}\right)$ such that $Y_{0,1}>a m$ and $Y_{0, i}=0$ for other indices. Given $\mathbf{Y}_{k}=\left(Y_{k, 1}, \ldots, Y_{k, m}\right)$, $k=0,1, \ldots$ the next state \mathbf{Y}_{k+1} is sampled as follows

■ Take a copy of the current state, let $Y_{k+1, i}=Y_{k, i}$,
■ Draw a random index $j \in\{1, \ldots, m\}$,
■ Sample $Y_{k+1, j}$ from the conditional distribution of Y given that the sum exceeds the threshold,

$$
\mathbb{P}\left(Y_{k+1, j} \in \cdot\right)=\mathbb{P}\left(Y \in \cdot \mid Y+\sum_{i \neq j} Y_{k, i}>a m\right) .
$$

■ Permutate the steps in \mathbf{Y}_{k+1}.

Gibbs sampler continued

Proposition

The Markov chain $\left(\mathbf{Y}_{k}\right)_{k \geq 1}$ constructed using the proposed Gibbs sampler has the conditional distribution F_{A} as its invariant distribution.

MCMC estimator

■ The MCMC estimator $\hat{p}=\left(\frac{1}{n} \sum_{k=1}^{n} \frac{v\left(\mathbf{y}_{k}\right) \Pi\left\{S_{m}>a m\right\}}{f\left(\mathbf{y}_{k}\right)}\right)^{-1}$. The steps are heavy-tailed in the sense that

$$
\frac{\mathbb{P}\left(M_{m}>a m\right)}{\mathbb{P}\left(S_{m}>a m\right)} \rightarrow 1
$$

where $M_{m}=\max _{i}\left\{y_{k, i}\right\}$.

MCMC estimator

■ The MCMC estimator $\hat{p}=\left(\frac{1}{n} \sum_{k=1}^{n} \frac{v\left(\mathbf{y}_{k}\right) \Pi\left\{S_{m}>a m\right\}}{f\left(\mathbf{y}_{k}\right)}\right)^{-1}$. The steps are heavy-tailed in the sense that

$$
\frac{\mathbb{P}\left(M_{m}>a m\right)}{\mathbb{P}\left(S_{m}>a m\right)} \rightarrow 1
$$

where $M_{m}=\max _{i}\left\{y_{k, i}\right\}$.

- Therefore seems smart to use

$$
\mathbb{P}\left(\mathbf{Y} \in \cdot \mid M_{m}>a m\right) \text { as a proxy for } \mathbb{P}\left(\mathbf{Y} \in \cdot \mid S_{m}>\text { am }\right)
$$

Propose

$$
v\left(\mathbf{y}_{k}\right)=\frac{f\left(\mathbf{y}_{k}\right) \mathbb{I}\left\{M_{m}>a m\right\}}{\mathbb{P}\left(M_{m}>a m\right)}
$$

MCMC estimator continued

Choosing $v(\mathbf{y})=\frac{f(\mathbf{y}) \mathbb{\pi}\left\{M_{m}>a m\right\}}{\mathbb{P}\left(M_{m}>a m\right)}$ yields

$$
u(\mathbf{y})=\frac{v(\mathbf{y}) \mathbb{I}\left\{S_{m}>a m\right\}}{f(\mathbf{y})}=\frac{\mathbb{I}\left\{M_{m}>a m\right\}}{\mathbb{P}\left(M_{m}>a m\right)}
$$

MCMC estimator continued

Choosing $v(\mathbf{y})=\frac{f(\mathbf{y}) \mathbb{\pi}\left\{M_{m}>a m\right\}}{\mathbb{P}\left(M_{m}>a m\right)}$ yields

$$
\begin{array}{r}
u(\mathbf{y})=\frac{v(\mathbf{y}) \mathbb{I}\left\{S_{m}>a m\right\}}{f(\mathbf{y})}=\frac{\mathbb{\{}\left\{M_{m}>a m\right\}}{\mathbb{P}\left(M_{m}>a m\right)} . \\
\hat{p}=\mathbb{P}\left(M_{m}>\text { am }\right)\left(\frac{1}{n} \sum_{k=1}^{n} \mathbb{I}\left\{M_{m}(k)>a m\right\}\right)^{-1}
\end{array}
$$

Efficiency

$$
p^{2} \mathbb{V a r}_{F_{A}}(u(\mathbf{Y}))=\frac{\mathbb{P}\left(S_{m}>a m\right)^{2}}{\mathbb{P}\left(M_{m}>a m\right)^{2}} \operatorname{Var}_{F_{A}}\left(\mathbb{I}\left\{M_{m}>a m\right\}\right)
$$

Efficiency

$$
\begin{aligned}
& p^{2} \operatorname{Var}_{F_{A}}(u(\mathbf{Y}))=\frac{\mathbb{P}\left(S_{m}>a m\right)^{2}}{\mathbb{P}\left(M_{m}>a m\right)^{2}} \operatorname{Var}_{F_{A}}\left(\mathbb{I}\left\{M_{m}>a m\right\}\right) \\
& \quad=\frac{\mathbb{P}\left(S_{m}>a m\right)^{2}}{\mathbb{P}\left(M_{m}>a m\right)^{2}}\left(\mathbb{E}_{F_{A}}\left[\mathbb{I}\left\{M_{m}>a m\right\}\right]-\mathbb{E}_{F_{A}}\left[\mathbb{I}\left\{M_{m}>a m\right\}\right]^{2}\right)
\end{aligned}
$$

Efficiency

$$
\begin{aligned}
& p^{2} \mathbb{V a r}_{F_{A}}(u(\mathbf{Y}))=\frac{\mathbb{P}\left(S_{m}>a m\right)^{2}}{\mathbb{P}\left(M_{m}>a m\right)^{2}} \mathbb{V a r} r_{F_{A}}\left(\mathbb{I}\left\{M_{m}>a m\right\}\right) \\
& \quad=\frac{\mathbb{P}\left(S_{m}>a m\right)^{2}}{\mathbb{P}\left(M_{m}>a m\right)^{2}}\left(\mathbb{E}_{F_{A}}\left[\mathbb{I}\left\{M_{m}>a m\right\}\right]-\mathbb{E}_{F_{A}}\left[\mathbb{I}\left\{M_{m}>a m\right\}\right]^{2}\right) \\
& \quad=\frac{\mathbb{P}\left(S_{m}>a m\right)^{2}}{\mathbb{P}\left(M_{m}>a m\right)^{2}}\left(\frac{\mathbb{P}\left(M_{m}>a m\right)}{\mathbb{P}\left(S_{m}>a m\right)}-\frac{\mathbb{P}\left(M_{m}>a m\right)^{2}}{\mathbb{P}\left(S_{m}>a m\right)^{2}}\right)
\end{aligned}
$$

Efficiency

$$
\begin{aligned}
p^{2} & \mathbb{V a r}_{F_{A}}(u(\mathbf{Y}))=\frac{\mathbb{P}\left(S_{m}>a m\right)^{2}}{\mathbb{P}\left(M_{m}>a m\right)^{2}} \operatorname{Var}_{F_{A}}\left(\mathbb{I}\left\{M_{m}>a m\right\}\right) \\
& =\frac{\mathbb{P}\left(S_{m}>a m\right)^{2}}{\mathbb{P}\left(M_{m}>a m\right)^{2}}\left(\mathbb{E}_{F_{A}}\left[\mathbb{I}\left\{M_{m}>a m\right\}\right]-\mathbb{E}_{F_{A}}\left[\mathbb{I}\left\{M_{m}>a m\right\}\right]^{2}\right) \\
& =\frac{\mathbb{P}\left(S_{m}>a m\right)^{2}}{\mathbb{P}\left(M_{m}>a m\right)^{2}}\left(\frac{\mathbb{P}\left(M_{m}>a m\right)}{\mathbb{P}\left(S_{m}>a m\right)}-\frac{\mathbb{P}\left(M_{m}>a m\right)^{2}}{\mathbb{P}\left(S_{m}>a m\right)^{2}}\right) \\
& =\frac{\mathbb{P}\left(S_{m}>a m\right)}{\mathbb{P}\left(M_{m}>a m\right)}-1 \rightarrow 0 \quad \text { as } p \rightarrow 0 .
\end{aligned}
$$

Geometric ergodicity

■ The design of the Gibbs sampler ensures that the Markov chain $\left(\mathbf{Y}_{k}\right)_{k \geq 1}$ is (uniformly) ergodic.

Geometric ergodicity

■ The design of the Gibbs sampler ensures that the Markov chain $\left(\mathbf{Y}_{k}\right)_{k \geq 1}$ is (uniformly) ergodic.
■ This guarantees that the chain mixes sufficiently and hence that $\mathbb{V} \operatorname{ar}(\hat{p}) \rightarrow 0$ as $n \rightarrow \infty$ at same speed as $1 / n$.

Geometric ergodicity

■ The design of the Gibbs sampler ensures that the Markov chain $\left(\mathbf{Y}_{k}\right)_{k \geq 1}$ is (uniformly) ergodic.
■ This guarantees that the chain mixes sufficiently and hence that $\mathbb{V a r}(\hat{p}) \rightarrow 0$ as $n \rightarrow \infty$ at same speed as $1 / n$.

- The proof is technical ..

Concluding remarks

■ \hat{p} is an efficient estimator for heavy-tailed random walk for increasing (but fixed) number of steps.
■ Extension to heavy-tailed random sum $\sum_{k=1}^{N} Y_{k}$ where N is stochastic.
■ Other models such as recursion formulas, queues, ...

Assumptions

■ The MCMC estimator \hat{p} tested against importance sampling and standard Monte Carlo.
■ Steps are Pareto(2) distributed.
■ Number of batches: 25, simulations per batch: 10, 000 .

Table

m	a	MCMC	IS	MC	
5	10	$3.40 \mathrm{e}-3$	$2.91 \mathrm{e}-3$	$2.83 \mathrm{e}-3$	Avg. est.
		$(0.81 \mathrm{e}-4)$	$(1.77 \mathrm{e}-4)$	$(4.74 \mathrm{e}-4)$	(Std. dev.)
		$[4.1]$	$[3.4]$	$[0.7]$	[Avg. time (ms)]
10	20	$3.34 \mathrm{e}-4$	$3.02 \mathrm{e}-4$	$2.68 \mathrm{e}-4$	Avg. est.
		$(5.83 \mathrm{e}-6)$	$(2.02 \mathrm{e}-6)$	$(162.58 \mathrm{e}-6)$	(Std. dev.)

10,000 simulations for $m=10$ and $a=20$

Tables and figures

10,000 simulations for $m=10$ and $a=20$

