Introduction	MCMC	Random Walk with Heavy-tails	Other exampl
0 000000		0000000	0000

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

Thorbjörn Gudmundsson

Department of Mathematics KTH Stockholm

Licentiat seminarium, December 2013

★ 문 → ★ 문 →

Thorbjörn Gudmundsson

Introduction	MCMC 000000	Random Walk with Heavy-tails	Other examples
The Big Picture			

 Computational problem. For instance, the probability of default or the expected loss given ruin.

→ < Ξ →</p>

KTH

 Computational problem. For instance, the probability of default or the expected loss given ruin.

★ 문 → ★ 문 →

KTH

Complex system : no analytical solution available

- Computational problem. For instance, the probability of default or the expected loss given ruin.
- Complex system : no analytical solution available
- Simulation techniques
 - i Monte Carlo
 - ii Conditional Monte Carlo
 - iii Splitting methods
 - iv Importance sampling

< <p>O > < <p>O >

★ 문 → ★ 문 →

- Computational problem. For instance, the probability of default or the expected loss given ruin.
- Complex system : no analytical solution available
- Simulation techniques
 - i Monte Carlo
 - ii Conditional Monte Carlo
 - iii Splitting methods
 - iv Importance sampling
 - v Markov chain Monte Carlo (NEW)

Thorbjörn Gudmundsson

< <p>O > < <p>O >

→ 프 → < 프 →</p>

Introduction ○ ●00000	MCMC 000000	Random Walk with Heavy-tails	Other examples
Background			

Problem

Consider a random variable X with known distribution F and the objective of computing

1

$$oldsymbol{v} = \mathbb{P}(X \in A),$$

KTH

where $\{X \in A\}$ is thought as rare in the sense that *p* is small. Event of ruin for instance.

Introduction ○ ●00000	MCMC 0 000000	Random Walk with Heavy-tails	Other examples
Background			

Problem

Consider a random variable X with known distribution F and the objective of computing

$$o = \mathbb{P}(X \in A),$$

where $\{X \in A\}$ is thought as rare in the sense that *p* is small. Event of ruin for instance.

Example. Random walk $S_n = Y_1 + \cdots + Y_n$ with non-negative steps *Y*'s with known heavy-tailed distribution F_Y and objective of computing

$$p=\mathbb{P}\Big(rac{S_n}{n}>a\Big),$$

where *a* is much larger than $\mathbb{E}[Y]$.

Introduction ○ ○●○○○○○	MCMC 0 000000	Random Walk with Heavy-tails	Other examples
Background			

Stochastic Simulation

Want to compute $p = \mathbb{P}(X \in A)$.

In absence of an analytical solution, stochastic simulation offers an alternative.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
o o●oooo		0000000 000	0000
Background			

Stochastic Simulation

Want to compute $p = \mathbb{P}(X \in A)$.

In absence of an analytical solution, stochastic simulation offers an alternative.

Monte Carlo: sample identically distributed and independent copies X_1, \ldots, X_N and compute

$$\hat{p} = \frac{1}{N} \sum_{k=1}^{N} I\{X_k \in A\}.$$

ヘロト ヘヨト ヘヨト ヘヨト

KTH

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
o oo●ooo		0000000 000	0000 000000000
Background			

Shortcomings of Monte Carlo

The relative error of the Monte Carlo estimator is unbounded as $p \rightarrow 0$:

$$\frac{\mathbb{V}ar(\hat{p})}{p^2} = \frac{1}{N} \Big(\frac{1}{p} - 1 \Big) \to \infty, \quad \text{as } p \to 0.$$

Example. Standard normal variable *X*, compute $p = \mathbb{P}(X > a)$ using $N = 10^6$ number of simulations

$$a = 1 : \hat{p} = 0.158, \quad \frac{\text{Stdev}(\hat{p})}{\hat{p}} = 0.002$$

$$a = 3 : \hat{p} = 0.0014, \quad \frac{\text{Stdev}(\hat{p})}{\hat{p}} = 0.027$$

$$a = 5 : \hat{p} = 0, \quad \frac{\text{Stdev}(\hat{p})}{\hat{p}} = \infty$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

Introduction ○ ○○○●○○	MCMC 0 000000	Random Walk with Heavy-tails	Other examples
Background			
0.1.1			

- Conditional Monte Carlo (Asmussen)
- Splitting methods (Creou et al)
- Importance sampling (Sigmund, Dupuis, Blanchet)

< <p>O > < <p>O >

→ E → < E →</p>

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
o 0000●0		000000	0000
Background			

Importance sampling

Goal: construct an efficient estimator \hat{p} of $p = \mathbb{P}(X \in A)$, in the sense that its relative error is bounded.

ヘロ・スピッス ほう スピン

크

KTH

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
o 0000●0		000000 000	0000 000000000
Background			

Importance sampling

Goal: construct an efficient estimator \hat{p} of $p = \mathbb{P}(X \in A)$, in the sense that its relative error is bounded.

The importance sampling approach (Dupuis et al 2007)

■ Generate independent copies *X*₁,..., *X*_N from a sampling distribution *G*.

Compute empirical estimate

$$\hat{p} = rac{1}{N}\sum_{k=1}^{N}rac{dF}{dG}(X_k)\mathbb{I}\{X_k\in A\}.$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

・ロト ・回 ト ・ヨト ・ヨト … ヨ

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
o 0000●0		000000 000	0000 000000000
Background			

Importance sampling

Goal: construct an efficient estimator \hat{p} of $p = \mathbb{P}(X \in A)$, in the sense that its relative error is bounded. The importance sampling approach (Dupuis et al 2007)

Generate independent copies X_1, \ldots, X_N from a sampling

distribution G.

Compute empirical estimate

$$\hat{\rho} = rac{1}{N}\sum_{k=1}^{N}rac{dF}{dG}(X_k)\mathbb{I}\{X_k\in A\}.$$

$$\mathbb{E}_G[\hat{p}] = \int_A \frac{dF}{dG}(X) dG(X) = F(A) = p.$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

・ロト ・回 ト ・ヨト ・ヨト … ヨ

Introduction ○ ○○○○○●	MCMC 000000	Random Walk with Heavy-tails ০০০০০০০ ০০০	Other examples
Background			

Importance sampling continued

Reduces to finding a suitable sampling distribution G.

- * ロ * * @ * * 注 * 注 * の < @

KTH

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
○	0	০০০০০০০	
○○○○○●	000000	০০০	
Background			

Importance sampling continued

Reduces to finding a suitable sampling distribution *G*. The zero-variance distribution

$$F_A(x) = \mathbb{P}(X \leq x | X \in A).$$

If we can choose $G = F_A$, then $\frac{dF}{dF_A}(X)\mathbb{I}\{X \in A\} = p$, so

$$\hat{\rho} = rac{1}{N}\sum_{k=1}^{N}rac{dF}{dF_A}(X_k)\mathbb{I}\{X_k\in A\} =
ho,$$

・ロン ・回 と ・ ヨン・

KTH

with zero variance!

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
○	0	০০০০০০০	
○○○○○●	000000	০০০	
Background			

Importance sampling continued

Reduces to finding a suitable sampling distribution *G*. The zero-variance distribution

$$\mathcal{F}_{\mathcal{A}}(x) = \mathbb{P}(X \leq x | X \in \mathcal{A}).$$

If we can choose $G = F_A$, then $\frac{dF}{dF_A}(X)\mathbb{I}\{X \in A\} = p$, so

$$\hat{\rho} = rac{1}{N}\sum_{k=1}^{N}rac{dF}{dF_A}(X_k)\mathbb{I}\{X_k\in A\} =
ho,$$

with zero variance! Requires knowledge of $\mathbb{P}(X \in A) \dots$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

Introduction o oooooo	MCMC • •	Random Walk with Heavy-tails ০০০০০০০ ০০০	Other examples
The idea			
The idea			

Want: sample from $F_A(x) = \mathbb{P}(X \le x | X \in A)$. Assuming the existence of a density, it takes the form

$$f_{\mathcal{A}}(x) = rac{f(x)\mathbb{I}\{x\in \mathcal{A}\}}{\mathbb{P}(X\in \mathcal{A})}.$$

・ロト ・回ト ・ヨト ・ヨト

KTH

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC • •	Random Walk with Heavy-tails ০০০০০০০ ০০০	Other examples
The idea			
The idea			

Want: sample from $F_A(x) = \mathbb{P}(X \le x | X \in A)$. Assuming the existence of a density, it takes the form

$$f_{\mathcal{A}}(x) = rac{f(x)\mathbb{I}\{x\in \mathcal{A}\}}{\mathbb{P}(X\in \mathcal{A})}.$$

The main idea is to construct a Markov chain $(X_k)_{k\geq 1}$ for which f_A is the invariant density via MCMC. Then *extract* information about the normalising constant from the sample.

ヘロト ヘ団ト ヘヨト ヘヨト

KTH

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC ○ ●○○○○○	Random Walk with Heavy-tails ০০০০০০০ ০০০	Other examples ০০০০ ০০০০০০০০০
Estimator			
Estimator			

■ Construct a Markov chain (X_k)_{k≥1} via MCMC sampler, with the zero-variance distribution F_A as its invariant distribution.

크

KTH

Introduction o oooooo	MCMC ○ ●○○○○○	Random Walk with Heavy-tails	Other examples
Estimator			

Estimator

- Construct a Markov chain (X_k)_{k≥1} via MCMC sampler, with the zero-variance distribution F_A as its invariant distribution.
- For any $v \ge 0$ such that $\int_A v(x) dx = 1$, consider

$$u((X_k)_{k\geq 1})=rac{1}{N}\sum_{k=1}^Nrac{v(X_k)\mathbb{I}\{X_k\in A\}}{f(X_k)}.$$

イロト イポト イヨト イヨト 二日

KTH

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC ○ ○●○○○○○	Random Walk with Heavy-tails	Other examples
Estimator			

Estimator continued

For $\int_A v(x) dx = 1$ it holds

$$\mathbb{E}_{F_A}\Big[\frac{1}{N}\sum_{k=1}^N \frac{v(X_k)\mathbb{I}\{X_k \in A\}}{f(X_k)}\Big] = \int_A \frac{v(x)}{f(x)} \frac{f(x)}{p} dx$$
$$= \frac{1}{p} \int_A v(x) dx$$
$$= \frac{1}{p}.$$

KTH

<ロ> <同> <同> < 回> < 回> < 回> = 三回

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC ○ ○●○○○○○	Random Walk with Heavy-tails	Other examples
Estimator			

Estimator continued

• For $\int_A v(x) dx = 1$ it holds $\mathbb{E}_{F_A} \left[\frac{1}{N} \sum_{k=1}^N \frac{v(X_k) \mathbb{I}\{X_k \in A\}}{f(X_k)} \right] = \int_A \frac{v(x)}{f(x)} \frac{f(x)}{p} dx$ $= \frac{1}{p} \int_A v(x) dx$ $= \frac{1}{p}.$

Define
$$\hat{q} = \frac{1}{N} \sum_{k=1}^{N} \frac{v(X_k)\mathbb{I}\{X_k \in A\}}{f(X_k)}$$
 estimator of $1/p$.

《曰》《圖》《臣》《臣》 三臣

KTH

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails	Other examples
Estimator			

Design issues

Estimator
$$\hat{q} = \frac{1}{N} \sum_{k=1}^{N} \frac{v(X_k)\mathbb{I}\{X_k \in A\}}{f(X_k)}$$
 of $1/p$.

 Choice of the MCMC sampler: crucial to control the dependence of the Markov chain, to ensure the large sample efficiency

$$\mathbb{V}ar(\hat{q}) o 0$$
, as $N o \infty$.

ヘロト ヘ回ト ヘヨト ヘヨト

KTH

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC ○ ○○●○○○	Random Walk with Heavy-tails	Other examples
Estimator			

Design issues

Estimator
$$\hat{q} = \frac{1}{N} \sum_{k=1}^{N} \frac{v(X_k)\mathbb{I}\{X_k \in A\}}{f(X_k)}$$
 of $1/p$.

 Choice of the MCMC sampler: crucial to control the dependence of the Markov chain, to ensure the large sample efficiency

$$\mathbb{V}ar(\hat{q}) \to 0$$
, as $N \to \infty$.

Choice of v: controls the variance, set to ensure rare-event efficiency

$$rac{\operatorname{Std}(\hat{q})}{1/
ho}=
ho\operatorname{Std}(\hat{q}) o 0, \quad ext{as }
ho o 0.$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

・ロン ・回 と ・ ヨン・

Introduction o oooooo	MCMC ○ ○○○●○○	Random Walk with Heavy-tails	Other examples
Estimator			

イロン イヨン イヨン ・

KTH

Controlling the variance

Estimator $\hat{q} = \frac{1}{N} \sum_{k=1}^{N} u(X_k)$, with $u(X_k) = \frac{v(X_k)\mathbb{I}\{X_k \in A\}}{f(X_k)}$. Goal is to show $p \operatorname{Std}(\hat{q})$ tends to zero as $p \to 0$.

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC ○ ○○○●○○	Random Walk with Heavy-tails	Other examples
Estimator			

Controlling the variance

Estimator $\hat{q} = \frac{1}{N} \sum_{k=1}^{N} u(X_k)$, with $u(X_k) = \frac{v(X_k)\mathbb{I}\{X_k \in A\}}{f(X_k)}$. Goal is to show $p \operatorname{Std}(\hat{q})$ tends to zero as $p \to 0$.

Consider the term

$$p^{2} \mathbb{V}ar(u(X)) = p^{2} \left(\mathbb{E}[u(X)^{2}] - \mathbb{E}[u(X)]^{2} \right)$$
$$= p^{2} \left(\int_{A} \frac{v^{2}(x)}{f^{2}(x)} \frac{f(x)}{p} dx - 1 \right)$$
$$= p \int_{A} \frac{v^{2}(x)}{f(x)} dx - 1.$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0 000000	o 0000●0	0000000	0000
Estimator			

Controlling the variance continued

Choosing
$$v(x) = f_A(x) = \frac{f(x)\mathbb{I}\{x \in A\}}{p}$$
 implies

$$p^2 \mathbb{V}ar(u(X)) = p \int_A \frac{f^2(x)/p^2}{f(x)} dx - 1 = \frac{1}{p} \int_A f(x) dx - 1 = 0.$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト

2

KTH

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC ○ ○○○○●○	Random Walk with Heavy-tails	Other examples
Estimator			

Controlling the variance continued

Choosing
$$v(x) = f_A(x) = \frac{f(x)\mathbb{I}\{x \in A\}}{p}$$
 implies

$$p^2 \mathbb{V}ar(u(X)) = p \int_A \frac{f^2(x)/p^2}{f(x)} dx - 1 = \frac{1}{p} \int_A f(x) dx - 1 = 0.$$

Choose v as an approximation of the zero-variance density!

ヘロト ヘ回ト ヘヨト ヘヨト

Introduction o oooooo	MCMC ○ ○○○○○○●	Random Walk with Heavy-tails ০০০০০০০ ০০০	Other examples
Estimator			
Recipe			

Sample $(X_k)_{k\geq 1}$ under F_A via some MCMC sampler

크

KTH

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC ○ ○○○○○●	Random Walk with Heavy-tails 0000000 000	Other examples 0000 000000000
Estimator			
Recipe			

Sample (X_k)_{k≥1} under F_A via some MCMC sampler Show p² Var(u(X)) → 0 as p → 0

イロン イヨン イヨン イヨン

크

KTH

Introduction o oooooo	MCMC ○ ○○○○○○●	Random Walk with Heavy-tails 0000000 000	Other examples 0000 000000000
Estimator			
Recipe			

Sample $(X_k)_{k\geq 1}$ under F_A via some MCMC sampler

Show
$$p^2 \mathbb{V}ar(u(X)) \to 0$$
 as $p \to 0$

Show $(X_k)_{k\geq 1}$ is geometric ergodic

<ロ> <同> <同> < 回> < 回> < 回> = 三回

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails ●ooooooooooo	Other examples
Framework			

Setup

Consider a random walk S_n = Y₁ + ··· + Y_n with non-negative steps Y's with known heavy-tailed distribution F_Y and objective of computing

$$p = \mathbb{P}\Big(rac{S_n}{n} > a\Big),$$

KTH

where *a* is much larger than $\mathbb{E}[Y]$.

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails	Other examples
Framework			

Setup

Consider a random walk S_n = Y₁ + ··· + Y_n with non-negative steps Y's with known heavy-tailed distribution F_Y and objective of computing

$$p = \mathbb{P}\Big(rac{S_n}{n} > a\Big),$$

where *a* is much larger than $\mathbb{E}[Y]$.

Construct $(\mathbf{Y}_k)_{k>1}$ via MCMC with invariant density

$$f_{\mathcal{A}}(\mathbf{y}) = \frac{f_{\mathbf{Y}}(\mathbf{y})\mathbb{I}\{y_1 + \dots + y_n > an\}}{\mathbb{P}(S_n > an)}$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

イロト イヨト イヨト イヨト 三日

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails	Other examples
Framework			

Setup

Consider a random walk S_n = Y₁ + ··· + Y_n with non-negative steps Y's with known heavy-tailed distribution F_Y and objective of computing

$$p = \mathbb{P}\Big(rac{S_n}{n} > a\Big),$$

where *a* is much larger than $\mathbb{E}[Y]$.

Construct $(\mathbf{Y}_k)_{k>1}$ via MCMC with invariant density

$$f_{\mathcal{A}}(\mathbf{y}) = \frac{f_{\mathbf{Y}}(\mathbf{y})\mathbb{I}\{y_1 + \dots + y_n > an\}}{\mathbb{P}(S_n > an)}$$

A typical such a random walk has a n – 1 number of "small" steps and one "large" step.

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails	Other examples
Framework			

イロト イヨト イヨト イヨト 三日

KTH

Gibbs sampler

Initial state $\mathbf{Y}_0 = (Y_{0,1}, \dots, Y_{0,n})$ such that $Y_{0,1} > an$ and $Y_{0,i} = 0$ for other indices. Given $\mathbf{Y}_k = (Y_{k,1}, \dots, Y_{k,n})$, $k = 0, 1, \dots$ the next state \mathbf{Y}_{k+1} is sampled as follows

Take a copy of the current state, let $Y_{k+1,i} = Y_{k,i}$,
Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails ○●○○○○○○	Other examples
Framework			

Initial state $\mathbf{Y}_0 = (Y_{0,1}, \dots, Y_{0,n})$ such that $Y_{0,1} > an$ and $Y_{0,i} = 0$ for other indices. Given $\mathbf{Y}_k = (Y_{k,1}, \dots, Y_{k,n})$, $k = 0, 1, \dots$ the next state \mathbf{Y}_{k+1} is sampled as follows

- Take a copy of the current state, let $Y_{k+1,i} = Y_{k,i}$,
- **Draw a random index** $j \in \{1, \ldots, n\}$,

イロト イヨト イヨト イヨト 三日

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails ○●○○○○○	Other examples
Framework			

Initial state $\mathbf{Y}_0 = (Y_{0,1}, \dots, Y_{0,n})$ such that $Y_{0,1} > an$ and $Y_{0,i} = 0$ for other indices. Given $\mathbf{Y}_k = (Y_{k,1}, \dots, Y_{k,n})$, $k = 0, 1, \dots$ the next state \mathbf{Y}_{k+1} is sampled as follows

- Take a copy of the current state, let $Y_{k+1,i} = Y_{k,i}$,
- Draw a random index $j \in \{1, \ldots, n\}$,
- Sample $Y_{k+1,j}$ from the conditional distribution of Y given that the sum exceeds the threshold,

$$\mathbb{P}(Y_{k+1,j} \in \cdot) = \mathbb{P}(Y \in \cdot \mid Y + \sum_{i \neq j} Y_{k,i} > an).$$

Thorbjörn Gudmundsson

<ロ> <部> <き> <き> <き> <き> <き> <き

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails ○●○○○○○	Other examples
Framework			

Initial state $\mathbf{Y}_0 = (Y_{0,1}, \dots, Y_{0,n})$ such that $Y_{0,1} > an$ and $Y_{0,i} = 0$ for other indices. Given $\mathbf{Y}_k = (Y_{k,1}, \dots, Y_{k,n})$, $k = 0, 1, \dots$ the next state \mathbf{Y}_{k+1} is sampled as follows

- Take a copy of the current state, let $Y_{k+1,i} = Y_{k,i}$,
- Draw a random index $j \in \{1, \ldots, n\}$,
- Sample $Y_{k+1,j}$ from the conditional distribution of *Y* given that the sum exceeds the threshold,

$$\mathbb{P}(Y_{k+1,j} \in \cdot) = \mathbb{P}(Y \in \cdot \mid Y + \sum_{i \neq j} Y_{k,i} > an).$$

Permutate the steps in \mathbf{Y}_{k+1} .

Thorbjörn Gudmundsson

・ロト ・回 ト ・ヨト ・ヨト … ヨ

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
o	0	○○●○○○○○	
oooooo	000000	○○○	
Framework			

Gibbs sampler continued

Proposition

The Markov chain $(\mathbf{Y}_k)_{k\geq 1}$ constructed using the proposed Gibbs sampler has the conditional distribution F_A as its invariant distribution.

イロト イヨト イヨト イヨト 三日

KTH

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails	Other examples
Framework			

MCMC estimator

The MCMC estimator $\hat{q} = \frac{1}{N} \sum_{k=1}^{N} \frac{v(\mathbf{y}_k) \mathbb{I}\{S_n > an\}}{f(\mathbf{y}_k)}$. The steps are heavy-tailed in the sense that

$$\frac{\mathbb{P}(M_n > an)}{\mathbb{P}(S_n > an)} \to 1,$$

ヘロト ヘヨト ヘヨト ヘヨト

KTH

where $M_n = \max_i \{y_{k,i}\}$.

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails	Other examples
Framework			

MCMC estimator

The MCMC estimator $\hat{q} = \frac{1}{N} \sum_{k=1}^{N} \frac{v(\mathbf{y}_k) \mathbb{I}\{S_n > an\}}{f(\mathbf{y}_k)}$. The steps are heavy-tailed in the sense that

$$\frac{\mathbb{P}(M_n > an)}{\mathbb{P}(S_n > an)} \to 1,$$

where $M_n = \max_i \{y_{k,i}\}$.

Therefore seems smart to use

 $\mathbb{P}(\mathbf{Y} \in \cdot \mid M_n > an)$ as a proxy for $\mathbb{P}(\mathbf{Y} \in \cdot \mid S_n > an)$.

Propose

$$v(\mathbf{y}_k) = \frac{f(\mathbf{y}_k)\mathbb{I}\{M_n > an\}}{\mathbb{P}(M_n > an)}$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

> < @ > < @ > < @ > < @ > < @</p>

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0 000000		0000000 000	0000 00000000
Framework			

・ロト ・聞 ト ・ 国 ト ・ 国 ト

크

KTH

MCMC estimator continued

Choosing
$$v(\mathbf{y}) = \frac{f(\mathbf{y})\mathbb{I}\{M_n > an\}}{\mathbb{P}(M_n > an)}$$
 yields
$$u(\mathbf{y}) = \frac{v(\mathbf{y})\mathbb{I}\{S_n > an\}}{f(\mathbf{y})} = \frac{\mathbb{I}\{M_n > an\}}{\mathbb{P}(M_n > an)}.$$

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0 000000		0000000 000	0000
Framework			

ヘロト 人間 とくほとくほとう

크

KTH

MCMC estimator continued

Choosing
$$v(\mathbf{y}) = \frac{f(\mathbf{y})\mathbb{I}\{M_n > an\}}{\mathbb{P}(M_n > an)}$$
 yields
$$u(\mathbf{y}) = \frac{v(\mathbf{y})\mathbb{I}\{S_n > an\}}{f(\mathbf{y})} = \frac{\mathbb{I}\{M_n > an\}}{\mathbb{P}(M_n > an)}.$$
$$\hat{q} = \mathbb{P}(M_n > an)^{-1}\frac{1}{N}\sum_{k=1}^{N}\mathbb{I}\{M_n(k) > an\}$$

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
o	0	○○○○●○	
oooooo	000000	○○○	
Framework			

Since
$$u(\mathbf{y}) = \frac{\mathbb{I}\{M_n > an\}}{\mathbb{P}(M_n > an)}$$
, we have:

$$p^2 \mathbb{V}ar_{F_A}(u(\mathbf{Y})) = \frac{\mathbb{P}(S_n > an)^2}{\mathbb{P}(M_n > an)^2} \mathbb{V}ar_{F_A}(\mathbb{I}\{M_n > an\})$$

・ロ・・聞・・ヨ・・ヨ・ シック・

KTH

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
o	0	○○○○●○	
oooooo	000000	○○○	
Framework			

Since
$$u(\mathbf{y}) = \frac{\mathbb{I}\{M_n > an\}}{\mathbb{P}(M_n > an)}$$
, we have:

$$p^2 \mathbb{V}ar_{F_A}(u(\mathbf{Y})) = \frac{\mathbb{P}(S_n > an)^2}{\mathbb{P}(M_n > an)^2} \mathbb{V}ar_{F_A}(\mathbb{I}\{M_n > an\})$$

$$= \frac{\mathbb{P}(S_n > an)^2}{\mathbb{P}(M_n > an)^2} \Big(\mathbb{E}_{F_A}[\mathbb{I}\{M_n > an\}] - \mathbb{E}_{F_A}[\mathbb{I}\{M_n > an\}]^2\Big)$$

<ロ> <同> <同> < 同> < 同>

æ

KTH

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
o	0	ooooo●o	
oooooo	000000	ooo	
Framework			

Since
$$u(\mathbf{y}) = \frac{\mathbb{I}\{M_n > an\}}{\mathbb{P}(M_n > an)}$$
, we have:

$$p^2 \mathbb{V}ar_{F_A}(u(\mathbf{Y})) = \frac{\mathbb{P}(S_n > an)^2}{\mathbb{P}(M_n > an)^2} \mathbb{V}ar_{F_A}(\mathbb{I}\{M_n > an\})$$

$$= \frac{\mathbb{P}(S_n > an)^2}{\mathbb{P}(M_n > an)^2} \left(\mathbb{E}_{F_A}[\mathbb{I}\{M_n > an\}] - \mathbb{E}_{F_A}[\mathbb{I}\{M_n > an\}]^2\right)$$

$$= \frac{\mathbb{P}(S_n > an)^2}{\mathbb{P}(M_n > an)^2} \left(\frac{\mathbb{P}(M_n > an)}{\mathbb{P}(S_n > an)} - \frac{\mathbb{P}(M_n > an)^2}{\mathbb{P}(S_n > an)^2}\right)$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

æ

ヘロン 人間 とくほど 人間と

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
o	0	ooooo●o	
oooooo	000000	ooo	
Framework			

Since
$$u(\mathbf{y}) = \frac{\mathbb{I}\{M_n > an\}}{\mathbb{P}(M_n > an)}$$
, we have:

$$p^2 \mathbb{V}ar_{F_A}(u(\mathbf{Y})) = \frac{\mathbb{P}(S_n > an)^2}{\mathbb{P}(M_n > an)^2} \mathbb{V}ar_{F_A}(\mathbb{I}\{M_n > an\})$$

$$= \frac{\mathbb{P}(S_n > an)^2}{\mathbb{P}(M_n > an)^2} \left(\mathbb{E}_{F_A}[\mathbb{I}\{M_n > an\}] - \mathbb{E}_{F_A}[\mathbb{I}\{M_n > an\}]^2\right)$$

$$= \frac{\mathbb{P}(S_n > an)^2}{\mathbb{P}(M_n > an)^2} \left(\frac{\mathbb{P}(M_n > an)}{\mathbb{P}(S_n > an)} - \frac{\mathbb{P}(M_n > an)^2}{\mathbb{P}(S_n > an)^2}\right)$$

$$= \frac{\mathbb{P}(S_n > an)}{\mathbb{P}(M_n > an)} - 1 \to 0 \quad \text{as } p \to 0.$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

æ

ヘロン 人間 とくほど 人間と

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails ○○○○○	Other examples
Framework			

- The design of the Gibbs sampler ensures that the Markov chain (Y_k)_{k≥1} is (uniformly) ergodic.
- This guarantees that the chain mixes sufficiently and hence that Var(p̂) → 0 as N → ∞ at same speed as 1/N.

Geometric ergodicity

・ロン ・回 と ・ ヨン・

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0 000000		000000 000	0000 00000000
Numerics			
NI 1			

Numerical experiments

- The MCMC estimator q⁻¹ of the probability p tested against importance sampling and standard Monte Carlo.
- Steps are Pareto(2) distributed.
- Number of batches: 25, simulations per batch: 10,000.

イロン イヨン イヨン

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails ○○○○○○ ○●○	Other examples 0000 000000000
Numerics			
Table			

n	а	MCMC	IS	MC	
5	10	3.40e-3	2.91e-3	2.83e-3	Avg. est.
		(0.81e-4)	(1.77e-4)	(4.74e-4)	(Std. dev.)
		[4.1]	[3.4]	[0.7]	[Avg. time (ms)]
10	20	3.34e-4	3.02e-4	2.68e-4	Avg. est.
		(5.83e-6)	(2.02e-6)	(162.58e-6)	(Std. dev.)

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

2

< 日 > < 部 > < 国 > < 国 > 、

ntroduction	MCMC 0 000000	Random Walk with Heavy-tails ○○○○○○ ○○●
lumerics		

10,000 simulations for m = 10 and a = 20

æ

KTH

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0 000000	0 000000	000000 000	• 000 000000000
Random Sum with Heavy-tails			

Consider a random walk $S_{N_n} = Y_1 + \cdots + Y_{N_n}$ with non-negative heavy-tailed steps *Y*, discrete random variable N_n and the objective of computing

$$p = \mathbb{P}(S_{N_n} > a\mathbb{E}[N_n]),$$

イロン イヨン イヨン イヨン

KTH

where *a* is much larger than $\mathbb{E}[Y]$.

Thorbjörn Gudmundsson

Introduction	MCMC o	Random Walk with Heavy-tails	Other examples
Random Sum with Heavy-tails			

The challenge

How to design a Gibbs sampler to construct a Markov chain with the following invariant distribution

$$F_{\mathcal{A}}(\cdot) = \mathbb{P}((\mathcal{N}, Y_1, \ldots, Y_N) \in \cdot \mid S_{\mathcal{N}_n} > a_n).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2

KTH

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0 000000	0 000000	0000000 000	0000 000000000
Random Sum with Heavy-tails			

The challenge

How to design a Gibbs sampler to construct a Markov chain with the following invariant distribution

$$F_{\mathcal{A}}(\cdot) = \mathbb{P}((\mathcal{N}, Y_1, \ldots, Y_N) \in \cdot \mid S_{\mathcal{N}_n} > a_n).$$

The trick was to sample N from $\mathbb{P}(N = k \mid N \ge k^*)$ where $k^* = min\{k : Y_1 + \ldots + Y_k > a_n\}.$

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

Introduction o oooooo	MCMC 000000	Random Walk with Heavy-tails ೦೦೦೦೦೦೦ ೦೦೦	Other examples oooo ooooooooo
Random Sum with Heavy-tai	ls		

Numerical experiments

- The MCMC estimator ^{^1} of the probability p tested against importance sampling and standard Monte Carlo.
- Steps are Pareto(1) distributed.
- Number of steps is Geometric(0.2) distributed
- Number of batches: 25, simulations per batch: 10,000.

イロト イヨト イヨト イヨト

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails	Other examples
Random Sum with Heavy-tails			

Numerical experiments

а	MCMC	IS	MC	
100	1.149e-2	1.087e-2	1.089-2	Avg. est.
	(4e-5)	(6e-5)	(35e-5)	(Std. dev.)
	[25]	[11]	[1.2]	[Avg. time (ms)]
$5 \cdot 10^{7}$	2.000003e-8	1.999325e-8		Avg. est.
	(6e-14)	(1114e-14)		(Std. dev.)

æ

◆□ > ◆□ > ◆臣 > ◆臣 > ・

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails	Other examples
Insurance Model with Risky Inve	stments		

Setup

Consider the following setup for the risk reserve U_k , for positive claim size *B*:

$$U_k = R_k(U_{k-1} - B_k), \text{ for } k \ge 1,$$

 $U_0 = u.$

・ロト ・聞 ト ・ 国 ト ・ 国 ト

크

KTH

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails	Other examples	
Insurance Model with Risky Investments				

Setup

Consider the following setup for the risk reserve U_k , for positive claim size *B*:

$$U_k = R_k(U_{k-1} - B_k), \text{ for } k \ge 1,$$

 $U_0 = u.$

Iteration gives: $U_n = R_n \cdots R_1 u - (R_n \cdots R_1 B_1 + \cdots + R_N B_n)$.

KTH

Introduction o oooooo	MCMC 0 000000	Random Walk with Heavy-tails	Other examples	
Insurance Model with Risky Investments				

Setup

Consider the following setup for the risk reserve U_k , for positive claim size *B*:

$$U_k = R_k(U_{k-1} - B_k), \text{ for } k \ge 1,$$

 $U_0 = u.$

Iteration gives: $U_n = R_n \cdots R_1 u - (R_n \cdots R_1 B_1 + \cdots + R_N B_n)$. Writing $A_k = 1/R_k$ then

$$A_1 \cdots A_n U_n = u - W_n$$
, where
 $W_n = B_1 + A_1 B_2 + \cdots + A_1 \cdots A_{n-1} B_n$.

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

<ロ> <同> <同> < 回> < 回> < 回> = 三回

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0	0	0000000	0000
Insurance Model with Risky Inv	vestments		

Problem

Thus the event of ruin can be expressed as follows

$$\{\inf_{k} U_{k} < 0\} = \{\sup_{k} W_{k} > u\}.$$

ヘロン 人間 とくほど 人間と

크

KTH

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
o 000000		000000	0000
Insurance Model with Risky Inve	stments		

Problem

Thus the event of ruin can be expressed as follows

$$\{\inf_{k} U_{k} < 0\} = \{\sup_{k} W_{k} > u\}.$$

Goal: Construct an MCMC estimator for computing

$$p = \mathbb{P}(\sup_{k} W_{k} > u).$$

・ロト ・回ト ・ヨト ・ヨト

2

KTH

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0 000000		000000	0000
Insurance Model with Risky Inve	stments		

Construct a Markov chain $(\mathbf{A}_t, \mathbf{B}_t)_{t \ge 0}$ with the invariant distribution

$$\mathbb{P}\big((\mathbf{A},\mathbf{B})\in\cdot\mid\sup_{k}W_{k}>u\big).$$

2

KTH

Thorbjörn Gudmundsson

Introduction o oooooo	MCMC 000000	Random Walk with Heavy-tails	Other examples	
Insurance Model with Risky Investments				

Construct a Markov chain $(\mathbf{A}_t, \mathbf{B}_t)_{t \ge 0}$ with the invariant distribution

$$\mathbb{P}\big((\mathbf{A},\mathbf{B})\in\cdot\mid\sup_{k}W_{k}>u\big).$$

Carried out by updating one of $(A_1, \ldots, A_n, B_1, \ldots, B_n)$ at a time, conditioned so that

$$\max_{1 \le k \le n} W_k = \max_{1 \le k \le n} B_1 + A_1 B_2 + \dots + A_1 \dots A_{k-1} B_k > u.$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

イロン イボン イヨン 一日

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0 000000	0	000000	0000
Insurance Model with Risky Inve	stments		

Assume that

- The claim size B is Pareto(α) distributed
- The stochastic return *R* fulfills $\mathbb{E}[R^{-\alpha-\epsilon}] < \infty$ for some $\epsilon > 0$

크

・ロン ・回 と ・ ヨン・

Introduction o oooooo	MCMC 000000	Random Walk with Heavy-tails ০০০০০০০ ০০০	Other examples
Insurance Model with Risky Invest	stments		

Assume that

- The claim size B is Pareto(α) distributed
- The stochastic return *R* fulfills $\mathbb{E}[R^{-\alpha-\epsilon}] < \infty$ for some $\epsilon > 0$

Then we have the asymptotic result

$$\frac{\mathbb{P}(\sup_{1 \le k \le n} W_k > u)}{\mathbb{P}(B > u) \sum_{k=0}^{n-1} \mathbb{E}[A^{\alpha}]^k} \to 1, \text{ as } n \to \infty.$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

・ロン ・回 と ・ ヨン・

Introduction o oooooo	MCMC 000000	Random Walk with Heavy-tails	Other examples	
Insurance Model with Risky Investments				

Efficiency continued

Now $W_n = B_1 + A_1B_2 + \cdots + A_1 \cdots A_{n-1}B_n$. Based on the existing asymptotic results we propose the following choice for *V*

$$V(\cdot) = \mathbb{P}ig((\mathsf{A},\mathsf{B}) \in \cdot \mid (\mathsf{A},\mathsf{B}) \in R),$$

・ロン ・回 と ・ ヨン・

KTH

where

$$R = \{B_1 > u\}$$

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples	
000000		0000000	000000000	
Insurance Model with Risky Investments				

Efficiency continued

Now $W_n = B_1 + A_1B_2 + \cdots + A_1 \cdots A_{n-1}B_n$. Based on the existing asymptotic results we propose the following choice for *V*

$$V(\cdot) = \mathbb{P}ig((\mathsf{A},\mathsf{B}) \in \cdot \mid (\mathsf{A},\mathsf{B}) \in R),$$

・ロン ・回 と ・ ヨン・

KTH

where

$$R = \{B_1 > u\} \cup \{A_1 > a, B_2 > u/a\}$$

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples	
0 000000		0000000	00000000	
Insurance Model with Risky Investments				

Efficiency continued

Now $W_n = B_1 + A_1B_2 + \cdots + A_1 \cdots A_{n-1}B_n$. Based on the existing asymptotic results we propose the following choice for *V*

$$V(\cdot) = \mathbb{P}ig((\mathsf{A},\mathsf{B}) \in \cdot \mid (\mathsf{A},\mathsf{B}) \in R),$$

where

$$\begin{array}{rcl} R & = & \{B_1 > u\} \cup \{A_1 > a, B_2 > u/a\} \cup \ldots \\ & \cup & \{A_1 > a, \ldots, A_{n-1} > a, B_n > u/a^{n-1}\}. \end{array}$$

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings

・ロン ・回 と ・ ヨン・

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0 000000		000000 000	0000 000000000
Insurance Model with F	isky Investments		

< 口 > < 🗗

(E) → (E)

KTH

10,000 simulations for n = 10 and $u = 10^5$

Thorbjörn Gudmundsson

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
		0000000	0000
000000	000000	000	000000000
Insurance Model with Ris	ky Investments		

Conclusion

Established a framework for new and simple method within stochastic simulation: Markov chain Monte Carlo methodology.

イロト イヨト イヨト イヨト

KTH

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0 000000		000000	0000
Insurance Model with Risky Inve	stments		

Conclusion

Established a framework for new and simple method within stochastic simulation: Markov chain Monte Carlo methodology. Applied the framework and proved efficiency on four concrete examples:

- Random walk with heavy-tails
- Random sum with heavy-tails
- Solution to stochastic recurrent equations with heavy-tailed innovations
- Insurance model with risky investments and Pareto distributed claim size
| Introduction
0
000000 | MCMC
0
000000 | Random Walk with Heavy-tails
০০০০০০০০
০০০ | Other examples | | |
|--|---------------------|---|----------------|--|--|
| Insurance Model with Risky Investments | | | | | |
| <u> </u> | | | | | |

Conclusion

Possibilities for future work:

- Extension to random walk with light-tails
- Perfect simulation / coupling form the past
- Solution to stochastic recurrent equations where the ruin event is controlled by the stochastic returns rather than the claim size

イロト イヨト イヨト イヨト

Introduction	MCMC	Random Walk with Heavy-tails	Other examples
0	0	০০০০০০০	
000000	000000	০০০	
Insurance Model with Risky Invest	stments		

Thank you for your attention!

▲□▶▲□▶▲□▶▲□▶ □ つへの

KTH

Thorbjörn Gudmundsson

Markov Chain Monte Carlo for rare-event simulation in heavy-tailed settings