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Introduction
[ ]

The Big Picture

m Computational problem. For instance, the probability of
default or the expected loss given ruin.
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The Big Picture

m Computational problem. For instance, the probability of
default or the expected loss given ruin.

m Complex system : no analytical solution available
m Simulation techniques
i Monte Carlo
i Conditional Monte Carlo
iii Splitting methods
iv Importance sampling
v Markov chain Monte Carlo (NEW)
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Introduction
00000
Background

Problem

Consider a random variable X with known distribution F and
the objective of computing

p=P(X e A),

where {X € A} is thought as rare in the sense that p is small.
Event of ruin for instance.
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Introduction
00000

Background

Problem

Consider a random variable X with known distribution F and
the objective of computing

p=P(X e A),

where {X € A} is thought as rare in the sense that p is small.
Event of ruin for instance.
Example. Random walk S, = Y; + - - - + Y, with non-negative

steps Y’s with known heavy-tailed distribution Fy and objective
of computing

Sn
p=F(7 >a).
where a is much larger than E[Y].
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Introduction
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Background

Stochastic Simulation

Want to compute p = P(X € A).
In absence of an analytical solution, stochastic simulation offers
an alternative.
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Introduction
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Background

Stochastic Simulation

Want to compute p = P(X € A).

In absence of an analytical solution, stochastic simulation offers
an alternative.

Monte Carlo: sample identically distributed and independent
copies Xi, ..., Xy and compute

N

L

p=1 D (X <AL
k=1
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Introduction
[o]e] lele]e]
Background

Shortcomings of Monte Carlo

The relative error of the Monte Carlo estimator is unbounded as
p— 0O:

P N
Example. Standard normal variable X, compute p = P(X > a)
using N = 108 number of simulations

Var(p) 1 ( 1

a1 : p=o1ss, 9P _ 00
a=3 : p—00014, S9VME) _ 407
a=>5 - AZO, Std?;/(p):
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[e]e]e] le]e]
Background

Solutions

m Conditional Monte Carlo (Asmussen)
m Splitting methods (Creou et al)
m Importance sampling (Sigmund, Dupuis, Blanchet)
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Background

Importance sampling

Goal: construct an efficient estimator p of p = P(X € A), in the
sense that its relative error is bounded.
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Introduction
0000e0
Background

Importance sampling

Goal: construct an efficient estimator p of p = P(X € A), in the
sense that its relative error is bounded.
The importance sampling approach (Dupuis et al 2007)

m Generate independent copies Xj, ..., Xy from a sampling
distribution G.

m Compute empirical estimate

xk )I{ Xy € Al.

HMZ
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Introduction
0000e0
Background

Importance sampling

Goal: construct an efficient estimator p of p = P(X € A), in the
sense that its relative error is bounded.
The importance sampling approach (Dupuis et al 2007)
m Generate independent copies Xj, ..., Xy from a sampling
distribution G.

m Compute empirical estimate

=2 Zg(xk)ﬂ{xk c A}
Bolpl = | o (X)dG(X) = F(A) = p.
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Background

Importance sampling continued

Reduces to finding a suitable sampling distribution G.
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Introduction
00000e
Background

Importance sampling continued

Reduces to finding a suitable sampling distribution G.
The zero-variance distribution

Fa(x) = P(X < x|X € A).

If we can choose G = Fy, then %(X)H{X € A} =p, so

N
p= N Z cjiA(Xk)H{Xk €Al =p,

with zero variance!
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Introduction
00000e
Background

Importance sampling continued

Reduces to finding a suitable sampling distribution G.
The zero-variance distribution

Fa(x) = P(X < x|X € A).

If we can choose G = Fy, then %(X)H{X € A} =p, so

N aF
P=%N Z cjiA(Xk)H{Xk €Al =p,

with zero variance!
Requires knowledge of P(X € A) ...
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The idea

The idea

Want: sample from Fa(x) = P(X < x|X € A).
Assuming the existence of a density, it takes the form
f(x)I{x € A}

(X) = "pxe A
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The idea

The idea

Want: sample from Fa(x) = P(X < x|X € A).
Assuming the existence of a density, it takes the form

f(x)I{x € A}

WX = "px e Ay

The main idea is to construct a Markov chain (Xx)x>1 for which
fa is the invariant density via MCMC. Then extract information
about the normalising constant from the sample.
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MCMC
000000
Estimator

Estimator

m Construct a Markov chain (Xx)x>1 via MCMC sampler, with
the zero-variance distribution F4 as its invariant
distribution.
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MCMC
000000
Estimator

Estimator

m Construct a Markov chain (Xx)x>1 via MCMC sampler, with
the zero-variance distribution F4 as its invariant
distribution.

m Forany v > 0 such that [, v(x)dx = 1, consider

1 ZN: V(XL Xk € A}

u((Xk)kZ1) = f(Xi)
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MCMC
0®0000

Estimator

Estimator continued

m For [, v(x)dx = 1it holds

1A v(X )X € A}] [ v(x) f(x)
BT e v fiia o
1
= b Av(x)dx
_ 1
- 5
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MCMC
0®0000

Estimator

Estimator continued

m For [, v(x)dx = 1it holds

1A v(X )X € A}] [ v(x) f(x)
R P TR A O
1
= b Av(x)dx
_ 1
- 5

m Define § = & >3, % estimator of 1/p.
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MCMC
[e]e] lelele)
Estimator

Design issues

Estimator § = &, S h, % of 1/p.

m Choice of the MCMC sampler: crucial to control the
dependence of the Markov chain, to ensure the large
sample efficiency

Var(q) — 0, as N — .
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MCMC
[e]e] lelele)
Estimator

Design issues

Estimator § = 4 Y_p_; X024 of 1/p,

m Choice of the MCMC sampler: crucial to control the
dependence of the Markov chain, to ensure the large
sample efficiency

Var(q) — 0, as N — .

m Choice of v: controls the variance, set to ensure rare-event
efficiency

Std(g)
1/p

=pStd(g) - 0, asp—0.
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MCMC
[e]e]e] lele)
Estimator

Controlling the variance

Estimator § = 4 Yp_y u(Xk), with u(Xy) = XA
Goal is to show p Std(g) tends to zero as p — 0.
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MCMC
[e]e]e] lele)
Estimator

Controlling the variance

Estimator § = 4 Yp_y u(Xk), with u(Xy) = XA
Goal is to show p Std(g) tends to zero as p — 0.

m Consider the term

p?Var(u(X)) = 2(E[U( )] — E[u(X)]?)

v2(x) f(x)
NZOW: Jax x 1)

B (x)
- ”/A ) &1
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MCMC
[e]e]ele] o)
Estimator

Controlling the variance continued

Choosing v(x) = fa(x) = M implies

2(x
p?Var(u p/f /pd—1_ /f x)dx —1=0.
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MCMC
[e]e]ele] o)
Estimator

Controlling the variance continued

Choosing v(x) = fa(x) = M implies

2(x
p?Var(u p/f /pd—1_ /f x)dx —1=0.

Choose v as an approximation of the zero-variance density!
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MCMC
00000e
Estimator

Recipe

m Sample (Xk)x>1 under Fp via some MCMC sampler
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MCMC
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Estimator

Recipe

m Sample (Xk)x>1 under Fp via some MCMC sampler
m Show p?Var(u(X)) - 0asp— 0
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MCMC
00000e
Estimator

Recipe

m Sample (Xk)x>1 under Fp via some MCMC sampler
m Show p?Var(u(X)) - 0asp— 0
m Show (Xk)k>1 is geometric ergodic
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Random Walk with Heavy-tails
000000

Framework

Setup

m Consider arandom walk S, = Yq + --- + Y, with
non-negative steps Y’s with known heavy-tailed
distribution Fy and objective of computing

por(S9)

where a is much larger than E[Y].
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Random Walk with Heavy-tails
000000

Framework

Setup

m Consider arandom walk S, = Yq + --- + Y, with
non-negative steps Y’s with known heavy-tailed
distribution Fy and objective of computing

Sn
p=p(7 >a).
where a is much larger than E[Y].

m Construct (Yg),-, via MCMC with invariant density

faly) = YO oo Yo > an}

P(S, > an)
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Random Walk with Heavy-tails
000000

Framework

Setup

m Consider arandom walk S, = Yq + --- + Y, with
non-negative steps Y’s with known heavy-tailed
distribution Fy and objective of computing

Sn
p=(3 >2),
where a is much larger than E[Y].
m Construct (Yg),-, via MCMC with invariant density

NY){ys + -+ yn > an}
P(S, > an) )

fa(y) =

m A typical such a random walk has a n — 1 number of
"small" steps and one "large" step.
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Random Walk with Heavy-tails
O@00000

Framework

Gibbs sampler

Initial state Yo = (Yo.1,..., Yo,n) such that Yy 1 > anand
Yo,i = 0 for other indices. Given Yx = (Yk 1,..., Ykn),
k =0,1,...the next state Y, 1 is sampled as follows

m Take a copy of the current state, let Yy 1; = Yk,
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Random Walk with Heavy-tails
O@00000

Framework

Gibbs sampler

Initial state Yo = (Yo.1,..., Yo,n) such that Yy 1 > anand
Yo,i = 0 for other indices. Given Yx = (Yk 1,..., Ykn),
k =0,1,...the next state Y, 1 is sampled as follows

m Take a copy of the current state, let Yy 1; = Yk,
m Draw arandom index j € {1,...,n},
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Random Walk with Heavy-tails
O@00000

Framework

Gibbs sampler

Initial state Yo = (Yo.1,..., Yo,n) such that Yy 1 > anand
Yo,i = 0 for other indices. Given Yx = (Yk 1,..., Ykn),
k =0,1,...the next state Y, 1 is sampled as follows

m Take a copy of the current state, let Yy 1; = Yk,
m Draw arandom index j € {1,...,n},

m Sample Y1 ; from the conditional distribution of Y given
that the sum exceeds the threshold,

P(Yir1j€)=P(Y e Y+ Yi>an).
i#]
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Random Walk with Heavy-tails
O@00000

Framework

Gibbs sampler

Initial state Yo = (Yo.1,..., Yo,n) such that Yy 1 > anand
Yo,i = 0 for other indices. Given Yx = (Yk 1,..., Ykn),
k =0,1,...the next state Y, 1 is sampled as follows

m Take a copy of the current state, let Yy 1; = Yk,
m Draw arandom index j € {1,...,n},

m Sample Y1 ; from the conditional distribution of Y given
that the sum exceeds the threshold,

P(Yir1j€)=P(Y e Y+ Yi>an).
i#]

m Permutate the steps in Y. 1.
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Random Walk with Heavy-tails
[e]e] lelelele]

Framework

Gibbs sampler continued

The Markov chain (Yk)x>1 constructed using the proposed
Gibbs sampler has the conditional distribution F, as its
invariant distribution.
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Random Walk with Heavy-tails
[e]e]e] lelele]

Framework

MCMC estimator

m The MCMC estimator § = 4 >3, W The steps
are heavy-tailed in the sense that

P(M, > an) R
P(S, > an) ’

where M, = max;{yx,;}-

Thorbjérn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings



Random Walk with Heavy-tails
[e]e]e] lelele]

Framework

MCMC estimator

m The MCMC estimator § = 4 >3, W The steps
are heavy-tailed in the sense that
P(M, > an)
e _) ,
P(S, > an)
where M, = max;{yx,i}-
m Therefore seems smart to use

P(Y € -| M, > an) as aproxy for P(Y € -| S, > an).

Propose \
~ H(yk)I{M, > an
V) = =ty > an)
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Random Walk with Heavy-tails
[ee]ele] Tele]

Framework

MCMC estimator continued

f(y)I{Mp>an}

Choosing v(y) B(My>an) yields

_ V(Y){Sp>an} I{M,> an}
uly) = f(y) ~ P(M, > an)’
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Random Walk with Heavy-tails
[ee]ele] Tele]

Framework

MCMC estimator continued

F(y)H{ My ,
7%)(,&,02:)”} yields

Choosing v(y)

_ V(Y){Sp>an} I{M,> an}

uly) = f(y) ~ P(M, > an)’

g =P(My > an)~' L S T{M,(k) > an}
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Random Walk with Heavy-tails
00000e0

Framework

Efficiency

Since u(y) = %, we have:

P(Sp > an)?
(S ) s Varg, (I{M, > an})

p?Vare, (u(Y)) = P(M, > an)?
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Random Walk with Heavy-tails
00000e0

Framework

Efficiency

Since u(y) = %, we have:

P(S, > an)?
anrﬁq (H{Mn > an})

2
_ m (ERI{M, > an}] - Er,[1{M, > an}?)

p?Vare, (u(Y)) =
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Random Walk with Heavy-tails
00000e0

Framework
Efficiency
Since u(y) = &%ﬁﬁ we have:
IP(S > an)
_ P(Sp > an)? 5
= B an? (E [{M, > an}] — Er, [I{M, > an}] )
_ P(Sh>an)® (P(Mn>an) P(M,> an)?
- P(M, > an)2\ P(S,>an) P(S,> an)?
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Random Walk with Heavy-tails
00000e0

Framework

Efficiency

Since u(y) = {22, we have:

P(S, > an)?

pPVare, (u(Y)) B(My = an)?

5 Varg, (I{M, > an})

2
= B an? (E [{M, > an}] — Er, [I{M, > an}]2>

S,, > an)® (P(My, > an)  P(M, > an)?
P(M, > an)® \ P(S, > an) P(S, > an)?

P(Sp > an)
= —1
B(My > an) —0 asp—0.
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Random Walk with Heavy-tails
O00000e

Framework

Geometric ergodicity

m The design of the Gibbs sampler ensures that the Markov
chain (Yg)x>1 is (uniformly) ergodic.

m This guarantees that the chain mixes sufficiently and
hence that Var(p) — 0 as N — oo at same speed as 1/N.
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Random Walk with Heavy-tails
[ ele}
Numerics

Numerical experiments

m The MCMC estimator §~' of the probability p tested
against importance sampling and standard Monte Carlo.

m Steps are Pareto(2) distributed.
m Number of batches: 25, simulations per batch: 10, 000.
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Random Walk with Heavy-tails
(o] lo}
Numerics

Table

n | a| MCMC IS MC
5 110 | 3.40e-3 | 2.91e-3 2.83e-3 Avg. est.
(0.81e-4) | (1.77e-4) | (4.74e-4) (Std. dev.)
[4.1] [3.4] [0.7] [Avg. time (ms)]
10 | 20 | 3.34e-4 | 3.02¢-4 2.68e-4 Avg. est.
(5.83e-6) | (2.02e-6) | (162.58e-6) (Std. dev.)
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Random Walk with Heavy-tails
ooe
Numerics

10, 000 simulations for m = 10 and a = 20

X0 MCMC (red) vs Importanc e Sampling (blue)
42
T T
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vent simulation in heavy-tailed settings



Other examples
[ leJele]

Random Sum with Heavy-tails

Setup

Consider a random walk Sy, = Y1 + - - - + Yy, with
non-negative heavy-tailed steps Y, discrete random variable N,
and the objective of computing

p =P(Sy, > aE[Ny]),

where ais much larger than E[Y].
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Other examples
[e] Tele]

Random Sum with Heavy-tails

The challenge

How to design a Gibbs sampler to construct a Markov chain
with the following invariant distribution

Fa(-) =P((N,Y1,..., Yn) € - | Sn, > an).
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Other examples
[e] Tele]

Random Sum with Heavy-tails

The challenge

How to design a Gibbs sampler to construct a Markov chain
with the following invariant distribution

FA() :P((Nv Y‘lv"-, YN) S | SNn > an).

The trick was to sample N from P(N = k | N > k*) where
k*=min{k : Y1+ ...+ Yk > an}.
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Other examples
[e]e] o]

Random Sum with Heavy-tails

Numerical experiments

m The MCMC estimator g~ of the probability p tested
against importance sampling and standard Monte Carlo.

m Steps are Pareto(1) distributed.
m Number of steps is Geometric(0.2) distributed
m Number of batches: 25, simulations per batch: 10, 000.
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Random Sum with Heavy-tails

Numerical experiments

Other examples
[e]e]e] )

a MCMC IS MC
100 1.149e-2 1.087e-2 1.089-2 Avg. est.
(4e-5) (6e-5) (35e-5) (Std. dev.)
[25] [11] [1.2] [Avg. time (ms)]
5.107 | 2.000003e-8 | 1.999325¢-8 Avg. est.
(6e-14) (1114e-14) (Std. dev.)
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Other examples
@®00000000
Insurance Model with Risky Investments

Setup

Consider the following setup for the risk reserve Uy, for positive
claim size B:

Uy = Rk(Uk_1—Bk), for k > 1,
Uo = Uu.
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Other examples
@®00000000
Insurance Model with Risky Investments

Setup

Consider the following setup for the risk reserve Uy, for positive
claim size B:

Uy = Rk(Uk_1—Bk), for k > 1,
Uo = Uu.

lteration gives: U, = Rp--- Rju— (Rn--- RyBy + -+ RnBp).
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Other examples
@®00000000

Insurance Model with Risky Investments

Setup

Consider the following setup for the risk reserve Uy, for positive
claim size B:

Uy = Rk(Uk_1—Bk), for k > 1,
Uo = Uu.

lteration gives: U, = Rp--- Rju— (Rn--- RyBy + -+ RnBp).
Writing Ax = 1/Rx then

A AU, = u—-W,, where
W, = Bi+AiBo+---+ Ay - Ap_1Bp.
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Other examples
0e0000000
Insurance Model with Risky Investments

Problem

Thus the event of ruin can be expressed as follows

{igf Uk < 0} = {sup Wy > u}.
K
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Insurance Model with Risky Investments

Problem

Thus the event of ruin can be expressed as follows

{igf Uk < 0} = {sup Wy > u}.
K

Goal: Construct an MCMC estimator for computing

p =P (sup Wy > u).
K

Thorbjérn Gudmundsson
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Other examples
[e]e] lelele]e]ele)
Insurance Model with Risky Investments

Gibbs sampler

Construct a Markov chain (A¢, Bt)¢>o with the invariant
distribution
P((A,B) € - | sup Wi > u).
k
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Other examples
[e]e] lelele]e]ele)

Insurance Model with Risky Investments

Gibbs sampler

Construct a Markov chain (A¢, Bt)¢>o with the invariant
distribution
P((A,B) € - | sup Wi > u).
k

Carried out by updating one of (A¢,...,An, By,...,By) ata
time, conditioned so that

max Wy = max B1 +AiBy+ -+ A1 Ac_1Bk > u.
1<k<n 1<k
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Other examples
[e]e]e] lelelelele)
Insurance Model with Risky Investments

Efficiency

Assume that
m The claim size B is Pareto(«) distributed

m The stochastic return R fulfills E[R~“~¢] < oo for some
e>0
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Insurance Model with Risky Investments

Efficiency

Assume that
m The claim size B is Pareto(«) distributed

m The stochastic return R fulfills E[R~“~¢] < oo for some
e>0

Then we have the asymptotic result

P(sup1§k§n Wy > u)

P —1, asn—oo.
P(B > u) Yoo E[A]¥

Thorbjérn Gudmundsson
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Other examples
[e]e]e]e] Telelele)

Insurance Model with Risky Investments

Efficiency continued

Now W, =By + A1Bo+---+Aqy---Ap_1Bp.
Based on the existing asymptotic results we propose the
following choice for V

V()=P((A,B)€-| (A,B) €R),

where

R = {B1>U}
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Other examples
[e]e]e]e] Telelele)
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Efficiency continued

Now W, =By + A1Bo+---+Aqy---Ap_1Bp.
Based on the existing asymptotic results we propose the
following choice for V

V()=P((A,B)€-| (A,B) €R),

where

R = {By>u}U{As >a B> u/a}
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Efficiency continued

Now Wp =By +Ai1Bo+---+ Ay Ap_1Bp.
Based on the existing asymptotic results we propose the
following choice for V

V(:)=P((A,B)c-|(A,B) €R),
where

R = {By>u}lU{A>a B, >u/a}u...
U {A>a,...,A_1>aB,>u/a""}.
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10,000 simulations for n = 10 and u = 10°
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Conclusion

Established a framework for new and simple method within
stochastic simulation: Markov chain Monte Carlo methodology.
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Conclusion

Established a framework for new and simple method within
stochastic simulation: Markov chain Monte Carlo methodology.
Applied the framework and proved efficiency on four concrete
examples:

m Random walk with heavy-tails
m Random sum with heavy-tails

m Solution to stochastic recurrent equations with heavy-tailed
innovations

m Insurance model with risky investments and Pareto
distributed claim size
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Conclusion

Possibilities for future work:
m Extension to random walk with light-tails
m Perfect simulation / coupling form the past

m Solution to stochastic recurrent equations where the ruin
event is controlled by the stochastic returns rather than the

claim size
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Thank you for your attention!
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