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The Big Picture

Computational problem. For instance, the probability of
default or the expected loss given ruin.

Complex system : no analytical solution available
Simulation techniques

i Monte Carlo
ii Conditional Monte Carlo
iii Splitting methods
iv Importance sampling
v Markov chain Monte Carlo (NEW)
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Background

Problem

Consider a random variable X with known distribution F and
the objective of computing

p = P(X ∈ A),

where {X ∈ A} is thought as rare in the sense that p is small.
Event of ruin for instance.

Example. Random walk Sn = Y1 + · · ·+ Yn with non-negative
steps Y ’s with known heavy-tailed distribution FY and objective
of computing

p = P
(Sn

n
> a

)
,

where a is much larger than E[Y ].

Thorbjörn Gudmundsson KTH

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings



logga

Introduction MCMC Random Walk with Heavy-tails Other examples

Background

Problem

Consider a random variable X with known distribution F and
the objective of computing

p = P(X ∈ A),

where {X ∈ A} is thought as rare in the sense that p is small.
Event of ruin for instance.
Example. Random walk Sn = Y1 + · · ·+ Yn with non-negative
steps Y ’s with known heavy-tailed distribution FY and objective
of computing

p = P
(Sn

n
> a

)
,

where a is much larger than E[Y ].

Thorbjörn Gudmundsson KTH

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings



logga

Introduction MCMC Random Walk with Heavy-tails Other examples

Background

Stochastic Simulation

Want to compute p = P(X ∈ A).
In absence of an analytical solution, stochastic simulation offers
an alternative.

Monte Carlo: sample identically distributed and independent
copies X1, . . . ,XN and compute

p̂ =
1
N

N∑
k=1

I{Xk ∈ A}.
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Background

Shortcomings of Monte Carlo

The relative error of the Monte Carlo estimator is unbounded as
p → 0:

Var(p̂)
p2 =

1
N

(1
p
− 1
)
→∞, as p → 0.

Example. Standard normal variable X , compute p = P(X > a)
using N = 106 number of simulations

a = 1 : p̂ = 0.158,
Stdev(p̂)

p̂
= 0.002

a = 3 : p̂ = 0.0014,
Stdev(p̂)

p̂
= 0.027

a = 5 : p̂ = 0,
Stdev(p̂)

p̂
=∞
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Background

Solutions

Conditional Monte Carlo (Asmussen)
Splitting methods (Creou et al)
Importance sampling (Sigmund, Dupuis, Blanchet)
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Background

Importance sampling

Goal: construct an efficient estimator p̂ of p = P(X ∈ A), in the
sense that its relative error is bounded.

The importance sampling approach (Dupuis et al 2007)
Generate independent copies X1, . . . ,XN from a sampling
distribution G.
Compute empirical estimate

p̂ =
1
N

N∑
k=1

dF
dG

(Xk )I{Xk ∈ A}.

EG[p̂] =
∫

A

dF
dG

(X )dG(X ) = F (A) = p.
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Background

Importance sampling continued

Reduces to finding a suitable sampling distribution G.

The zero-variance distribution

FA(x) = P(X ≤ x |X ∈ A).

If we can choose G = FA, then dF
dFA

(X )I{X ∈ A} = p, so

p̂ =
1
N

N∑
k=1

dF
dFA

(Xk )I{Xk ∈ A} = p,

with zero variance!
Requires knowledge of P(X ∈ A) ...
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The idea

The idea

Want: sample from FA(x) = P(X ≤ x |X ∈ A).
Assuming the existence of a density, it takes the form

fA(x) =
f (x)I{x ∈ A}
P(X ∈ A)

.

The main idea is to construct a Markov chain (Xk )k≥1 for which
fA is the invariant density via MCMC. Then extract information
about the normalising constant from the sample.
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Estimator

Estimator

Construct a Markov chain (Xk )k≥1 via MCMC sampler, with
the zero-variance distribution FA as its invariant
distribution.

For any v ≥ 0 such that
∫

A v(x)dx = 1, consider

u
(
(Xk )k≥1

)
=

1
N

N∑
k=1

v(Xk )I{Xk ∈ A}
f (Xk )

.
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Estimator

Estimator continued

For
∫

A v(x)dx = 1 it holds

EFA

[ 1
N

N∑
k=1

v(Xk )I{Xk ∈ A}
f (Xk )

]
=

∫
A

v(x)
f (x)

f (x)
p

dx

=
1
p

∫
A

v(x)dx

=
1
p

.

Define q̂ = 1
N
∑N

k=1
v(Xk )I{Xk∈A}

f (Xk )
estimator of 1/p.
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Estimator

Design issues

Estimator q̂ = 1
N
∑N

k=1
v(Xk )I{Xk∈A}

f (Xk )
of 1/p.

Choice of the MCMC sampler: crucial to control the
dependence of the Markov chain, to ensure the large
sample efficiency

Var(q̂)→ 0, as N →∞.

Choice of v : controls the variance, set to ensure rare-event
efficiency

Std(q̂)
1/p

= p Std(q̂)→ 0, as p → 0.
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Estimator

Controlling the variance

Estimator q̂ = 1
N
∑N

k=1 u(Xk ), with u(Xk ) =
v(Xk )I{Xk∈A}

f (Xk )
.

Goal is to show p Std(q̂) tends to zero as p → 0.

Consider the term

p2Var
(
u(X )

)
= p2(E[u(X )2]− E[u(X )]2

)
= p2

(∫
A

v2(x)
f 2(x)

f (x)
p

dx − 1
)

= p
∫

A

v2(x)
f (x)

dx − 1.
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Estimator

Controlling the variance continued

Choosing v(x) = fA(x) =
f (x)I{x∈A}

p implies

p2Var
(
u(X )

)
= p

∫
A

f 2(x)/p2

f (x)
dx − 1 =

1
p

∫
A

f (x)dx − 1 = 0.

Choose v as an approximation of the zero-variance density!
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Estimator

Recipe

Sample (Xk )k≥1 under FA via some MCMC sampler

Show p2Var
(
u(X )

)
→ 0 as p → 0

Show (Xk )k≥1 is geometric ergodic
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Framework

Setup

Consider a random walk Sn = Y1 + · · ·+ Yn with
non-negative steps Y ’s with known heavy-tailed
distribution FY and objective of computing

p = P
(Sn

n
> a

)
,

where a is much larger than E[Y ].

Construct
(
Yk
)

k≥1 via MCMC with invariant density

fA(y) =
fY(y)I{y1 + · · ·+ yn > an}

P(Sn > an)
.

A typical such a random walk has a n − 1 number of
"small" steps and one "large" step.
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Framework

Gibbs sampler

Initial state Y0 = (Y0,1, . . . ,Y0,n) such that Y0,1 > an and
Y0,i = 0 for other indices. Given Yk = (Yk ,1, . . . ,Yk ,n),
k = 0,1, . . . the next state Yk+1 is sampled as follows

Take a copy of the current state, let Yk+1,i = Yk ,i ,

Draw a random index j ∈ {1, . . . ,n},
Sample Yk+1,j from the conditional distribution of Y given
that the sum exceeds the threshold,

P(Yk+1,j ∈ ·) = P
(
Y ∈ · |Y +

∑
i 6=j

Yk ,i > an
)
.

Permutate the steps in Yk+1.

Thorbjörn Gudmundsson KTH
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Framework

Gibbs sampler continued

Proposition

The Markov chain (Yk )k≥1 constructed using the proposed
Gibbs sampler has the conditional distribution FA as its
invariant distribution.
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Framework

MCMC estimator

The MCMC estimator q̂ = 1
N
∑N

k=1
v(yk )I{Sn>an}

f (yk )
. The steps

are heavy-tailed in the sense that

P(Mn > an)
P(Sn > an)

→ 1,

where Mn = maxi{yk ,i}.

Therefore seems smart to use

P(Y ∈ · |Mn > an) as a proxy for P(Y ∈ · |Sn > an).

Propose

v(yk ) =
f (yk )I{Mn > an}

P(Mn > an)
.
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Framework

MCMC estimator continued

Choosing v(y) = f (y)I{Mn>an}
P(Mn>an) yields

u(y) =
v(y)I{Sn > an}

f (y)
=

I{Mn > an}
P(Mn > an)

.

q̂ = P(Mn > an)−1 1
N
∑N

k=1 I{Mn(k) > an}

Thorbjörn Gudmundsson KTH
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Framework

Efficiency

Since u(y) = I{Mn>an}
P(Mn>an) , we have:

p2VarFA

(
u(Y)

)
=

P(Sn > an)2

P(Mn > an)2VarFA

(
I{Mn > an}

)

=
P(Sn > an)2

P(Mn > an)2

(
EFA [I{Mn > an}]− EFA [I{Mn > an}]2

)
=

P(Sn > an)2

P(Mn > an)2

(
P(Mn > an)
P(Sn > an)

− P(Mn > an)2

P(Sn > an)2

)

=
P(Sn > an)
P(Mn > an)
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Framework

Geometric ergodicity

The design of the Gibbs sampler ensures that the Markov
chain (Yk )k≥1 is (uniformly) ergodic.
This guarantees that the chain mixes sufficiently and
hence that Var(p̂)→ 0 as N →∞ at same speed as 1/N.
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Numerics

Numerical experiments

The MCMC estimator q̂−1 of the probability p tested
against importance sampling and standard Monte Carlo.
Steps are Pareto(2) distributed.
Number of batches: 25, simulations per batch: 10,000.
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Numerics

Table

n a MCMC IS MC
5 10 3.40e-3 2.91e-3 2.83e-3 Avg. est.

(0.81e-4) (1.77e-4) (4.74e-4) (Std. dev.)
[4.1] [3.4] [0.7] [Avg. time (ms)]

10 20 3.34e-4 3.02e-4 2.68e-4 Avg. est.
(5.83e-6) (2.02e-6) (162.58e-6) (Std. dev.)
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Numerics

10,000 simulations for m = 10 and a = 20
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Random Sum with Heavy-tails

Setup

Consider a random walk SNn = Y1 + · · ·+ YNn with
non-negative heavy-tailed steps Y , discrete random variable Nn
and the objective of computing

p = P(SNn > aE[Nn]),

where a is much larger than E[Y ].
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Random Sum with Heavy-tails

The challenge

How to design a Gibbs sampler to construct a Markov chain
with the following invariant distribution

FA(·) = P
(
(N,Y1, . . . ,YN) ∈ · | SNn > an

)
.

The trick was to sample N from P(N = k | N ≥ k∗) where
k∗ = min{k : Y1 + . . .+ Yk > an}.
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Random Sum with Heavy-tails

Numerical experiments

The MCMC estimator q̂−1 of the probability p tested
against importance sampling and standard Monte Carlo.
Steps are Pareto(1) distributed.
Number of steps is Geometric(0.2) distributed
Number of batches: 25, simulations per batch: 10,000.
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Random Sum with Heavy-tails

Numerical experiments

a MCMC IS MC
100 1.149e-2 1.087e-2 1.089-2 Avg. est.

(4e-5) (6e-5) (35e-5) (Std. dev.)
[25] [11] [1.2] [Avg. time (ms)]

5 · 107 2.000003e-8 1.999325e-8 Avg. est.
(6e-14) (1114e-14) (Std. dev.)
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Insurance Model with Risky Investments

Setup

Consider the following setup for the risk reserve Uk , for positive
claim size B:

Uk = Rk (Uk−1 − Bk ), for k ≥ 1,
U0 = u.

Iteration gives: Un = Rn · · ·R1u −
(
Rn · · ·R1B1 + · · ·+ RNBn

)
.

Writing Ak = 1/Rk then

A1 · · ·AnUn = u −Wn, where
Wn = B1 + A1B2 + · · ·+ A1 · · ·An−1Bn.
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Insurance Model with Risky Investments

Problem

Thus the event of ruin can be expressed as follows

{inf
k

Uk < 0} = {sup
k

Wk > u}.

Goal: Construct an MCMC estimator for computing

p = P
(

sup
k

Wk > u).
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Insurance Model with Risky Investments

Gibbs sampler

Construct a Markov chain (At ,Bt)t≥0 with the invariant
distribution

P
(
(A,B) ∈ · | sup

k
Wk > u

)
.

Carried out by updating one of (A1, . . . ,An,B1, . . . ,Bn) at a
time, conditioned so that

max
1≤k≤n

Wk = max
1≤k≤n

B1 + A1B2 + · · ·+ A1 · · ·Ak−1Bk > u.
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Insurance Model with Risky Investments

Efficiency

Assume that
The claim size B is Pareto(α) distributed
The stochastic return R fulfills E[R−α−ε] <∞ for some
ε > 0

Then we have the asymptotic result

P(sup1≤k≤n Wk > u)

P(B > u)
∑n−1

k=0 E[Aα]k
→ 1, as n→∞.
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Insurance Model with Risky Investments

Efficiency continued

Now Wn = B1 + A1B2 + · · ·+ A1 · · ·An−1Bn.
Based on the existing asymptotic results we propose the
following choice for V

V (·) = P
(
(A,B) ∈ · | (A,B) ∈ R),

where

R = {B1 > u}

∪ {A1 > a,B2 > u/a} ∪ . . .
∪ {A1 > a, . . . ,An−1 > a,Bn > u/an−1}.
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Insurance Model with Risky Investments

10,000 simulations for n = 10 and u = 105
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Insurance Model with Risky Investments

Conclusion

Established a framework for new and simple method within
stochastic simulation: Markov chain Monte Carlo methodology.

Applied the framework and proved efficiency on four concrete
examples:

Random walk with heavy-tails
Random sum with heavy-tails
Solution to stochastic recurrent equations with heavy-tailed
innovations
Insurance model with risky investments and Pareto
distributed claim size
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Insurance Model with Risky Investments

Conclusion

Possibilities for future work:
Extension to random walk with light-tails
Perfect simulation / coupling form the past
Solution to stochastic recurrent equations where the ruin
event is controlled by the stochastic returns rather than the
claim size
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Thank you for your attention!
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