Markov chain Monte Carlo for computing probabilities of rare events in a heavy-tailed random walk

Thorbjorn Gudmundsson and Henrik Hult

Department of Mathematics
KTH Stockholm
KTH, April 2011

Problem and Motivation

Setup

Consider a random walk $S_{m}=Y_{1}+\cdots+Y_{m}$, increments Y are i.i.d. and distribution known. Compute the probability

$$
p_{m}=\mathbb{P}\left(S_{m}>a m\right), \quad \text { for } m \text { large and } a>\mathbb{E}[Y] .
$$

■ Sometimes no analytical solution known.

- Problems with the most elementary simulation methods: Monte Carlo.

Problem and Motivation

Setup

Consider a random walk $S_{m}=Y_{1}+\cdots+Y_{m}$, increments Y are i.i.d. and distribution known. Compute the probability

$$
p_{m}=\mathbb{P}\left(S_{m}>a m\right), \quad \text { for } m \text { large and } a>\mathbb{E}[Y] .
$$

■ Sometimes no analytical solution known.
■ Problems with the most elementary simulation methods: Monte Carlo.

Problem and Motivation

Problem with Monte Carlo

Monte Carlo:

■ Generate $S_{m}(1), \ldots, S_{m}(n)$ independently.
■ Compute empirical estimate $\hat{p}_{m}=\frac{1}{n} \sum_{i=1}^{n} I\left\{S_{m}(i)>a m\right\}$.
Simple to implement, unbiased,

consistent,

Problem and Motivation

Problem with Monte Carlo

Monte Carlo:

\square Generate $S_{m}(1), \ldots, S_{m}(n)$ independently.
■ Compute empirical estimate $\hat{p}_{m}=\frac{1}{n} \sum_{i=1}^{n} I\left\{S_{m}(i)>a m\right\}$.
Simple to implement, unbiased,

$$
\mathbb{E}\left[\hat{p}_{m}\right]=p_{m}
$$

consistent,

$$
\hat{p}_{m} \rightarrow p_{m} \quad \text { w.p. } 1, \text { as } n \rightarrow \infty .
$$

Problem and Motivation

Convergence of estimator

Problem and Motivation

Problem with Monte Carlo continued

■ What about efficiency? would like the standard deviation $\operatorname{Std}\left(\hat{p}_{m}\right)$ to be of roughly the same size as p_{m}.

- For the Monte Carlo estimate

- For rare events Monte Carlo requires a large computational cost.

Problem and Motivation

Problem with Monte Carlo continued

■ What about efficiency? would like the standard deviation $\operatorname{Std}\left(\hat{p}_{m}\right)$ to be of roughly the same size as p_{m}.

- For the Monte Carlo estimate

$$
\frac{\operatorname{Std}\left(\hat{p}_{m}\right)}{p_{m}}=\frac{1}{\sqrt{n}} \frac{\sqrt{p_{m}-p_{m}^{2}}}{p_{m}} \sim \frac{1}{\sqrt{n p_{m}}}
$$

■ For rare events Monte Carlo requires a large computational cost.

Computing probability using MCMC

Importance sampling:
Denote the original distribution of S_{m} by F and density by f.
■ Generate $S_{m}(1), \ldots, S_{m}(n)$ independently from a sampling distribution G.

- Compute empirical estimate

$$
\hat{p}_{m}=\frac{1}{n} \sum_{i=1}^{n} \frac{d F}{d G} I\left\{S_{m}(i)>a m\right\}
$$

Both unbiased and consistent.

Computing probability using MCMC

Zero variance sampling distribution

There exists a best choice for G that gives zero variance. The best sampling distribution G is the conditional distribution given the event itself

$$
\mathbb{P}\left(S_{m} \in \cdot \mid S_{m}>a m\right)
$$

The density

$$
g(x)=\frac{f(x) I\{x>a m\}}{\mathbb{P}\left(S_{m}>a m\right)}
$$

Problem: This distribution requires to know $p_{m}=\mathbb{P}\left(S_{m}>a m\right)$ - the very probability we are trying to compute.

Computing probability using MCMC

Zero variance sampling distribution

There exists a best choice for G that gives zero variance. The best sampling distribution G is the conditional distribution given the event itself

$$
\mathbb{P}\left(S_{m} \in \cdot \mid S_{m}>a m\right)
$$

The density

$$
g(x)=\frac{f(x) I\{x>a m\}}{\mathbb{P}\left(S_{m}>a m\right)}
$$

Problem: This distribution requires to know $p_{m}=\mathbb{P}\left(S_{m}>a m\right)$

- the very probability we are trying to compute.

Computing probability using MCMC MCMC Algorithm

■ An MCMC algorithm is a tool to sample a random variable despite only knowing its density up to a normalising constant.
■ The density of S_{m} under G is precisely of that nature

$$
g(x)=\frac{f(x) I\{x>a m\}}{p_{m}}
$$

We can generate via MCMC a sample of random variables with
g as density - but they are dependent!

Computing probability using MCMC MCMC Algorithm

■ An MCMC algorithm is a tool to sample a random variable despite only knowing its density up to a normalising constant.
■ The density of S_{m} under G is precisely of that nature

$$
g(x)=\frac{f(x) I\{x>a m\}}{p_{m}}
$$

We can generate via MCMC a sample of random variables with g as density - but they are dependent!

Computing probability using MCMC

Execute MCMC and extract data

Suppose sampling $S_{m}(1), \ldots, S_{m}(n)$ via MCMC (dependent) from the zero variance distribution G.

$$
S_{m}(i) \sim g(\cdot)=\frac{f(\cdot) /\{\cdot>a m\}}{p_{m}}
$$

How to extract the information about the normalising constant?

Computing probability using MCMC

Execute MCMC and extract data continued

$$
\begin{aligned}
& \qquad \mathbb{E}\left[u\left(S_{m}\right)\right]=\int u(x) g(x) d x=\int_{x>a m} u(x) \frac{f(x)}{p_{m}} d x . \\
& \text { Setting } u(x)=\frac{v(x)}{f(x)} /\{x>a m\} \\
& \mathbb{E}\left[u\left(S_{m}\right)\right]=\frac{1}{p_{m}} \int_{x>a m} v(x) d x \\
& \text { So choosing } v \text { is such that } \int_{x>a m} v(x) d x=1 \\
& \mathbb{E}\left[u\left(S_{m}\right)\right]=\frac{1}{p_{m}}
\end{aligned}
$$

Computing probability using MCMC

Execute MCMC and extract data continued

$$
\mathbb{E}\left[u\left(S_{m}\right)\right]=\int u(x) g(x) d x=\int_{x>a m} u(x) \frac{f(x)}{p_{m}} d x
$$

Setting $u(x)=\frac{v(x)}{f(x)}\{\{x>a m\}$

$$
\mathbb{E}\left[u\left(S_{m}\right)\right]=\frac{1}{p_{m}} \int_{x>a m} v(x) d x .
$$

So choosing v is such that $\int_{x>a m} v(x) d x=1$

Computing probability using MCMC

Execute MCMC and extract data continued

$$
\mathbb{E}\left[u\left(S_{m}\right)\right]=\int u(x) g(x) d x=\int_{x>a m} u(x) \frac{f(x)}{p_{m}} d x
$$

Setting $u(x)=\frac{v(x)}{f(x)} l\{x>a m\}$

$$
\mathbb{E}\left[u\left(S_{m}\right)\right]=\frac{1}{p_{m}} \int_{x>a m} v(x) d x
$$

So choosing v is such that $\int_{x>a m} v(x) d x=1$

$$
\mathbb{E}\left[u\left(S_{m}\right)\right]=\frac{1}{p_{m}}
$$

Computing probability using MCMC

Estimator

■ Consistent estimator based on MCMC:

$$
\hat{p}_{m}=\left(\frac{1}{n} \sum_{i=1}^{n} u\left(S_{m}(i)\right)\right)^{-1}
$$

- Control efficiency by choosing a v.

> How to choose v?

Computing probability using MCMC

Estimator

■ Consistent estimator based on MCMC:

$$
\hat{p}_{m}=\left(\frac{1}{n} \sum_{i=1}^{n} u\left(S_{m}(i)\right)\right)^{-1}
$$

- Control efficiency by choosing a v.

> How to choose v?

Computing probability using MCMC

Estimator's variance

Consider the variance of $\hat{p}_{m}=\left(\frac{1}{n} \sum_{i=1}^{n} u\left(S_{m}(i)\right)\right)^{-1}$.
■ Taylor: $h(x) \approx h\left(x_{0}\right)+h^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ so

$$
\mathbb{V} \operatorname{ar}(h(x)) \approx\left(h^{\prime}\left(x_{0}\right)\right)^{2} \mathbb{V} \operatorname{ar}(x)
$$

- Applied on $h(x)=1 / x$ for $x=\frac{1}{n} \sum_{i=1}^{n} u\left(S_{m}(i)\right)$ and $x_{0}=\mathbb{E}[x]=1 / p_{m}$

Computing probability using MCMC

Estimator's variance

Consider the variance of $\hat{p}_{m}=\left(\frac{1}{n} \sum_{i=1}^{n} u\left(S_{m}(i)\right)\right)^{-1}$.
\square Taylor: $h(x) \approx h\left(x_{0}\right)+h^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ so

$$
\mathbb{V} \operatorname{ar}(h(x)) \approx\left(h^{\prime}\left(x_{0}\right)\right)^{2} \mathbb{V} \operatorname{ar}(x)
$$

■ Applied on $h(x)=1 / x$ for $x=\frac{1}{n} \sum_{i=1}^{n} u\left(S_{m}(i)\right)$ and $x_{0}=\mathbb{E}[x]=1 / p_{m}$

Computing probability using MCMC

Estimator's variance

Consider the variance of $\hat{p}_{m}=\left(\frac{1}{n} \sum_{i=1}^{n} u\left(S_{m}(i)\right)\right)^{-1}$.
\square Taylor: $h(x) \approx h\left(x_{0}\right)+h^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ so

$$
\mathbb{V} \operatorname{ar}(h(x)) \approx\left(h^{\prime}\left(x_{0}\right)\right)^{2} \mathbb{V} \operatorname{ar}(x)
$$

■ Applied on $h(x)=1 / x$ for $x=\frac{1}{n} \sum_{i=1}^{n} u\left(S_{m}(i)\right)$ and $x_{0}=\mathbb{E}[x]=1 / p_{m}$

$$
\mathbb{V} \operatorname{ar}\left(\hat{p}_{m}\right) \approx\left(\frac{-1}{x_{0}^{2}}\right)^{2} \mathbb{V} \operatorname{ar}(x)=\frac{p_{m}^{4}}{n} \mathbb{V} \operatorname{ar}\left(u\left(S_{m}\right)\right)
$$

Computing probability using MCMC

Estimator's variance continued

For MCMC estimator

$$
\begin{aligned}
\frac{\operatorname{Var}\left(\hat{p}_{m}\right)}{p_{m}^{2}} & \approx \frac{p_{m}^{2}}{n} \mathbb{V} \operatorname{ar}\left(u\left(S_{m}\right)\right) \\
& =\frac{p_{m}^{2}}{n}\left(\mathbb{E}\left[u\left(S_{m}\right)^{2}\right]-\left(\mathbb{E}\left[u\left(S_{m}\right)\right]\right)^{2}\right) \\
& =\frac{p_{m}^{2}}{n}\left(\mathbb{E}\left[u\left(S_{m}\right)^{2}\right]-\frac{1}{p_{m}^{2}}\right) \\
& =\frac{1}{n}\left(p_{m}^{2} \int_{x>a m} \frac{v(x)^{2}}{f(x)^{2}}-1\right)
\end{aligned}
$$

Computing probability using MCMC

Bounded Relative Error Criteria

Choosing

$$
v(x)=g(x)=\frac{f(x) I\{x>a m\}}{p_{m}}
$$

Gives

$$
\frac{\operatorname{Var}\left(\hat{p}_{m}\right)}{p_{m}^{2}} \approx \frac{1}{n}\left(p_{m}^{2} \int_{x>a m} \frac{v(x)^{2}}{f(x)^{2}}-1\right)=0
$$

Result:

v is chosen as an approximation of the zero variance density g

Random Walk with Heavy-tailed Increments

Setup

■ Random walk $S_{m}=Y_{1}+\cdots+Y_{m}$. Compute $\mathbb{P}\left(S_{m}>\right.$ am $)$.
■ Zero variance distribution

$$
\mathbb{P}\left(S_{m} \leq x \mid S_{m}>a m\right)
$$

$■$ Say Y are heavy-tailed if following holds:

$$
\frac{\mathbb{P}\left(S_{m}>a m\right)}{\mathbb{P}\left(M_{m}>a m\right)} \rightarrow 1 \quad \text { as } m \rightarrow \infty
$$

$M_{m}=\max \left\{Y_{1}, \ldots, Y_{m}\right\}$, e.g. Cauchy, regularly varying, subexponential.

- Choose v as the density of

Random Walk with Heavy-tailed Increments

Setup

■ Random walk $S_{m}=Y_{1}+\cdots+Y_{m}$. Compute $\mathbb{P}\left(S_{m}>a m\right)$.
■ Zero variance distribution

$$
\mathbb{P}\left(S_{m} \leq x \mid S_{m}>a m\right)
$$

$■$ Say Y are heavy-tailed if following holds:

$$
\frac{\mathbb{P}\left(S_{m}>a m\right)}{\mathbb{P}\left(M_{m}>a m\right)} \rightarrow 1 \quad \text { as } m \rightarrow \infty
$$

$M_{m}=\max \left\{Y_{1}, \ldots, Y_{m}\right\}$, e.g. Cauchy, regularly varying, subexponential.

- Choose v as the density of

$$
\mathbb{P}\left(S_{m} \leq x \mid M_{m}>a m\right)=\frac{\mathbb{P}\left(S_{m} \leq x, M_{m}>a m\right)}{\mathbb{P}\left(M_{m}>a m\right)}
$$

Random Walk with Heavy-tailed Increments

MCMC estimator
This choice of v gives MCMC estimator:

$$
\begin{aligned}
\hat{p}_{m} & =\left(\frac{1}{n} \sum_{i=1}^{n} \frac{v\left(S_{m}(i)\right)}{f\left(S_{m}(i)\right)} l\left\{S_{m}(i)>a m\right\}\right)^{-1} \\
& =\left(\frac{1}{n} \sum_{i=1}^{n} \frac{f\left(S_{m}(i)\right) I\left\{M_{m}(i)>a m\right\} / p_{\max }}{f\left(S_{m}(i)\right)} l\left\{S_{m}(i)>a m\right\}\right)^{-1} \\
& =p_{\max }\left(\frac{1}{n} \sum_{i=1}^{n} I\left\{M_{m}(i)>a m\right\}\right)^{-1}
\end{aligned}
$$

where

$$
p_{\max }=\mathbb{P}\left(M_{m}>a m\right)=1-F_{Y}(a m)^{m}
$$

is easily calculated.

Random Walk with Heavy-tailed Increments

Cauchy: MCMC estimate vs true probability

Random Walk with Heavy-tailed Increments

Cauchy: MCMC estimate vs Monte Carlo

