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Introduction Random Walk with Heavy-tails Numerics

Background

Setup

Consider a random variable X with known distribution F
and the objective of computing

p = P(X ∈ A),

where {X ∈ A} is thought as rare in the sense that p is
small.

Example. Random walk Sm = Y1 + · · ·+ Ym with
non-negative steps Y ’s with known heavy-tailed
distribution FY and objective of computing

p = P
(Sm

m
> a

)
,

where a is much larger than E[Y ].
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Background

Problem

Problem: compute p = P
(

Sm
m > a

)
.

Sometimes no analytical solution known,
Monte Carlo simulation approach computationally
inefficient for small p.
Goal: construct an efficient estimator p̂ in the sense that

RE(p̂) :=
Var(p̂)

p2

is bounded or tends to zero as p → 0.
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Background

Importance sampling

Goal: construct an efficient estimator p̂.

The importance sampling approach (Dupuis et al 2007)
Generate n copies of X· independently from a sampling
distribution G.
Compute empirical estimate

p̂ =
1
n

n∑
k=1

dF
dG

(Xk )I{Xk ∈ A}.
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Background

Importance sampling continued

Reduces to finding a suitable sampling distribution G.

The zero-variance distribution

FA(x) = P(X ≤ x |X ∈ A).

Seems difficult sampling directly from FA since it requires
knowledge of P(X ∈ A) !
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Background

Idea

Want: sample from FA(x) = P(X ≤ x |X ∈ A).
Assuming the existence of a density, it takes the form

fA(x) =
f (x)I{x ∈ A}
P(X ∈ A)

.

The main idea is to construct a Markov chain (Xk )k≥1 for which
fA is the invariant density via MCMC. Then extract information
about the normalising constant from the sample.
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MCMC approach

Estimator

Construct a Markov chain (Xk )k≥1 via MCMC sampler, with
the zero-variance distribution FA as its invariant
distribution.

For any v ≥ 0 such that
∫

A v(x)dx = 1, consider

u
(
(Xk )k≥1

)
=

1
n

n∑
k=1

v(Xk )I{Xk ∈ A}
f (Xk )

.
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MCMC approach

Estimator continued

For
∫

A v(x)dx = 1 it holds

EFA

[1
n

n∑
k=1

v(Xk )I{Xk ∈ A}
f (Xk )

]
=

∫
A

v(x)
f (x)

f (x)
p

dx

=
1
p

∫
A

v(x)dx

=
1
p

.

Define p̂ =
(

1
n
∑n

k=1
v(Xk )I{Xk∈A}

f (Xk )

)−1
.
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MCMC approach

Design issues

Estimator p̂ =
(

1
n
∑n

k=1
v(Xk )I{Xk∈A}

f (Xk )

)−1
.

Choice of v : controls the variance, set to ensure rare-event
efficiency of the algorithm

Choice of the MCMC sampler: crucial to control the
dependence of the Markov chain
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MCMC approach

Controlling the variance

Goal: ensure Var(p̂)/p2 is bounded as p → 0.

Taylor expansion of g(Z ) around E[Z ] leads to

Var
(
g(Z )

)
≈ Var

(
g(E[Z ]) + g′(E[Z ])(Z − E[Z ])

)
=

(
g′(E[Z ])

)2Var(Z ).

Applied to g(Z ) = 1/Z and Z = 1
n
∑n

k=1 u(Xk ) where

u(x) =
v(x)I{x ∈ A}

f (x)
,

then leads to

VarFA(p̂) ≈ p4Var
(1

n

n∑
k=1

u(Xk )
)
≤ C · p4Var

(
u(X )

)
.
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MCMC approach

Controlling the variance continued

Proposition

If p2VarFA

(
u(X )

)
→ 0 as p → 0 then p̂ has vanishing relative

error (is sufficient).

How do we choose v to fulfill this proposition?
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MCMC approach

Controlling the variance continued

Consider the term

p2Var
(
u(X )

)
= p2(E[u(X )2]− E[u(X )]2

)
= p2

(∫
A

v2(x)
f 2(x)

f (x)
p

dx − 1
)

= p
∫

A

v2(x)
f (x)

dx − 1,

choosing v(x) = fA(x) = f (x)I{x ∈ A}/p implies

p2Var
(
u(X )

)
= p

∫
A

f 2(x)/p2

f (x)
dx−1 =

1
p

∫
A

f (x)dx−1 = 0.

Choose v as an approximation of the zero-variance
density!
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MCMC approach

Recipe

Sample (Xk )k≥1 under FA via MCMC

Show p2Var
(
u(X )

)
→ 0 as p → 0

Show (Xk )k≥1 is geometric ergodic
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Formulation

Setup

Consider a random walk Sm = Y1 + · · ·+ Ym with
non-negative steps Y ’s with known heavy-tailed
distribution FY and objective of computing

p = P
(Sm

m
> a

)
,

where a is much larger than E[Y ].

Construct
(
Yk
)

k≥1 via MCMC with invariant density

fA(y) =
fY(y)I{y1 + · · ·+ ym > am}

P(Sm > am)
.

A typical such a random walk has a m − 1 number of
"small" steps and one "large" step.
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Formulation

Gibbs sampler

Initial state Y0 = (Y0,1, . . . ,Y0,m) such that Y0,1 > am and
Y0,i = 0 for other indices. Given Yk = (Yk ,1, . . . ,Yk ,m),
k = 0,1, . . . the next state Yk+1 is sampled as follows

Take a copy of the current state, let Yk+1,i = Yk ,i ,

Draw a random index j ∈ {1, . . . ,m},
Sample Yk+1,j from the conditional distribution of Y given
that the sum exceeds the threshold,

P(Yk+1,j ∈ ·) = P
(
Y ∈ · |Y +

∑
i 6=j

Yk ,i > am
)
.

Permutate the steps in Yk+1.
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Formulation

Gibbs sampler continued

Proposition

The Markov chain (Yk )k≥1 constructed using the proposed
Gibbs sampler has the conditional distribution FA as its
invariant distribution.

Thorbjörn Gudmundsson and Henrik Hult KTH

Markov chain Monte Carlo for computing probabilities of rare events in a heavy-tailed random walk



logga

Introduction Random Walk with Heavy-tails Numerics

Application

MCMC estimator

The MCMC estimator p̂ =
(

1
n
∑n

k=1
v(yk )I{Sm>am}

f (yk )

)−1
. The

steps are heavy-tailed in the sense that

P(Mm > am)

P(Sm > am)
→ 1,

where Mm = maxi{yk ,i}.

Therefore seems smart to use

P(Y ∈ · |Mm > am) as a proxy for P(Y ∈ · |Sm > am).

Propose

v(yk ) =
f (yk )I{Mm > am}

P(Mm > am)
.
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Application

MCMC estimator continued

Choosing v(y) = f (y)I{Mm>am}
P(Mm>am) yields

u(y) =
v(y)I{Sm > am}

f (y)
=

I{Mm > am}
P(Mm > am)

.

p̂ = P(Mm > am)
(

1
n
∑n

k=1 I{Mm(k) > am}
)−1
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Application

Efficiency

p2VarFA

(
u(Y)

)
=

P(Sm > am)2

P(Mm > am)2VarFA

(
I{Mm > am}

)

=
P(Sm > am)2

P(Mm > am)2

(
EFA [I{Mm > am}]− EFA [I{Mm > am}]2

)
=

P(Sm > am)2

P(Mm > am)2

(
P(Mm > am)

P(Sm > am)
− P(Mm > am)2

P(Sm > am)2

)

=
P(Sm > am)

P(Mm > am)
− 1→ 0 as p → 0.
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Geometric ergodicity

The design of the Gibbs sampler ensures that the Markov
chain (Yk )k≥1 is (uniformly) ergodic.

This guarantees that the chain mixes sufficiently and
hence that Var(p̂)→ 0 as n→∞ at same speed as 1/n.
The proof is technical ..

Thorbjörn Gudmundsson and Henrik Hult KTH

Markov chain Monte Carlo for computing probabilities of rare events in a heavy-tailed random walk



logga

Introduction Random Walk with Heavy-tails Numerics

Application

Geometric ergodicity

The design of the Gibbs sampler ensures that the Markov
chain (Yk )k≥1 is (uniformly) ergodic.
This guarantees that the chain mixes sufficiently and
hence that Var(p̂)→ 0 as n→∞ at same speed as 1/n.

The proof is technical ..

Thorbjörn Gudmundsson and Henrik Hult KTH

Markov chain Monte Carlo for computing probabilities of rare events in a heavy-tailed random walk



logga

Introduction Random Walk with Heavy-tails Numerics

Application

Geometric ergodicity

The design of the Gibbs sampler ensures that the Markov
chain (Yk )k≥1 is (uniformly) ergodic.
This guarantees that the chain mixes sufficiently and
hence that Var(p̂)→ 0 as n→∞ at same speed as 1/n.
The proof is technical ..

Thorbjörn Gudmundsson and Henrik Hult KTH

Markov chain Monte Carlo for computing probabilities of rare events in a heavy-tailed random walk



logga

Introduction Random Walk with Heavy-tails Numerics

Application

Concluding remarks

p̂ is an efficient estimator for heavy-tailed random walk for
increasing (but fixed) number of steps.
Extension to heavy-tailed random sum

∑N
k=1 Yk where N

is stochastic.
Other models such as recursion formulas, queues, ...
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Assumptions

The MCMC estimator p̂ tested against importance
sampling and standard Monte Carlo.
Steps are Pareto(2) distributed.
Number of batches: 25, simulations per batch: 10,000.
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Table

m a MCMC IS MC
5 10 3.40e-3 2.91e-3 2.83e-3 Avg. est.

(0.81e-4) (1.77e-4) (4.74e-4) (Std. dev.)
[4.1] [3.4] [0.7] [Avg. time (ms)]

10 20 3.34e-4 3.02e-4 2.68e-4 Avg. est.
(5.83e-6) (2.02e-6) (162.58e-6) (Std. dev.)
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10,000 simulations for m = 10 and a = 20

Thorbjörn Gudmundsson and Henrik Hult KTH

Markov chain Monte Carlo for computing probabilities of rare events in a heavy-tailed random walk



logga

Introduction Random Walk with Heavy-tails Numerics

Tables and figures

10,000 simulations for m = 10 and a = 20

Thorbjörn Gudmundsson and Henrik Hult KTH

Markov chain Monte Carlo for computing probabilities of rare events in a heavy-tailed random walk


	Introduction
	Background
	MCMC approach

	Random Walk with Heavy-tails
	Formulation
	Application

	Numerics
	Tables and figures


