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Problem and Motivation
Setup

Consider a random walk Sm = Y1 + · · ·+ Ym, increments Y are
i.i.d. and distribution known. Compute the probability

pm = P(Sm > am), for m large and a > E[Y ].

Sometimes no analytical solution known.
Problems with the most elementary simulation methods:
Monte Carlo.
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Problem and Motivation
Problem with Monte Carlo

Monte Carlo:
Generate Sm(1), . . . ,Sm(n) independently.
Compute empirical estimate p̂m = 1

n
∑n

i=1 I{Sm(i) > am}.
Simple to implement, unbiased,

E[p̂m] = pm,

consistent,
p̂m → pm w.p. 1, as n→∞.
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Problem and Motivation
Convergence of estimator
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Problem and Motivation
Problem with Monte Carlo continued

What about efficiency? would like the standard deviation
Std(p̂m) to be of roughly the same size as pm.
For the Monte Carlo estimate

Std(p̂m)

pm
=

1√
n

√
pm − p2

m

pm
∼ 1
√

npm
.

For rare events Monte Carlo requires a large computational
cost.
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Computing probability using MCMC
Importance sampling

Importance sampling:
Denote the original distribution of Sm by F and density by f .

Generate Sm(1), . . . ,Sm(n) independently from a sampling
distribution G.
Compute empirical estimate

p̂m =
1
n

n∑
i=1

dF
dG

I
{

Sm(i) > am
}
.

Both unbiased and consistent.
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Computing probability using MCMC
Zero variance sampling distribution

There exists a best choice for G that gives zero variance. The
best sampling distribution G is the conditional distribution given
the event itself

P(Sm ∈ ·|Sm > am).

The density

g(x) =
f (x)I{x > am}
P(Sm > am)

.

Problem: This distribution requires to know pm = P(Sm > am)
- the very probability we are trying to compute.
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Computing probability using MCMC
MCMC Algorithm

An MCMC algorithm is a tool to sample a random variable
despite only knowing its density up to a normalising
constant.
The density of Sm under G is precisely of that nature

g(x) =
f (x)I{x > am}

pm
.

We can generate via MCMC a sample of random variables with
g as density - but they are dependent!
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Computing probability using MCMC
Execute MCMC and extract data

Suppose sampling Sm(1), . . . ,Sm(n) via MCMC (dependent)
from the zero variance distribution G.

Sm(i) ∼ g(·) = f (·)I{· > am}
pm

.

How to extract the information about the normalising constant?
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Computing probability using MCMC
Execute MCMC and extract data continued

E[u(Sm)] =

∫
u(x)g(x)dx =

∫
x>am

u(x)
f (x)
pm

dx .

Setting u(x) = v(x)
f (x) I{x > am}

E[u(Sm)] =
1

pm

∫
x>am

v(x)dx .

So choosing v is such that
∫

x>am v(x)dx = 1

E[u(Sm)] =
1

pm
.

Thorbjorn Gudmundsson and Henrik Hult KTH

Markov chain Monte Carlo for computing probabilities of rare events in a heavy-tailed random walk



university-logo

Introduction Computing probability using MCMC Numerical Example

Computing probability using MCMC
Execute MCMC and extract data continued

E[u(Sm)] =

∫
u(x)g(x)dx =

∫
x>am

u(x)
f (x)
pm

dx .

Setting u(x) = v(x)
f (x) I{x > am}

E[u(Sm)] =
1

pm

∫
x>am

v(x)dx .

So choosing v is such that
∫

x>am v(x)dx = 1

E[u(Sm)] =
1

pm
.

Thorbjorn Gudmundsson and Henrik Hult KTH

Markov chain Monte Carlo for computing probabilities of rare events in a heavy-tailed random walk



university-logo

Introduction Computing probability using MCMC Numerical Example

Computing probability using MCMC
Execute MCMC and extract data continued

E[u(Sm)] =

∫
u(x)g(x)dx =

∫
x>am

u(x)
f (x)
pm

dx .

Setting u(x) = v(x)
f (x) I{x > am}

E[u(Sm)] =
1

pm

∫
x>am

v(x)dx .

So choosing v is such that
∫

x>am v(x)dx = 1

E[u(Sm)] =
1

pm
.

Thorbjorn Gudmundsson and Henrik Hult KTH

Markov chain Monte Carlo for computing probabilities of rare events in a heavy-tailed random walk



university-logo

Introduction Computing probability using MCMC Numerical Example

Computing probability using MCMC
Estimator

Consistent estimator based on MCMC:

p̂m =
(1

n

n∑
i=1

u(Sm(i))
)−1

Control efficiency by choosing a v .

How to choose v?
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Computing probability using MCMC
Estimator’s variance

Consider the variance of p̂m =
(

1
n
∑n

i=1 u
(
Sm(i)

))−1
.

Taylor: h(x) ≈ h(x0) + h′(x0)(x − x0) so

Var(h(x)) ≈
(
h′(x0)

)2Var(x).

Applied on h(x) = 1/x for x = 1
n
∑n

i=1 u(Sm(i)) and
x0 = E[x ] = 1/pm

Var(p̂m) ≈
(−1

x2
0

)2
Var(x) =

p4
m
n

Var
(
u(Sm)

)
.
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Computing probability using MCMC
Estimator’s variance continued

For MCMC estimator

Var(p̂m)

p2
m

≈ p2
m
n

Var
(
u(Sm)

)
=

p2
m
n

(
E
[
u(Sm)

2]− (E[u(Sm)]
)2
)

=
p2

m
n

(
E
[
u(Sm)

2]− 1
p2

m

)
=

1
n

(
p2

m

∫
x>am

v(x)2

f (x)2 − 1
)
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Computing probability using MCMC
Bounded Relative Error Criteria

Choosing

v(x) = g(x) =
f (x)I{x > am}

pm
.

Gives
Var(p̂m)

p2
m

≈ 1
n

(
p2

m

∫
x>am

v(x)2

f (x)2 − 1
)
= 0.

Result:

v is chosen as an approximation of the zero variance
density g
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Random Walk with Heavy-tailed Increments
Setup

Random walk Sm = Y1 + · · ·+ Ym. Compute P(Sm > am).
Zero variance distribution

P(Sm ≤ x |Sm > am),

Say Y are heavy-tailed if following holds:
P(Sm > am)

P(Mm > am)
→ 1 as m→∞,

Mm = max{Y1, . . . ,Ym}, e.g. Cauchy, regularly varying,
subexponential.
Choose v as the density of

P(Sm ≤ x |Mm > am) =
P(Sm ≤ x , Mm > am)

P(Mm > am)
.
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Random Walk with Heavy-tailed Increments
MCMC estimator

This choice of v gives MCMC estimator:

p̂m =
(1

n

n∑
i=1

v(Sm(i))
f (Sm(i))

I{Sm(i) > am}
)−1

=
(1

n

n∑
i=1

f (Sm(i))I{Mm(i) > am}/pmax

f (Sm(i))
I{Sm(i) > am}

)−1

= pmax

(1
n

n∑
i=1

I{Mm(i) > am}
)−1

,

where
pmax = P(Mm > am) = 1− FY (am)m,

is easily calculated.
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Random Walk with Heavy-tailed Increments
Cauchy: MCMC estimate vs true probability
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Random Walk with Heavy-tailed Increments
Cauchy: MCMC estimate vs Monte Carlo
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