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Abstract

In this thesis a method based on a Markov chain Monte Carlo (MCMC)
algorithm is proposed to compute the probability of a rare event. The con-
ditional distribution of the underlying process given that the rare event oc-
curs has the probability of the rare event as its normalising constant. Us-
ing the MCMC methodology a Markov chain is simulated, with that con-
ditional distribution as its invariant distribution, and information about
the normalising constant is extracted from its trajectory.

The algorithm is described in full generality and applied to four differ-
ent problems of computing rare-event probability. The first problem con-
siders a random walk Y1+· · ·+Yn exceeding a high threshold, where the in-
crements Y are independent and identically distributed and heavy-tailed.
The second problem is an extension of the first one to a heavy-tailed ran-
dom sum Y1 + · · · + YN exceeding a high threshold, where the number
of increments N is random and independent of Y1, . . . , Yn. The third
problem considers a stochastic recurrence equation Xn = AnXn−1 + Bn
exceeding a high threshold, where the innovations B are independent and
identically distributed and heavy-tailed. The final problem considers the
ruin probability for an insurance company with risky investments.

An unbiased estimator of the reciprocal probability for each corre-
sponding problem is constructed whose normalised variance vanishes asymp-
totically. The algorithm is illustrated numerically and compared to exist-
ing importance sampling algorithms.
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Sammanfattning

I denna avhandling presenteras en metod baserad på MCMC (Markov
chain Monte Carlo) för att beräkna sannolikheten av en sällsynt hän-
delse. Den betingade fördelningen för den underliggande processen givet
att den sällsynta händelsen inträffar har den sökta sannolikheten som
sin normaliseringskonstant. Med hjälp av MCMC-metodiken skapas en
Markovkedja med betingade fördelningen som sin invarianta fördelning
och en skattning av normaliseringskonstanten baseras på den simulerade
kedjan.

Algoritmen beskrivs i full generalitet och tillämpas på fyra exempel-
problem. Första problemet handlar om en slumpvandring Y1 + · · · + Yn
som överskrider en hög tröskel, då stegen Y är oberoende, likafödelade
med tungsvansad fördelning. Andra problemet är en utvidgning av det
första till summa av ett stokastiskt antal termer. Tredje problemet be-
handlar sannolikheten att lösningen Xn till en stokastisk rekurrensekva-
tion Xn = AnXn−1 + Bn överskrider en hög tröskel då innovationerna
B är oberoende, likafördelade med tungsvansad fördelning. Sista prob-
lemet handlar om ruinsannolikhet för ett försäkringsbolag med riskfyllda
investeringar.

För varje exempelproblem konstrueras en väntevärdesriktig skattning
av den reciproka sannolikheten. Skattningarna är effektiva i meningen
att deras normaliserade varians går mot noll. Vidare är de konstruerade
Markovkedjorna likformigt ergodiska. Algoritmerna illustreras numeriskt
och jämfös med existerande importance sampling algoritmer.
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1 Introduction

Mathematical modelling of systems, in for instance natural sciences has been one
of the key building blocks of scientific understanding. The system of interest may
be the motion of the planets, the dynamic flow in a liquid, changes in stock prices
or the total amount of insurance claims made in a year. Often the model involves
the system’s dynamic laws, long-time behavior and different possible scenarios.
Such models nearly always include a parameter, or a set of parameters, which,
though unknown in advance are still needed to calibrate the model to reality.
Thus in order to have a fully specified model capable of forecasting the future
properties or value, then one needs to measure the values of the the unknown
parameters and thereby most likely introducing some measurement error. This
error is assumed to be random and thus the resulting forecast is the outcome of
a stochastic mathematical model.

With the ever increasing computational capacity in recent decades the mod-
els are becoming more and more complex. Minor aspects that were ignored in
the simpler models can now be included in the computations, with increasing
complexity. Researchers and practitioners alike strive to enhance current models
and introduce more and more details to it, in the hope of increasing their fore-
casting ability. Weather systems and finance processes are examples of models
that today are so involved that it is becoming difficult to give analytical and
closed form answers to property and forecasting questions. This has given rise
to alternative approaches to handling such complex stochastic models, namely
stochastic simulation.

Briefly, simulation is the process of sampling the underlying random fac-
tors of a model to generate many instances of it, in order to make inferences
about its properties. This has proved to be a powerful tool for computation
in many academic fields such as physics, chemistry, economics, finance, in-
surance. Generating instances of even the highly advanced stochastic models,
multi-dimensional, non-linear and highly stochastic models can be done in a
few milliseconds. Stochastic simulation has thus played its part in the scien-
tific progress of recent decades and the simulation themselves has grown into an
academic field in its own right.

In physics, hypothesis are often tested and verified via a number of exper-
iments. One experiment is carried out after another, and if sufficiently many
of the experiments support the hypothesis then it acquires a certain validity
and becomes a theory. This was for instance the case at CERN in the summer
of 2012, when the existence of the Higgs boson was confirmed through experi-
ments which supported the old and well known hypothesis. However, one can
not always carry out experiments to validate hypotheses. Sometimes it is sim-
ply impossible to replicate the model in reality, as is the case when studying
the effects of global warming. Obviously, since we can only generate a single
physical instance of the Earth, any simulations need to be done via computer
modelling. To better reflect reality, the resolution needs to be high and many
different physical and meteorological factors need to be taken into account. The
surface of the Earth is broken into 10km times 10km squares, each with its
temperature, air pressure, moisture and more. The dynamics of these weather
factors need to be simulated with small times steps, perhaps many years into
the future. The Mathematics and Climate Research Network (MCRN) carries
out extensive stochastic simulations, replicating the Earth using different types
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of scenarios to forecast possible climate changes. Clearly, this type of stochas-
tic simulation is immensely computationally costly. This scientific work alone
justifies the importance of continuing research and improvement in the field of
stochastic simulation.

A subfield of stochastic simulation which deals with unlikely events of small
probability is called rare-event simulation. Examples of rare-event simulation
is when calculating capital requirements of a financing firm subject to Basel
III regulations, or of a insurance company subject to Solvency II regulations.
Natural catastrophes such as avalanches, volcanic eruptions, to name but few,
are also types rare-events for which we are interested in analysing. This is of
particular importance when it comes to computationally heavy models. That
is because, if an event is rare a computer needs many simulations to get a fair
picture of its frequency and the circumstances in which it occurred. And if
every simulation takes up a lot of computational time, then a thorough study
would require a prohibitive amount of computer time would indeed be required.
Therefore the improvement of efficient rare-event stochastic simulation is of high
importance.

The effect of heavy-tails in stochastic modelling is an important factor not to
be overlooked. By heavy tails we mean essentially that there is a non-negligible
probability of extreme outcomes that differ significantly from the average. Such
extreme outcomes may have a considerable impact on a stochastic system. For
instance, large claims due to a catastrophic event arrive at an insurance company
causing serious financial distress for the company. Similarly, large fluctuations
on the financial market may lead to insolvency of financial institutions. In data
networks the arrival of huge files may cause serious delays in the network, and
so on.

This thesis presents a new methodology in rare-event simulation based on
the theory of Markov chain Monte Carlo. The general method presented in
Section 2 makes very modest probabilistic assumptions and in subsequent sec-
tions (random walk in Section 3, random sum in Section 4, stochastic recurrent
equations in Section 5, ruin probability in Section6) is applied to few concrete
examples and shown to be efficient.

1.1 Stochastic simulation

In this section we introduce the basic tools in stochastic simulation, such as
pseudo random number, the inversion method and Monte Carlo. We present
the Markov chain Monte Carlo methodology and discuss briefly ergodicity.

1.1.1 Sampling a random variable

In this section we present the foundations of stochastic simulation, namely the
generation of a pseudo random number by a computer and how it can be used
to sample a random variable via the inversion method.

Most statistical software programs provide methods for generating a uni-
formly distributed pseudo random number on the interval, say, [0, 1]. These
algorithms are deterministic, at its core, and can only imitate the properties
and behaviour of a uniformly distributed random variable. The early designs
of such algorithms showed flaws in the sense that the pseudo random numbers
generated followed a pattern which could easily be identified and predicted.
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Nowadays there exists many highly advanced algorithms that generate pseudo
random numbers, mimicking a true random number quite well. For the purposes
of this thesis we assume the existence of an algorithm producing a uniformly
distributed pseudo random number, and ignore any deficiencies and errors aris-
ing from the algorithm. In short, we assume that we can sample a perfectly
uniformly distributed random variable in some computer program. For a more
thorough and detailed discussion we refer to [48].

Now consider a random variable X and denote by F its probability distri-
bution. Say we would like, via some computer software, to sample the random
variable X.One approach is the inversion method. The inversion method in-
volves only applying the quantile function to uniformly random variable. More
formally the algorithm is as follows.

1. Sample U from the standard uniform distribution.

2. Compute Z = F−1(U),

where F−1 = min{x | F (x) ≥ p}. The random variable Z has the same distri-
bution as X as the following display shows.

P(Z ≤ x) = P(F−1{U} ≤ x) = P(U ≤ F (x)) = F (x).

The method can easily be extended to sampling X conditioned on being larger
than some constant c. Meaning that we want to sample from the conditional
distribution

P(X ∈ · | X > c).

The algorithm is formally as follows.

1. Sample U from the standard uniform distribution.

2. Compute Z = F−1
((

1− F (c)
)
U + F (c)

)
.

The distribution of Z is given by,

P(Z ≤ x) = P
(
(1− F (c))U + F (c) ≤ F (x)

)
= P

(
U ≤ F (x)− F (c)

1− F (c)

)
=

F (x)− F (c)
1− F (c)

=
P(c ≤ X ≤ x)
P(X > c)

= P(X ≤ x | X > c).

Thus the inversion method provides a simple way of sampling a random variable,
conditioned on being larger than c, based solely on the generation of a uniformly
distributed random number.

The most standard tool for stochastic simulation is the Monte Carlo tech-
nique. The power of Monte Carlo is its simplicity. Let X be a random variable
and assume we want to compute the probability that {X ∈ A} for some Borel
set A. The idea of Monte Carlo is to sample independent and identically dis-
tributed copies of random variable, say X1, . . . , Xn and simply compute the
frequency of hitting the set A. More formally, the Monte Carlo estimator of
P(X ∈ A) is given by

p̂ =
1

n

n∑
i=1

I{Xi ∈ A}.

While the procedure is easy and simple there are drawbacks that will be dis-
cussed in Section 1.1.3.
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1.1.2 Markov chain Monte Carlo

In this section we present a simulation technique called Markov chain Monte
Carlo (MCMC) for sampling a random variable X despite only having limited
information about its distribution.

MCMC is typically useful when sampling a random variable X having a
density f that is only known up to a constant, say

f(x) =
π(x)

c
,

where π is known but c =
∫
π(x)dx is unknown. This may seem strange setup

at first but once noted that the normalising constant c may be difficult to deter-
mine, say there is no known closed form for c, then this is a natural formulation.
An example of this type of setup can be found in Bayesian statistics and hidden
Markov chains.

In short, the basic idea of sampling via MCMC is to generate a Markov chain
(Yt)t≥0 whose invariant density is the same as of X, namely f . There exists
plentiful of MCMC algorithms but we shall only name two in this thesis, the
Metropolis-Hastings algorithm and the Gibbs algorithm.

The method first laid out by Metropolis [41] and then extended by Hastings
[26] is based on a proposal density, which we shall denote by g. Firstly the
Markov chain (Yt)t≥0 is initialised with some Y0 = y0. The idea behind the
Metropolis-Hastings algorithm is to generate a proposal state Z using the pro-
posal density g. The next state of the Markov chain is then assigned the value
Z with the acceptance probability α, otherwise the next state of the Markov
chain stays unchanged (i.e. retains the same value as before). More formally
the algorithm is as follows.

Algorithm 1.1. Set Y0 = y0. For a given state Yk, for some k = 0, 1, . . ., the
next state Yk+1 is sampled as follows

1. Sample Z from the proposal density g.

2. Let

Yk+1 =

{
Z with probability α(Yk, Z)
Yk otherwise

where α(y, z) = min{1, r(y, z)}, r(y, z) = π(z)g(z,y)
π(y)g(y,z) .

This algorithm produces a Markov chain (Yk)k≥1 whose invariant density is
given by f . Fore more details on the Metropolis-Hastings algorithm we refer to
[3] and [23].

Another method of MCMC sampling is the Gibbs sampler, which was orig-
inally introduced by Geman and Geman in [22]. If the random variable X is
multi-dimensional X = (X1, . . . , Xd), the Gibbs sampler updates each com-
ponent at the time by sampling from the conditional marginal distributions.
Let fk|6k(xk | x1, . . . , xk−1, xk+1, . . . , xd), k = 1, . . . , d, denote the conditional
density of Xk given X1, . . . , Xk−1, Xk+1, . . . , Xd. The Gibbs sampler can be
viewed as a special case of the Metropolis-Hastings algorithm where, given
Yk = (Yk,1, . . . , Yk,d), one first updates Yk,1 from the conditional density f1|61(· |
Yk,2, . . . , Yk,d), then Yk,2 from the conditional density f2|62(· | Yk+1,1, Yk,3, . . . , Yk,d),
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etc. By sampling from these proposal densities the acceptance probability is al-
ways equal to 1, so no acceptance step is needed.

An important property of a Markov chain is its ergodicity. Informally, er-
godicity measures the how quickly the Markov chain mixes and thus how soon
the dependency of the chain dies out. This is a highly desired property since
good mixing speeds up the convergence of the Markov chain.

1.1.3 Rare-event simulation

In some specific cases we are interested in computing the probability of a rare
event. This may be the probability of ruin of a financial company due to random-
ness in the future value of assets and liabilities. The multidimensional system of
investments and bonds may be so complex that a simulation of the catastrophic
event of a ruin may be feasible. For another example, consider a graph of some
sort and say we send out a particle on a random walk along the graph given
some starting position. Computing the small, and quickly decreasing probabil-
ity, of that particle returning to its starting position may be of interest as it is
an indicator of that graph’s dimension. For these reasons and many other, the
computation of the probability for a rare-event is relevant.

Consider an unbiased estimator p̂ of the probability p and investigate its per-
formance as the probability gets smaller p→ 0. A useful performance measure
is the relative error:

RE(p̂) =
Std(p̂)
p

.

An estimator is said to have vanishing relative error if RE(p̂) → 0 as p → 0
and bounded relative error if RE(p̂) <∞ as p→ 0.

It is well known that the Monte Carlo estimator is inefficient for computing
rare-event probabilities as the following argument shows. Let X be a given
random variable with distribution function F and say we would like to compute
p = P(X ∈ A). We sample number of i.i.d. copies of X, denoted by X1, . . . , Xn

and compute

p̂ =
1

n

n∑
i=1

I{Xi ∈ A}.

The variance of the estimator is Var(p̂) = 1
np(1−p), which clearly tends to zero

as n → ∞ but that is not main concern here. What is more interesting is its
relative error as the probability p tends to zero. Its relative error is given by

Std(p̂)
p

=

√
1

n

(1
p
− 1
)
.

The relative error tends to infinity as p → 0. Thus making the Monte Carlo
algorithm very costly when it comes to rare-event simulation. For example, if a
relative error at 1% is desired and the probability is of order 10−6 then we need
to take n such that

√
(106 − 1)/n ≤ 0.01. This implies that n ≈ 1010 which is

infeasible on most computer systems.
To improve on standard Monte Carlo a control mechanism needs to be in-

troduced that steer the samples towards the relevant part of the state space,
thereby increasing the relevance of each sample. There are several ways to do
this, for instance by importance sampling described briefly below, or by splitting
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schemes as by L’Ecyer [39], or interacting particle systems as by Del Moral in
[14].

1.1.4 Importance sampling

The simulation method of importance sampling comes as a remedy to the prob-
lem arising in rare-event simulation. The underlying problem of the Monte Carlo
simulation for rare-event studies is the fact that we get too few samples in the
important part of the output space, meaning that we get too few samples where
{X ∈ A}. The basic idea of importance sampling is that instead of sampling
from the original distribution F the X1, . . . , Xn are sampled from a so-called
sampling distribution, say G. The sampling distribution G is chosen such that
we obtain more samples where {X ∈ A}. The importance sampling is then sim-
ply the average of hitting the event, weighted with the relevant Radon-Nikodym
derivative,

p̂IS =
1

n

n∑
i=1

dF

dG
I{Xi ∈ A}.

This is a unbiased and consistent estimator since

EG[p̂IS] =

∫
A

dF

dG
dG = P(X ∈ A).

The main difficulty in importance sampling is to design the sampling distri-
bution. Traditionally the functionality and reliability of new stochastic simu-
lation algorithms is “proved” by running extensive numerical experiments. But
numerical evidence alone is insufficient. There are numerous examples where
the standard heuristics fail and the numerical evidence indicates that the al-
gorithm has converged when, in fact, it is severely biased [24]. The limited
evidence provided by simply running numerical experiments has generated the
need for a deeper theoretical understanding and analysis of the performance
of stochastic simulation algorithms. Over the last decade mathematical tools
from stability theory and control theory have been developed with the aim to
theoretically quantify the performance of stochastic simulation algorithms for
computing probabilities of rare events. In the context of importance sampling
two main approaches have been studied; the subsolution approach, based on
control theory, by Dupuis, Wang, and collaborators, see e.g. [18, 19, 17], and
the approach based on Lyapunov functions and stability theory by Blanchet,
Glynn, and others, see [5, 6, 7, 10].

In the theoretical work on efficient importance sampling an algorithm is said
to be efficient if relative error per sample, Std(p̂)/p does not grow too rapidly
as p ↓ 0.

1.1.5 Heavy-tailed distributions

In this thesis we consider in particular probability distributions F with heavy-
tails. The notion of heavy tails refers to the rate of decay of the tail F = 1−F
of a distribution function F . A popular class of heavy-tailed distributions is the
class of subexponential distributions. A distribution function F supported on
the positive axis is said to belong to the subexponential distributions if

lim
x→∞

P(X1 +X2 > x)

P(X1 > x)
= 2,
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for independent random variables X1 and X2 with distribution F . A subclass
of the subexponential distributions is the regularly varying distributions. F is
called regularly varying (at ∞) with index −α ≤ 0 if

lim
t→∞

F (tx)

F (t)
= x−α, for all x > 0.

The heavy-tailed distributions are often described with the “one big jump”
analogy, meaning that the event of a sum of heavy-tailed random variables being
large is dominated by the case of one of the variables being very large whilst
the rest are relatively small. This is in sharp contrast to the case of light-tails,
where the same event is dominated by the case of every variable contributing
equally to the total. As a reference to the one big jump analogy we refer the
reader to [28, 30, 15].

This one big jump phenomena has been observed in empirical data. For
instance, when we consider stock market indices such as Nasdaq, Dow Jones
etc. it turns out that the distribution of daily log returns typically has a heavy
left tail, see Hult et al. in [29]. Another example is the well studied Danish fire
insurance data, which consists of real-life claims caused by industrial fires in
Denmark. While the arrivals of claims is showed to be not far from Poisson, the
claim size distribution shows clear heavy-tail behavior. The data set is analysed
by Mikosch in [43] and the tail of the claim size is shown to be fit well with a
Pareto distribution.

Stochastic simulation in the presence of heavy-tailed distributions has been
studied with much interest in recent years. The conditional Monte Carlo tech-
nique was applied on this setting by Asmussen et al. [2, 4]. Dupuis et al. [16] used
importance sampling algorithm in a heavy-tailed setting. Finally we mention
the work of Blanchet et al. considering heavy-tailed distributions in [11, 8].

1.2 Markov chain Monte Carlo in rare-event simulation
In this section we describe a new methodology based on Markov chain Monte
Carlo (MCMC), for computing probabilities of rare events. A more general
version of the algorithm, for computing expectations, is provided in Section 2
along with a precise asymptotic efficiency criteria.

1.2.1 Formulation

Let X be a real-valued random variable with distribution F and density f with
respect to the Lebesgue measure. The problem is to compute the probability

p = P(X ∈ A) =
∫
A

dF . (1.1)

The event {X ∈ A} is thought of as rare in the sense that p is small. Let FA be
the conditional distribution of X given X ∈ A. The density of FA is given by

dFA
dx

(x) =
f(x)I{x ∈ A}

p
. (1.2)

Consider a Markov chain (Xt)t≥0 with invariant density given by (1.2). Such a
Markov chain can be constructed by implementing an MCMC algorithm such
as a Gibbs sampler or a Metropolis-Hastings algorithm, see e.g. [3, 23].
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To construct an estimator for the normalising constant p, consider a non-
negative function v, which is normalised in the sense that

∫
A
v(x)dx = 1. The

function v will be chosen later as part of the design of the estimator. For any
choice of v the sample mean,

1

T

T−1∑
t=0

v(Xt)I{Xt ∈ A}
f(Xt)

,

can be viewed as an estimate of

EFA

[
v(X)I{X ∈ A}

f(X)

]
=

∫
A

v(x)

f(x)

f(x)

p
dx =

1

p

∫
A

v(x)dx =
1

p
.

Thus,

q̂T =
1

T

T−1∑
t=0

u(Xt), where u(Xt) =
v(Xt)I{Xt ∈ A}

f(Xt)
, (1.3)

is an unbiased estimator of q = p−1. Then p̂T = q̂−1T is an estimator of p.
The expected value above is computed under the invariant distribution FA

of the Markov chain. It is implicitly assumed that the sample size T is suffi-
ciently large that the burn-in period, the time until the Markov chain reaches
stationarity, is negligible or alternatively that the burn-in period is discarded.
Another remark is that it is theoretically possible that all the terms in the sum
in (1.3) are zero, leading to the estimate q̂T = 0 and then p̂T = ∞. To avoid
such nonsense one can simply take p̂T as the minimum of q̂−1T and one.

There are two essential design choices that determine the performance of the
algorithm: the choice of the function v and the design of the MCMC sampler.
The function v influences the variance of u(Xt) in (1.3) and is therefore of main
concern for controlling the rare-event properties of the algorithm. It is desirable
to take v such that the normalised variance of the estimator, given by p2 Var(q̂T ),
is not too large. The design of the MCMC sampler, on the other hand, is crucial
to control the dependence of the Markov chain and thereby the convergence rate
of the algorithm as a function of the sample size. To speed up simulation it is
desirable that the Markov chain mixes fast so that the dependence dies out
quickly.

1.2.2 Controlling the normalised variance

This section contains a discussion on how to control the performance of the
estimator q̂T by controlling its normalised variance.

For the estimator q̂T to be useful it is of course important that its variance
is not too large. When the probability p to be estimated is small it is reasonable
to ask that Var(q̂T ) is of size comparable to q2 = p−2, or equivalently, that the
standard deviation of the estimator is roughly of the same size as p−1. To this
end the normalised variance p2 Var(q̂T ) is studied.

Let us consider Var(q̂T ). With

u(x) =
v(x)I{x ∈ A}

f(x)
,
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it follows that

p2 VarFA
(q̂T ) = p2 VarFA

( 1

T

T−1∑
t=0

u(Xt)
)

= p2
( 1

T
VarFA

(u(X0)) +
2

T 2

T−1∑
t=0

T−1∑
s=t+1

CovFA
(u(Xs), u(Xt))

)
, (1.4)

Let us for the moment focus our attention on the first term. It can be written
as

p2

T
VarFA

(
u(X0)

)
=

p2

T

(
EFA

[
u(X0)

2
]
−EFA

[
u(X0)

]2)
=

p2

T

(∫ ( v(x)
f(x)

I{x ∈ A}
)2
FA(dx)−

1

p2

)
=

p2

T

(∫ v2(x)

f2(x)
I{x ∈ A}f(x)

p
dx− 1

p2

)
=

1

T

(∫
A

v2(x)p

f(x)
dx− 1

)
.

Therefore, in order to control the normalised variance the function v must be
chosen so that

∫
A
v2(x)
f(x) dx is close to p−1. An important observation is that the

conditional density (1.2) plays a key role in finding a good choice of v. Letting
v be the conditional density in (1.2) leads to∫

A

v2(x)

f(x)
dx =

∫
A

f2(x)I{x ∈ A}
p2f(x)

dx =
1

p2

∫
A

f(x)dx =
1

p
,

which implies,
p2

T
VarFA

(
u(X)

)
= 0.

This motivates taking v as an approximation of the conditional density (1.2).
This is similar to the ideology behind choosing an efficient importance sampling
estimator.

If for some set B ⊂ A the probability P(X ∈ B) can be computed explicitly,
then a candidate for v is

v(x) =
f(x)I{x ∈ B}
P(X ∈ B)

,

the conditional density of X given X ∈ B. This candidate is likely to perform
well if P(X ∈ B) is a good approximation of p. Indeed, in this case∫

A

v2(x)

f(x)
dx =

∫
A

f2(x)I{x ∈ B}
P(X ∈ B)2f(x)

dx =
1

P(X ∈ B)2

∫
B

f(x)dx =
1

P(X ∈ B)
,

which will be close to p−1.
Now, let us shift emphasis to the covariance term in (1.4). As the samples

(Xt)
T−1
t=0 form a Markov chain the Xt’s are dependent. Therefore the covariance

term in (1.4) is non-zero and may not be ignored. The crude upper bound

CovFA
(u(Xs), u(Xt)) ≤ VarFA

(u(X0)),

9



leads to the upper bound

2p2

T 2

T−1∑
t=0

T−1∑
s=t+1

CovFA
(u(Xs), u(Xt)) ≤ p2

(
1− 1

T

)
VarFA

(u(X0))

for the covariance term. This is a very crude upper bound as it does not decay
to zero as T → ∞. But, at the moment, the emphasis is on small p so we
will proceed with this upper bound anyway. As indicated above the choice of v
controls the term p2 VarFA

(u(X0)). We conclude that the normalised variance
(1.4) of the estimator q̂T is controlled by the choice of v when p is small.

1.2.3 Ergodic properties

As we have just seen the choice of the function v controls the normalised variance
of the estimator for small p. The design of the MCMC sampler, on the other
hand, determines the strength of the dependence in the Markov chain. Strong
dependence implies slow convergence which results in a high computational cost.
The convergence rate of MCMC samplers can be analysed within the theory
of ϕ-irreducible Markov chains. Fundamental results for ϕ-irreducible Markov
chains are given in [42, 44]. We will focus on conditions that imply a geometric
convergence rate. The conditions given below are well studied in the context of
MCMC samplers. Conditions for geometric ergodicity in the context of Gibbs
samplers have been studied by e.g. [12, 51, 52], and for Metropolis-Hastings
algorithms by [40].

A Markov chain (Xt)t≥0 with transition kernel p(x, ·) = P(Xt+1 ∈ · | Xt =
x) is ϕ-irreducible if there exists a measure ϕ such that

∑
t p

(t)(x, ·) � ϕ(·),
where p(t)(x, ·) = P(Xt ∈ · | X0 = x) denotes the t-step transition kernel and
� denotes absolute continuity. A Markov chain with invariant distribution π is
called geometrically ergodic if there exists a positive function M and a constant
r ∈ (0, 1) such that

‖p(t)(x, ·)− π(·)‖TV ≤M(x)rt, (1.5)

where ‖ · ‖TV denotes the total-variation norm. This condition ensures that the
distribution of the Markov chain converges at a geometric rate to the invariant
distribution. If the function M is bounded, then the Markov chain is said to be
uniformly ergodic. Conditions such as (1.5) may be difficult to establish directly
and are therefore substituted by suitable minorisation or drift conditions. A
minorisation condition holds on a set C if there exist a probability measure ν,
a positive integer t0, and δ > 0 such that

p(t0)(x,B) ≥ δν(B),

for all x ∈ C and Borel sets B. In this case C is said to be a small set.
Minorisation conditions have been used for obtaining rigorous bounds on the
convergence of MCMC samplers, see e.g. [49].

If the entire state space is small, then the Markov chain is uniformly er-
godic. Uniform ergodicity does typically not hold for Metropolis samplers, see
Mengersen and Tweedie in [40] Theorem 3.1. Therefore useful sufficient con-
ditions for geometric ergodicity are often given in the form of drift conditions
[12, 40]. Drift conditions, established through the construction of appropriate
Lyapunov functions, are also useful for establishing central limit theorems for
MCMC algorithms, see [34, 42] and the references therein.
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1.2.4 Efficiency of the MCMC algorithm

Roughly speaking, the arguments given above lead to the following desired prop-
erties of the estimator.

1. Rare event efficiency: Construct an unbiased estimator q̂T of p−1 accord-
ing to (1.3) by finding a function v which approximates the conditional
density (1.2). The choice of v controls the normalised variance of the
estimator.

2. Large sample efficiency: Design the MCMC sampler, by finding an ap-
propriate Gibbs sampler or a proposal density in the Metropolis-Hastings
algorithm, such that the resulting Markov chain is geometrically ergodic.

1.3 Outline and contribution of this thesis

The outline and contribution of the thesis are as follows.

a. General formulation of the algorithm in Section 2. In this section we
present the formal methodology in how to set up the MCMC simulation
for efficient rare-event computation. The probabilistic assumptions made
are mild and the setting is for instance not restricted to heavy-tails. The
two essential design choices are highlighted. Corresponding to rare-event
efficiency and large sample efficiency.

b. Application to heavy-tailed random walks in Section 3. In this section the
MCMC methodology is applied to the problem of computing

pn = P(Y1 + · · ·+ Yn > an),

where an →∞ sufficiently fast so that the probability tends to zero. The
increments Y are assumed to be heavy-tailed. We present a Gibbs sampler
to produce a Markov chain whose invariant distribution is the conditional
distribution

P
(
(Y1, . . . , Yn) ∈ · | Y1 + · · ·+ Yn > an

)
.

The Markov chain is shown to preserve stationarity and uniformly ergodic,
ensuring the large sample efficiency. In addition we design an estimator
for 1/pn having vanishing normalised variance. Numerical experiments
performed and comparison made between MCMC and best-performing
existing importance sampling estimators as well as standard Monte Carlo.

c. Application to heavy-tailed random sums in Section 4. In this section the
MCMC methodology is applied to the problem of computing

pn = P(Y1 + · · ·+ YNn
> aNn

),

where N is a random variable and aN → ∞ sufficiently fast so that the
probability tends to zero. The increments Y are assumed to be heavy-
tailed. We present a Gibbs sampler to produce a Markov chain whose
invariant distribution is the conditional distribution

P
(
(N,Y1, . . . , YN ) ∈ · | Y1 + · · ·+ YN > aN

)
.
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The Markov chain is shown to preserve stationarity and uniformly ergodic,
ensuring the large sample efficiency. In addition we design an estimator
for 1/pn having vanishing normalised variance. Numerical experiments
performed and comparison made between MCMC and best-performing
existing importance sampling estimators as well as standard Monte Carlo.

d. Application to stochastic recurrent equations in Section 5. In this section
the MCMC methodology is applied to the problem of computing pn =
P(Xn > an), where

Xn = AnXn−1 +Bn,
X0 = 0,

and an →∞ sufficiently fast so that the probability tends to zero. The in-
crements B are assumed to be regularly varying of index α and E[Aα+ε] <
∞ for some ε > 0. We present a Gibbs sampler to produce a Markov chain
whose invariant distribution is the conditional distribution

P
(
(A2, . . . , An, B1, . . . , Bn) ∈ · | Xn > an

)
.

The Markov chain is shown to preserve stationarity and uniformly ergodic,
ensuring the large sample efficiency. In addition we design an estimator
for 1/pn having vanishing normalised variance. Numerical experiments
performed and comparison made between MCMC and best-performing
existing importance sampling estimators as well as standard Monte Carlo.

e. Application to an insurance model with risky investments in Section 6. In
this section the MCMC methodology is applied to the problem of com-
puting the probability of ruin P(sup1≤k≤nWk > un), where W is the
discounted loss process.

A paper titled Markov chain Monte Carlo for computing rare-event proba-
bilities for a heavy-tailed random walk by Gudmundsson and Hult [25] based
on Sections 2, 3, and 4 in the thesis has been accepted for publication in the
Journal of Applied Probability in June 2014.

12



2 General Markov chain Monte Carlo formula-
tion

In this section the Markov chain Monte Carlo ideas are applied to the problem
of computing an expectation. Here the setting is general, for instance, there is
no assumption that densities with respect to Lebesgue measure exist.

Let X be a random variable with distribution F and h be a non-negative
F -integrable function. The problem is to compute the expectation

θ = E
[
h(X)

]
=

∫
h(x)dF (x).

In the special case when F has density f and h(x) = I{x ∈ A} this problem
reduces to the simpler problem of computing the probability in (1.1). illustrated
in Section 1.2.

The analogue of the conditional distribution in (1.2) is the distribution Fh
given by

Fh(B) =
1

θ

∫
B

h(x)dF (x), for measurable sets B.

Consider a Markov chain (Xt)t≥0 having Fh as its invariant distribution. To
define an estimator of θ−1, consider a probability distribution V with V � Fh.
Then it follows that V � F and it is assumed that the density dV/dF is known.
Consider the estimator of ζ = θ−1 given by

ζ̂T =
1

T

T−1∑
t=0

u(Xt), where u(x) =
1

θ

dV

dFh
(x). (2.1)

Note that u does not depend on θ because V � Fh and therefore

u(x) =
1

θ

dV

dFh
(x) =

1

h(x)

dV

dF
(x),

for x such that h(x) > 0. The estimator (2.1) is a generalisation of the estimator
(1.3) where one can think of v as the density of V with respect to Lebesgue
measure. An estimator of θ can then constructed as θ̂T = ζ̂−1T .

The variance analysis of ζ̂T follows precisely the steps outlined in Section
1.2. The normalised variance is

θ2 VarFh
(ζ̂T ) =

θ2

T
VarFh

(
u(X0)

)
+

2θ2

T 2

T−1∑
t=0

T−1∑
s=t+1

CovFh

(
u(Xs), u(Xt)

)
, (2.2)

where the first term can be rewritten, similarly to the display (1.4), as

θ2

T
VarFh

(
u(X0)

)
=

1

T

(
EV

[ dV
dFh

]
− 1
)
.

The analysis above indicates that an appropriate choice of V is such that
EV [

dV
dFh

] is close to 1. Again, the ideal choice would be taking V = Fh leading to
zero variance. This choice is not feasible but nevertheless suggests selecting V as
an approximation of Fh. As already noted this is similar to the ideology behind
choosing an efficient importance sampling estimator. The difference being that
here V � F is required whereas in importance sampling F needs be absolutely
continuous with respect to the sampling distribution. The crude upper bound
for the covariance term in (2.2) is valid, just as in Section 1.2.
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2.1 Asymptotic efficiency criteria
Asymptotic efficiency can be conveniently formulated in terms of a limit criteria
as a large deviation parameter tends to infinity. As is customary in problems
related to rare-event simulation the problem at hand is embedded in a sequence
of problems, indexed by n = 1, 2, . . . . The general setup is formalised as follows.

Let (X(n))n≥1 be a sequence of random variables with X(n) having distri-
bution F (n). Let h be a non-negative function, integrable with respect to F (n),
for each n. Suppose

θ(n) = E
[
h(X(n))

]
=

∫
h(x)dF (n)(x)→ 0,

as n→∞. The problem is to compute θ(n) for some large n.
Denote by F

(n)
h the distribution with dF

(n)
h /dF (n) = h/θ(n). For the nth

problem, a Markov chain (X
(n)
t )T−1t=0 with invariant distribution F (n)

h is gener-
ated by an MCMC algorithm. The estimator of ζ(n) = (θ(n))−1 is based on a
probability distribution V (n), such that V (n) � F

(n)
h , with known density with

respect to F (n). An estimator ζ̂(n)T of ζ is given by

ζ̂
(n)
T =

1

T

T−1∑
t=0

u(n)(X
(n)
t ),

where

u(n)(x) =
1

h(x)

dV (n)

dF (n)
(x).

The heuristic efficiency criteria in Sections 1.2 can now be rigorously formu-
lated as follows:

1. Rare-event efficiency: Select the probability distributions V (n) such that

(θ(n))2 Var
F

(n)
h

(u(n)(X))→ 0, as n→∞.

2. Large sample size efficiency: Design the MCMC sampler, by finding an ap-
propriate Gibbs sampler or a proposal density for the Metropolis-Hastings
algorithm, such that, for each n ≥ 1, the Markov chain (X

(n)
t )t≥0 is geo-

metrically ergodic.

Remark 2.1. The rare-event efficiency criteria is formulated in terms of the
efficiency of estimating (θ(n))−1 by ζ̂

(n)
T . If one insists on studying the mean

and variance of θ̂(n)T = (ζ̂
(n)
T )−1, then the effects of the transformation x 7→ x−1

must be taken into account. For instance, the estimator θ̂(n)T is biased and its
variance could be infinite. The bias can be reduced for instance via the delta
method illustrated in [3, p. 76]. We also remark that even in the estimation of
(θ(n))−1 by ζ̂(n)T there is a bias coming from the fact that the Markov chain not
being perfectly stationary.
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3 Heavy-tailed Random Walk
The MCMC methodology presented in Section 2 is here applied to compute
the probability that a random walk Sn = Y1 + · · · + Yn, where Y1, . . . , Yn are
non-negative, independent and heavy-tailed, exceeds a high threshold an. This
problem has received some attention in the context of conditional Monte Carlo
algorithms [2, 4] and importance sampling algorithms [35, 16, 11, 8].

In this section a Gibbs sampler is presented for sampling from the con-
ditional distribution P((Y1, . . . , Yn) ∈ · | Sn > an). The resulting Markov
chain is proved to be uniformly ergodic. An estimator for (p(n))−1 of the form
(2.1) is suggested with V (n) as the conditional distribution of (Y1, . . . , Yn) given
max{Y1, . . . , Yn} > an. The estimator is proved to have vanishing normalised
variance when the distribution of Y1 belongs to the class of subexponential dis-
tributions. The proof is elementary and is completed in a few lines. This is in
sharp contrast to efficiency proofs for importance sampling algorithms for the
same problem, which require more restrictive assumptions on the tail of Y1 and
tend to be long and technical [16, 11, 9]. The section is concluded with nu-
merical experiments to illustrate the comparativeness with existing importance
sampling algorithm and standard Monte Carlo.

3.1 A Gibbs sampler for computing P(Sn > an)

Let Y1, . . . , Yn be non-negative independent and identically distributed random
variables with common distribution FY and density fY with respect to some
reference measure µ. Consider the random walk Sn = Y1 + · · · + Yn and the
problem of computing the probability

p(n) = P(Sn > an),

where an →∞ sufficiently fast that p(n) → 0 as n→∞.
It is convenient to denote by Y(n) the n-dimensional random vector

Y(n) = (Y1, . . . , Yn)
>
,

and the set
An = {y ∈ Rn : 1

>
y > an},

where 1 = (1, . . . , 1)
> ∈ Rn and y = (y1, . . . , yn)

>
. With this notation

p(n) = P(Sn > an) = P(1
>
Y(n) > an) = P(Y(n) ∈ An).

The conditional distribution

F
(n)
An

(·) = P(Y(n) ∈ · | Y(n) ∈ An),

has density

dF
(n)
An

dµ
(y1, . . . , yn) =

∏n
j=1 fY (yj)I{y1 + · · ·+ yn > an}

p(n)
. (3.1)

The first step towards defining the estimator of p(n) is to construct the
Markov chain (Y

(n)
t )t≥0 whose invariant density is given by (3.1) using a Gibbs

sampler. In short, the Gibbs sampler updates one element of Y(n)
t at a time

keeping the other elements constant. Formally the algorithm proceeds as follows.
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Algorithm 3.1. Start at an initial state Y
(n)
0 = (Y0,1, . . . , Y0,n)

>
where Y0,1 +

· · · + Y0,n > an. Given Y
(n)
t = (Yt,1, . . . , Yt,n)

>
, for some t = 0, 1, . . ., the next

state Y
(n)
t+1 is sampled as follows:

1. Draw j1, . . . , jn from {1, . . . , n} without replacement and proceed by up-
dating the components of Y(n)

t in the order thus obtained.

2. For each k = 1, . . . , n, repeat the following.

(a) Let j = jk be the index to be updated and write

Yt,−j = (Yt,1, . . . , Yt,j−1, Yt,j+1, . . . , Yt,n)
>
.

Sample Y ′t,j from the conditional distribution of Y given that the sum
exceeds the threshold. That is,

P(Y ′t,j ∈ · | Yt,−j) = P
(
Y ∈ · | Y +

∑
k 6=j

Yt,k > an

)
.

(b) Put Y′t = (Yt,1, . . . , Yt,j−1, Y
′
t,j , Yt,j+1, . . . , Yt,n)

>
.

3. Draw a random permutation π of the numbers {1, . . . , n} from the uniform
distribution and put Y(n)

t+1 = (Y ′t,π(1), . . . , Y
′
t,π(n))

>
.

Iterate steps (1)-(3) until the entire Markov chain (Y
(n)
t )T−1t=0 is constructed.

Remark 3.2. (i) In the heavy-tailed setting the trajectories of the random walk
leading to the rare event are likely to consist of one large increment (the big
jump) while the other increments are average. The purpose of the permutation
step is to force the Markov chain to mix faster by moving the big jump to
different locations. However, the permutation step in Algorithm 3.1 is not really
needed when considering the probability P(Sn > an). This is due to the fact
that the summation is invariant of the ordering of the steps.

(ii) The algorithm requires sampling from the conditional distributionP(Y ∈
· | Y > c) for arbitrary c. This is easy whenever inversion is feasible, see [3,
p. 39], or acceptance/rejection sampling can be employed. There are, however,
situations where sampling from the conditional distribution P(Y ∈ · | Y > c)
may be difficult, see [33, Section 2.2].

The following proposition confirms that the Markov chain (Y
(n)
t )t≥0, gener-

ated by Algorithm 3.1, has F (n)
An

as its invariant distribution.

Proposition 3.3. The Markov chain (Y
(n)
t )t≥0, generated by Algorithm 3.1,

has the conditional distribution F (n)
An

as its invariant distribution.

Proof. The goal is to show that each updating step (Step 2 and 3) of the al-
gorithm preserves stationarity. Since the conditional distribution F

(n)
An

is per-
mutation invariant it is clear that Step 3 preserves stationarity. Therefore it is
sufficient to consider Step 2 of the algorithm.

Let Pj(y, ·) denote the transition probability of the Markov chain (Y
(n)
t )t≥0

corresponding to the jth component being updated. It is sufficient to show that,
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for all j = 1, . . . ,m and all Borel sets of product form B1 × · · · ×Bn ⊂ An, the
following equality holds:

F
(n)
An

(B1 × · · · ×Bn) = E
F

(n)
An

[Pj(Y, B1 × · · · ×Bn)].

Observe that, because B1 × · · · ×Bn ⊂ An,

F
(n)
An

(B1 × · · · ×Bn) = E
[ n∏
k=1

I{Yk ∈ Bk} | Sn > an

]
=

E[I{Yj ∈ Bj}I{Sn > an}
∏
k 6=j I{Yk ∈ Bk}]

P(Sn > an)

=

E
[
E[I{Yj∈Bj}|Yj>an−Sn,−j ,Y

(n)
−j ]

∏
k 6=j I{Yk∈Bk}

P(Yj>an−Sn,−j |Y(n)
−j )

]
P(Sn > an)

=
E[Pj(Y

(n), B1 × · · · ×Bn)
∏
k 6=j I{Yk ∈ Bk}]

P (Sn > an)

= E[Pj(Y
(n), B1 × · · · ×Bn) | Sn > an]

= E
F

(n)
An

[Pj(Y, B1 × · · · ×Bn)],

with the conventional notation of writing Y(n) = (Y1, . . . , Yn)
>
, Sn = Y1+ · · ·+

Yn, Y
(n)
−j = (Y1, . . . , Yj−1, Yj+1, Yn)

>
and Sn,−j = Y1+ · · ·+Yj−1+Yj+1+ · · ·+

Yn.

As for the ergodic properties, Algorithm 3.1 produces a Markov chain which
is uniformly ergodic.

Proposition 3.4. For each n ≥ 1, the Markov chain (Y
(n)
t )t≥0 is uniformly

ergodic. In particular, it satisfies the following minorisation condition: there
exists δ > 0 such that

P(Y
(n)
1 ∈ B | Y(n)

0 = y) ≥ δF (n)
An

(B),

for all y ∈ An and all Borel sets B ⊂ An.

Proof. Take an arbitrary n ≥ 1. Uniform ergodicity can be deduced from the
following minorisation condition (see [44]): there exists a probability measure
ν, δ > 0, and an integer t0 such that

P(Y
(n)
t0 ∈ B | Y

(n)
0 = y) ≥ δν(B),

for every y ∈ An and Borel set B ⊂ An. Take y ∈ An and write g( · | y) for the
density of P(Y

(n)
1 ∈ · | Y(n)

0 = y). The goal is to show that the minorisation
condition holds with t0 = 1, δ = p(n)/n!, and ν = F

(n)
An

.
For any x ∈ An there exists an ordering j1, . . . , jn of the numbers {1, . . . , n}

such that

yj1 ≤ xj1 , . . . , yjk ≤ xjk , yjk+1
> xjk+1

, . . . , yjn > xjn ,
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for some k ∈ {0, . . . , n}. The probability to draw this particular ordering in
Step 1 of the algorithm is at least 1/n!. It follows that

g(x | y) ≥ 1

n!

fY (xj1)I{xj1 ≥ an −
∑
i 6=j1 yi}

FY (an −
∑
i6=j1 yi)

×
fY (xj2)I{xj2 ≥ an −

∑
i 6=j1,j2 yi − xj1}

FY (an −
∑
i6=j1,j2 yi − xj1)

...

×
fY (xjn)I{xjn ≥ an − xj1 − . . . xjn−1

}
FY (an − xj1 − . . . xjn−1)

.

By construction of the ordering j1, . . . , jn all the indicators are equal to 1 and
the expression in the last display is bounded from below by

1

n!

n∏
j=1

fY (xj) =
p(n)

n!
·
∏n
j=1 fY (xj)I{x1 + · · ·+ xn > an}

p(n)
.

The proof is completed by integrating both sides of the inequality over any Borel
set B ⊂ An.

Remark 3.5. To keep the proof of Proposition 3.4 simple, we have not used
the permutation step of the algorithm in the proof and not tried to optimise
δ. By taking advantage of the permutation step we believe that the constant δ
could, with some additional effort, be increased by a factor n!.

3.2 Constructing an efficient estimator
Note that so far the distributional assumption of steps Y1, . . . , Yn of the ran-
dom walk have been completely general. For the rare-event properties of the
estimator the design of V (n) is essential and this is where the distributional
assumptions become important. In this section a heavy-tailed random walk is
considered. To be precise, assume that the variables Y1, . . . , Yn are nonnegative
and that the tail of FY is heavy in the sense that there is a sequence (an) of
real numbers such that

lim
n→∞

P(Sn > an)

P(Mn > an)
= 1, (3.2)

where Mn denotes the maximum of Y1, . . . , Yn. The class of distributions for
which (3.2) holds is large and includes the subexponential distributions. General
conditions on the sequence (an) for which (3.2) holds are given in [15], see also
[13]. For instance, if FY is regularly varying at ∞ with index β > 1 then (3.2)
holds with an = an, for a > 0.

Next consider the choice of V (n). As observed in Section 2 a good approx-
imation to the conditional distribution F

(n)
An

is a candidate for V (n). For a
heavy-tailed random walk the “one big jump” heuristics says that the sum is
large most likely because one of the steps is large. Based on the assumption
(3.2) a good candidate for V (n) is the conditional distribution,

V (n)(·) = P(Y(n) ∈ · |Mn > an).
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Then V (n) has a known density with respect to F (n)(·) = P(Y(n) ∈ ·) given by

dV (n)

dF (n)
(y) =

1

P(Mn > an)
I{y : ∨nj=1yj > an} =

I{y : ∨nj=1yj > an}
1− FY (an)n

.

The estimator of q(n) = P(Sn > an)
−1 is then given by

q̂
(n)
T =

1

T

T−1∑
t=0

dV (n)

dF (n)
(Y

(n)
t ) =

1

1− FY (an)n
· 1
T

T−1∑
t=0

I{∨nj=1Yt,j > an} (3.3)

where (Y
(n)
t )t≥0 is generated by Algorithm 3.1. Note that the estimator (3.3)

can be viewed as the asymptotic approximation (1 − FY (an)n)−1 of (p(n))−1

multiplied by the random correction factor 1
T

∑T−1
t=0 I{∨nj=1Yt,j > an}. The

efficiency of this estimator is based on the fact that the random correction
factor is likely to be close to 1 and has small variance.

Theorem 3.6. Suppose that (3.2) holds. Then the estimator q̂(n)T in (3.3) has
vanishing normalised variance for estimating (p(n))−1. That is,

lim
n→∞

(p(n))2 Var
F

(n)
An

(q̂
(n)
T ) = 0.

Proof. With u(n)(y) = 1
1−FY (an)n

I{∨nj=1yj > an} it follows from (3.2) that

(p(n))2 Var
F

(n)
An

(u(n)(Y(n)))

=
P(Sn > an)

2

P(Mn > an)2
Var

F
(n)
An

(I{Y : ∨nj=1Yj > an})

=
P(Sn > an)

2

P(Mn > an)2
P(Mn > an | Sn > an)P(Mn ≤ an | Sn > an)

=
P(Sn > an)

P(Mn > an)

(
1− P(Mn > an)

P(Sn > an)

)
→ 0.

This completes the proof.

Remark 3.7. Theorem 3.6 covers a wide range of heavy-tailed distributions
and even allows the number of steps to increase with n. Its proof is elementary.
This is in sharp contrast to the existing proofs of efficiency (bounded relative
error, say) for importance sampling algorithms that cover less general models
and tend to be long and technical, see e.g. [16, 11, 9]. It must be mentioned,
though, that Theorem 3.6 proves efficiency for computing (p(n))−1, whereas the
authors of [16, 11, 9] prove efficiency for a direct computation of p(n).

3.3 Numerical experiments
First a note which applies to all of the numerical results presented in this thesis.
The theoretical results guarantee that q̂(n)T is an efficient estimator of (p(n))−1.
However, for comparison of existing algorithms the numerical experiments are
based on p̂

(n)
T = (q̂

(n)
T )−1 as an estimator for p(n). The literature includes

numerical comparison for many of the existing algorithms. In particular, in
the setting of random sums. Numerical results for the algorithms by Dupuis et
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al. [16], the hazard rate twisting algorithm by Juneja and Shahabuddin [35],
and the conditional Monte Carlo algorithm by Asmussen and Kroese [4] can
be found in [16]. Additional numerical results for the algorithms by Blanchet
and Li [9], Dupuis et al. [16], and Asmussen and Kroese [4] can be found in [9].
From the existing results it appears as if the algorithm by Dupuis et al. [16] has
the best performance. Therefore, we only include numerical experiments of the
MCMC estimator and the estimator in [16], which is labelled IS.

By construction each simulation run of the MCMC algorithm only generates
a single random variable (one simulation step) while both importance sampling
and standard Monte Carlo generate n number of random variables (n simulation
steps). Therefore the number of runs for the MCMC is scaled up by a factor of
n so that all of the algorithms (MCMC, Monte Carlo and importance sampling)
generate essentially the same number of random numbers. Thus getting a fairer
comparison of the computer runtime between the three approaches.

Consider estimating P(Sn > an) where Sn = Y1 + · · · + Yn with Y1 hav-
ing a Pareto distribution with density fY (x) = β(x + 1)−β−1 for x ≥ 0. Let
an = an. Each estimate is calculated using b number of batches, each consisting
of T simulations in the case of importance sampling and standard Monte Carlo
and Tn in the case of MCMC. The batch sample mean and sample standard
deviation is recorded as well as the average runtime per batch. The results are
presented in Table 1. The convergence of the algorithms can also be visualised
by considering the point estimate as a function of number of simulation steps.
This is presented in Figure 1. The MCMC algorithm appears to perform com-
parably with the importance sampling algorithm for p up to order 10−4 which
is a relevant range in, say, insurance and finance. However for smaller p the
MCMC appears to performs better. The improvement over importance sam-
pling appears to increase as the event becomes more rare. This is due to the
fact that the asymptotic approximation becomes better and better as the event
becomes more rare.

  0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
2

2.1
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x 10

−3

Figure 1: The figure illustrates the point estimate of P(Sn > an) as a function of
the number of simulation steps, with n = 5, a = 10, β = 2. The estimate generated
via the MCMC approach is drawn by a solid line and the estimate generated via IS is
drawn by a dotted line.
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Table 1: The table displays the batch mean and standard deviation of the estimates
of P(Sn > an) as well as the average runtime per batch for time comparison. The
number of batches run is b, each consisting of T simulations for importance sampling
(IS) and standard Monte Carlo (MC) and Tn simulations for Markov chain Monte
Carlo (MCMC). The asymptotic approximation is pmax = P(max{Y1, . . . , Yn} > an).

b = 25, T = 105, β = 2, n = 5, a = 5, pmax = 0.737e-2
MCMC IS MC

Avg. est. 1.050e-2 1.048e-2 1.053e-2
Std. dev. 3e-5 9e-5 27e-5

Avg. time per batch(s) 12.8 12.7 1.4
b = 25, T = 105, β = 2, n = 5, a = 20, pmax = 4.901e-4

MCMC IS MC
Avg. est. 5.340e-4 5.343e-4 5.380e-4
Std. dev. 6e-7 13e-7 770e-7

Avg. time per batch(s) 14.4 13.9 1.5
b = 20, T = 105, β = 2, n = 5, a = 103, pmax = 1.9992e-7

MCMC IS
Avg. est. 2.0024e-7 2.0027e-7
Std. dev. 3e-11 20e-11

Avg. time per batch(s) 15.9 15.9
b = 20, T = 105, β = 2, n = 5, a = 104, pmax = 1.99992e-9

MCMC IS
Avg. est. 2.00025e-9 2.00091e-9
Std. dev. 7e-14 215e-14

Avg. time per batch(s) 15.9 15.9
b = 25, T = 105, β = 2, n = 20, a = 20, pmax = 1.2437e-4

MCMC IS MC
Avg. est. 1.375e-4 1.374e-4 1.444e-4
Std. dev. 2e-7 3e-7 492e-7

Avg. time per batch(s) 52.8 50.0 2.0
b = 25, T = 105, β = 2, n = 20, a = 200, pmax = 1.2494e-6

MCMC IS MC
Avg. est. 1.2614e-6 1.2615e-6 1.2000e-6
Std. dev. 4e-10 12e-10 33,166e-10

Avg. time per batch(s) 49.4 48.4 1.9
b = 20, T = 105, β = 2, n = 20, a = 103, pmax = 4.9995e-8

MCMC IS
Avg. est. 5.0091e-8 5.0079e-8
Std. dev. 7e-12 66e-12

Avg. time per batch(s) 53.0 50.6
b = 20, T = 105, β = 2, n = 20, a = 104, pmax = 5.0000e-10

MCMC IS
Avg. est. 5.0010e-10 5.0006e-10
Std. dev. 2e-14 71e-14

Avg. time per batch(s) 48.0 47.1

4 Heavy-tailed Random Sum

The MCMC methodology presented in Section 2 and exemplified with a random
walk in previous section, is here extended to compute the probability that a
heavy-tailed random sum SN = Y1+ · · ·+YNn

, where the number of steps Nn is
random, and the Y ’s are non-negative, independent and heavy-tailed, exceeds
a high threshold an.

This is a relevant formulation in actuarial science, risk and queuing theory
to name but a few. For instance, the stationary distribution of the waiting time
and the workload of an M/G/1 queue can be represented as a random sum,
see Amussen [1, Theorem 5.7, p. 237]. The classical Cramér-Lundberg model
for the total claim amount faced by an insurance company is another standard
example of a random sum.

This section follows the same structure as the previous one, a Gibbs sampler
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is presented for sampling from the conditional distribution P((Y1, . . . , YN ) ∈ · |
SN > an). The resulting Markov chain is proved to be uniformly ergodic. An
estimator for (p(N))−1 of the form (2.1) is suggested with V (n) as the condi-
tional distribution of (Y1, . . . , YN ) given max{Y1, . . . , YN} > an. The estimator
is proved to have vanishing normalised variance when the distribution of Y1
belongs to the class of subexponential distributions. The section is concluded
with numerical experiments to illustrate the comparativeness with existing im-
portance sampling algorithm and standard Monte Carlo.

4.1 A Gibbs sampler for computing P(SNn > an)

Let Y1, Y2, . . . be non-negative independent random variables with common dis-
tribution FY and density fY . Let (N (n))n≥1 be integer valued random variables
independent of Y1, Y2, . . . . Consider the random sum SN(n) = Y1 + · · · + YN(n)

and the problem of computing the probability

p(n) = P(SN(n) > an),

where an →∞ at an appropriate rate.
Denote by Y

(n)
the vector (N (n), Y1, . . . , YN(n))

>
. The conditional distribu-

tion of Y
(n)

given SN(n) > an is given by

P(N (n) = k, (Y1, . . . , Yk) ∈ · | SN(n) > an)

=
P((Y1, . . . , Yk) ∈ · , Sk > an)P(N (n) = k)

p(n)
. (4.1)

A Gibbs sampler for sampling from the conditional distribution in (4.1) can
be constructed essentially as in Algorithm 3.1. The only additional difficulty is
to update the random number of steps in an appropriate way. In the following
algorithm a particular distribution for updating the number of steps is proposed.
To ease the notation the superscript n is suppressed in the description of the
algorithm.

Algorithm 4.1. To initiate, draw N0 from P(N ∈ ·) and Y0,1, . . . , Y0,N0
such

that Y0,1 + · · · + Y0,N0
> an. Each iteration of the algorithm consists of the

following steps. Suppose Yt = (kt, yt,1, . . . , yt,kt) with yt,1 + · · · + yt,kt > an.
Write k∗t = min{j : yt,1 + · · ·+ yt,j > an}.

1. Sample the number of steps Nt+1 from the distribution

p(kt+1 | k∗t ) =
P(N = kt+1)I{kt+1 ≥ k∗t }

P (N ≥ k∗t )
.

If Nt+1 > Nt, sample Yt+1,kt+1, . . . , Yt+1,Nt+1
independently from FY and

put Y(1)
t = (Yt,1, . . . , Yt,kt , Yt+1,kt+1, . . . , Yt+1,Nt+1

).

2. Proceed by updating all the individual steps as follows:

(a) Draw j1, . . . , jNt+1
from {1, . . . , Nt+1} without replacement and pro-

ceed by updating the components of Y(1)
t in the order thus obtained.

(b) For each k = 1, . . . , Nt+1, repeat the following.

22



i. Let j = jk be the index to be updated and write

Y
(1)
t,−j = (Y

(1)
t,1 , . . . , Y

(1)
t,j−1, Y

(1)
t,j+1, . . . , Y

(1)
t,Nt+1

).

Sample Y (2)
t,j from the conditional distribution of Y given that

the sum exceeds the threshold. That is,

P(Y
(2)
t,j ∈ · | Y

(1)
t,−j) = P

(
Y ∈ · | Y +

∑
k 6=j

Y
(1)
t,k > an

)
.

ii. Put Y(2)
t = (Y

(1)
t,1 , . . . , Y

(1)
t,j−1, Y

(2)
t,j , Y

(1)
t,j+1, . . . , Y

(1)
t,Nt+1

)
>
.

(c) Draw a random permutation π of the numbers {1, . . . , Nt+1} from the
uniform distribution and put Yt+1 = (Nt+1, Y

(2)
t,π(1), . . . , Y

(2)
t,π(Nt+1)

).

Iterate until the entire Markov Chain (Yt)
T−1
t=0 is constructed.

Proposition 4.2. The Markov chain (Yt)t≥0 generated by Algorithm 4.1 has
the conditional distribution P((N,Y1, . . . , YN ) ∈ · | Y1 + . . . YN > an) as its
invariant distribution.

Proof. The only essential difference from Algorithm 3.1 is the first step of the
algorithm, where the number of steps and possibly the additional steps are
updated. Therefore, it is sufficient to prove that the first step of the algorithm
preserves stationarity. The transition probability of the first step, starting from
a state (kt, yt,1, . . . , yt,kt) with k∗t = min{j : yt,1 + · · · + yt,j > an}, can be
written as follows.

P (1)(kt, yt,1, . . . , yt,kt ; kt+1, A1 × · · · ×Akt+1)

= P
(
Nt+1 = kt+1, (Yt,1, . . . , Yt,kt+1) ∈ A1 × · · · ×Akt+1

| Nt = kt, Yt,1 = yt,1, . . . , Yt,kt = yt,kt
)

=

{
p(kt+1 | k∗t )

∏kt+1

k=1 I{yt,k ∈ Ak}, kt+1 ≤ kt,
p(kt+1 | k∗t )

∏kt
k=1 I{yt,k ∈ Ak}

∏kt+1

k=kt+1 FY (Ak), kt+1 > kt.

Consider the stationary probability of a set of the form {kt+1} × A1 × · · · ×
Akt+1

. With π denoting the conditional distribution P((N,Y1, . . . , YN ) ∈ · |
Y1 + . . . YN > an), it holds that

Eπ[P
(1)(Nt, Yt,1, . . . , Yt,Nt

; kt+1, A1 × · · · ×Akt+1
)]

=
1

P(SN > an)
E[P (1)(N,Y1, . . . , YN ; kt+1, A1 × · · · ×Akt+1

)I{SN > an}]

By conditioning onN and using independence ofN and Y1, Y2, . . . the expression
in the last display equals

1

P(SN > an)

∞∑
kt=1

P(N = kt)

×E
[
P (1)(kt, Y1, . . . , Ykt ; kt+1, A1 × · · · ×Akt+1)I{Skt > an}

]
.
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With Bk∗ = {(y1, y2, . . . ) ∈ ∪∞q=k∗Rq : min{j : y1 + · · · + yj > a} = k∗},
A⊗kt = A1 × · · · × Akt , and A⊗kt+1

= A1 × · · · × Akt+1 the expression in the last
display can be written as

1

P(SN > an)

(
kt+1∑
kt=1

P(N = kt)

×E
[ kt∑
k∗=1

I{(Y1, . . . , Ykt) ∈ Bk∗}P (1)(kt, Y1, . . . , Ykt ; kt+1, A
⊗
kt+1

)
]

+

∞∑
kt=kt+1+1

P(N = kt)

×E
[ kt+1∑
k∗=1

I{(Y1, . . . , Ykt+1
) ∈ Bk∗}P (1)(kt, Y1, . . . , Ykt ; kt+1, A

⊗
kt+1

)
])
.

Inserting the expression for P (1) the last expression equals

1

P(SN > a)

(
kt+1∑
kt=1

P(N = kt)

×
kt∑

k∗=1

P
(
(Y1, . . . , Ykt) ∈ Bk∗ ∩A⊗kt

)
p(kt+1 | k∗)

kt+1∏
j=kt+1

FY (Aj)

+

∞∑
kt=kt+1+1

P(N = kt)

kt+1∑
k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)

)
.

Changing the order of summation the last expression equals

1

P(SN > an)

(
kt+1∑
k∗=1

kt+1∑
kt=k∗

P(N = kt)

×P
(
(Y1, . . . , Ykt) ∈ Bk∗ ∩A⊗kt

)
p(kt+1 | k∗)

kt+1∏
j=kt+1

FY (Aj)

+

kt+1∑
k∗=1

∞∑
kt=kt+1+1

P(N = kt)P
(
(Y1, . . . , Ykt+1

) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)

)
.

Since P
(
(Y1, . . . , Ykt) ∈ Bk∗ ∩ A⊗kt

)∏kt+1

j=kt+1 FY (Aj) = P
(
(Y1, . . . , Ykt+1

) ∈
Bk∗ ∩A⊗kt+1

)
the last expression equals

1

P(SN > an)

(
kt+1∑
k∗=1

kt+1∑
kt=k∗

P(N = kt)P
(
(Y1, . . . , Ykt+1

) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)

+

kt+1∑
k∗=1

∞∑
kt=kt+1+1

P(N = kt)P
(
(Y1, . . . , Ykt+1

) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)

)
.
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Summing over kt the last expression equals

1

P(SN > an)

(
kt+1∑
k∗=1

P
(
(Y1, . . . , Ykt+1

) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)P(k∗ ≤ N ≤ kt+1)

+

kt+1∑
k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)P(N ≥ kt+1 + 1)

)
.

From the definition of p(kt+1 | k∗) it follows that the last expression equals

1

P(SN > an)

kt+1∑
k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗kt+1

)
p(kt+1 | k∗)P (N ≥ k∗)

=
1

P(SN > an)

kt+1∑
k∗=1

P
(
(Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗kt+1

)
P (N = kt+1)

=
1

P(SN > an)
P
(
(Y1, . . . , Ykt+1

) ∈ A⊗kt+1

)
P (N = kt+1)

= P
(
N = kt+1, (Y1, . . . , Ykt+1

) ∈ A⊗kt+1
| Y1 + · · ·+ YN > an

)
,

which is the desired invariant distribution. This completes the proof.

Proposition 4.3. The Markov chain (Yt)t≥0 generated by Algorithm 4.1 is
uniformly ergodic. In particular, it satisfies the following minorisation condi-
tion: there exists δ > 0 such that

P(Y1 ∈ B | Y0 = y) ≥ δP((N,Y1, . . . , YN ) ∈ B | Y1 + · · ·+ YN > an),

for all y ∈ A = ∪k≥1{(k, y1, . . . , yk) : y1 + · · · + yk > an} and all Borel sets
B ⊂ A.

The proof requires only a minor modification from the non-random case,
Proposition 3.4, and is therefore omitted.

4.2 Constructing an efficient estimator
Now consider the distributional assumptions and the design of V (n). The main
focus is on the rare event properties of the estimator and therefore the large
deviation parameter n will be suppressed to ease notation. Let the distribution
of the number of steps P(N (n) ∈ ·) to depend on n. By a similar reasoning as in
the case of non-random number of steps the following assumption are imposed:
the variables N (n), Y1, Y2, . . . and the numbers an are such that

lim
n→∞

P(Y1 + · · ·+ YN(n) > an)

P(MN(n) > an)
= 1, (4.2)

where Mk = max{Y1, . . . , Yk}. Note that the denominator can be expressed as

P(MN(n) > an) =

∞∑
k=1

P(Mk > an)P(N (n) = k)

=

∞∑
k=1

[1− FY (an)k]P(N (n) = k)

= 1− gN(n)(FY (an)),
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where gN(n)(t) = E[tN
(n)

] is the generating function of N (n). Sufficient con-
ditions for (4.2) to hold are given in [37], Theorem 3.1. For instance, if FY is
regularly varying at∞ with index β > 1 and N (n) has Poisson distribution with
mean λn →∞, as n→∞, then (4.2) holds with an = aλn, for a > 0.

Similarly to the non-random setting a good candidate for V (n) is the condi-
tional distribution,

V (n)(·) = P(Y
(n) ∈ · |MN(n) > an).

Then V (n) has a known density with respect to F (n)(·) = P(Y
(n) ∈ ·) given by

dV (n)

dF (n)
(k, y1, . . . , yk) =

1

P(MN(n) > an)
I{(y1, . . . , yk) : ∨kj=1yj > an}

=
1

1− gN(n)(FY (an))
I{(y1, . . . , yk) : ∨kj=1yj > an}.

The estimator of q(n) = P(Sn > an)
−1 is given by

q̂
(n)
T =

1

T

T−1∑
t=0

dV (n)

dF (n)
(Y

(n)

t ) =
1

gN(n)(FY (an))
· 1
T

T−1∑
t=0

I{∨Nt
j=1Yt,j > an}, (4.3)

where (Y
(n)

t )t≥0 is generated by Algorithm 4.1.

Theorem 4.4. Suppose (4.2) holds. The estimator q̂(n)T in (4.3) has vanishing
normalised variance. That is,

lim
n→∞

(p(n))2 Varπn
(q̂

(n)
T ) = 0,

where πn denotes the conditional distribution P(Y
(n) ∈ · | SN(n) > an).

Remark 4.5. Because the distribution of N (n) may depend on n Theorem 4.4
covers a wider range of settings for random sums than those studied in [16, 9]
where the authors present provably efficient importance sampling algorithms.

Proof. Since p(n) = P(SN(n) > an) and

u(n)(k, y1, . . . , yk) =
I{∨kj=1yj > an}
P(MN(n) > an)

,

it follows that

[p(n)]2 Varπn(u
(n)(Y

(n)
))

=
P(SN(n) > an)

2

P(MN(n) > an)2
Varπn

(I{∨N
(n)

j=1 Yj > an})

=
P(SN(n) > an)

2

P(MN(n) > an)2
P(MN(n) > an | SN(n) > an)P(MN(n) ≤ an | SN(n) > an)

=
P(SN(n) > an)

P(MN(n) > an)

(
1− P(MN(n) > an)

P(SN(n) > an)

)
→ 0,

by (4.2). This completes the proof.
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4.3 Numerical experiments
By construction each simulation run of the MCMC algorithm only generates a
single random variable (one simulation step) while both importance sampling
and standard Monte Carlo generate N + 1 number of random variables (N + 1
simulation steps). Therefore the number of runs for the MCMC is scaled up by
a factor of E[N ] + 1 so that all of the algorithms (MCMC, Monte Carlo and
importance sampling) generate essentially the same number of random numbers.
Thus getting a fairer comparison of the computer runtime between the three
approaches.

Consider estimatingP(SN > aρ) where SN = Y1+· · ·+YN withN Geometri-
cally distributedP(N = k) = (1−ρ)k−1ρ for k = 1, 2, . . . and aρ = aE[N ] = a/ρ.
The estimator considered here is p̂T = (q̂T )

−1 with q̂T as in (4.3). Each esti-
mate is calculated using b number of batches, each consisting of T simulations
in the case of importance sampling and standard Monte Carlo and TE[N ] in
the case of MCMC. The results are presented in Table 2. The MCMC algo-
rithm appears to outperform the importance sampling algorithm consistently
for different choices of the parameters.

We remark that in our simulation with ρ = 0.2, a = 5 · 109 the sample
standard deviation of the MCMC estimate is zero. This is because we did not
observe any indicators I{∨nj=1yt,j > aρ} being equal to 0 in this case.

Table 2: The table displays the batch mean and standard deviation of the estimates
of P(SN > aρ) as well as the average runtime per batch for time comparison. The
number of batches run is b, each consisting of T simulations for importance sampling
(IS) and standard Monte Carlo (MC) and T E[N ] simulations for Markov chain Monte
Carlo (MCMC). The asymptotic approximation is pmax = P(max{Y1, . . . , YN} > aρ).

b = 25, T = 105, β = 1, ρ = 0.2, a = 102, pmax = 0.990e-2
MCMC IS MC

Avg. est. 1.149e-2 1.087e-2 1.089e-2
Std. dev. 4e-5 6e-5 35e-5

Avg. time per batch(s) 25.0 11.0 1.2
b = 25, T = 105, β = 1, ρ = 0.2, a = 103, pmax = 0.999e-3

MCMC IS MC
Avg. est. 1.019e-3 1.012e-3 1.037e-3
Std. dev. 1e-6 3e-6 76e-6

Avg. time per batch(s) 25.8 11.1 1.2
b = 20, T = 106, β = 1, ρ = 0.2, a = 5 · 107, pmax = 2.000000e-8

MCMC IS
Avg. est. 2.000003e-8 1.999325e-8
Std. dev. 6e-14 1114e-14

Avg. time per batch(s) 385.3 139.9
b = 20, T = 106, β = 1, ρ = 0.2, a = 5 · 109, pmax = 2.0000e-10

MCMC IS
Avg. est. 2.0000e-10 1.9998e-10
Std. dev. 0 13e-14

Avg. time per batch(s) 358.7 130.9
b = 25, T = 105, β = 1, ρ = 0.05, a = 103, pmax = 0.999e-3

MCMC IS MC
Avg. est. 1.027e-3 1.017e-3 1.045e-3
Std. dev. 1e-6 4e-6 105e-6

Avg. time per batch(s) 61.5 44.8 1.3
b = 25, T = 105, β = 1, ρ = 0.05, a = 5 · 105, pmax = 1.9999e-6

MCMC IS MC
Avg. est. 2.0002e-6 2.0005e-6 3.2000e-6
Std. dev. 1e-10 53e-10 55,678e-10

Avg. time per batch(s) 60.7 45.0 1.3
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5 Stochastic Recurrence Equations

The MCMC methodology presented in Section 2 is here applied to compute the
probability that a solution Xm to a recurrence equation Xm = AmXm−1 +Bm,
where the innovations B are regularly varying with index α and E[Aα+ε] < ∞
for some ε > 0, exceeds a high threshold cn. This problem has been considered
using importance sampling scheme by Hult, Blanchet and Leder in [27].

In this section a Gibbs sampler is presented for sampling from the conditional
distribution P(A1, . . . , Am, B1, . . . , Bm | Xm > cn). The resulting Markov chain
is proved to be uniformly ergodic. An estimator for (p(n))−1 of the form (2.1) is
suggested with V (n) as the conditional distribution of (A1, . . . , Am, B1, . . . , Bm)
given {Ak > a, ∀k} ∩ {∃!j : Bja

m−j > cn}. The estimator is proved to have
vanishing normalised variance under the probabilistic assumptions mentioned
above. The proof is elementary and is completed in a few lines. The section
is concluded with numerical experiments to illustrate the comparativeness with
existing importance sampling algorithm and standard Monte Carlo.

5.1 A Gibbs sampler for computing P(Xm > cn)

Fix m and let A = (A2, . . . , Am) and B = (B1, . . . , Bm) be independent se-
quences of independent and identically distributed random variables. Let A be
a generic random variable for an element of the sequence A and likewise B for
an element of the sequence B.

Consider the solution (Xk)
m
k=0 to the stochastic recurrence equation

Xk = AkXk−1 +Bk, for k = 1, . . . ,m,
X0 = 0.

The solution (Xk)
m
k=0 can be written as a randomly weighted random walk

Xk = Bk +AkBk−1 + · · ·+AkAk−1 · · ·A2B1 +Ak · · ·A1x0, k = 1, . . . ,m.
(5.1)

Our interest is in the problem of computing p(n) = P(Xm > cn), where
cn →∞. To this end we will propose a Gibbs sampler that produces a Markov
chain with the conditional distribution

F (m)
cn (·) = P

(
(A,B) ∈ · | Xm > cn

)
(5.2)

as its invariant distribution. In addition we will suggest a choice of the proba-
bility distribution V (n) with good asymptotic properties.

The Markov chain (At,Bt)t≥0 is constructed by the following algorithm,
where the elements are updated sequentially in such a way that the weighted
random walk exceeds the threshold after each individual update. Formally the
algorithm is given as follows. An empty product, such as

∏m
j=m+1Aj , is inter-

preted as 1.

Algorithm 5.1. Start with initial state (A(m)
0 ,B(m)

0 ) = (A0,2, . . . , A0,m, B0,1, . . . , B0,m)

where X(m)
0 = B0,m +

∑m−1
i=1 B0,i

∏m
j=i+1A0,j > cn. Given (A(m)

t ,B(m)
t ), for

some t = 0, 1, . . ., the next state (A(m)
t+1,B

(m)
t+1) is sampled as follows:
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1. Draw a randomized ordering j1, . . . , j2m of {1, . . . , 2m} and proceed up-
dating (A(m)

t ,B(m)
t ) in the order thus obtained.

2. For l = 1, . . . , 2m, set k = jl and do the following:

i. If k ∈ {1, . . . ,m} then At,k is to be updated. Sample A′ from the
conditional distribution

P(A′ ∈ · | A′ > s),

where

s = max

{
cn −

∑m
i=k Bt,i

∏m
j=i+1At,j∑k−1

i=1 Bt,i
∏m
j=i+1, 6=k At,j

, 0

}
.

PutA(m)
t+1 = (At,1, . . . , At,k−1, A

′, At,k+1, . . . , At,m) andB(m)
t+1 = B(m)

t .
ii. If k ∈ {m + 1, . . . , 2m} then Bt,(k−m) is to be updated. Sample B′

from the conditional distribution

P(B′ ∈ · | B′ > s),

where

s = max

{
cn −

∑m
i=1,6=(k−m)Bt,i

∏m
j=i+1At,j

At,m · · ·At,(k−m)+1
, 0

}
.

PutA(m)
t+1 = A(m)

t andB(m)
t+1 = (Bt,1, . . . , Bt,(k−m)−1, B

′, Bt,(k−m)+1, . . . , Bt,m).

Iterate steps 1 and 2 until the entire Markov chain (A(m)
t ,B(m)

t )T−1t=0 is con-
structed.

The Markov chain (A(m)
t ,B(m)

t )t≥0 constructed by Algorithm 5.1 has F (m)
cn

as its invariant probability distribution.

Proposition 5.2. The Markov chain (A(m)
t ,B(m)

t )t≥0 generated by Algorithm
5.1, has the conditional distribution F (m)

cn as its invariant distribution.

Proof. Note that it is sufficient to show that each updating step (Step 2i and
2ii in the Algorithm) preserves stationarity.

Consider the updating steps (Step 2i and 2ii). Let m be given and set
PAk (a(m),b(m), ·) and PBk (a(m),b(m), ·) to be the transition probability of the
Markov chain (A(m)

t ,B(m)
t )t≥0 where the kth element of A(m)

t and B(m)
t is

updated, respectively. Let

R =
{
(A1, . . . , Am, B1, . . . , Bm) | Xm > cn},

and observe that if Ak is to be updated conditioned on Xm > cn then

Ak >
cn −

∑m
i=k Bt,i

∏m
j=i+1At,j∑k−1

i=1 Bt,i
∏m
j=i+1,6=k At,j

=: sAk
,

and similarly, if Bk is to be updated conditioned on Xm > cn then

Bk >
cn −

∑m
i=1,6=(k−m)Bt,i

∏m
j=i+1At,j

At,m · · ·At,(k−m)+1
=: sBk

.
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To prove that stationarity is preserved under updating via Step 2i it is sufficient
to show that for arbitrary k ∈ {1, . . . ,m} and D1×· · ·×Dm×E1×· · ·×Em ⊂ R
then it holds that

F (m)
cn (D1 × · · · ×Dm × E1 × · · · × Em)

= E
F

(m)
cn

[
PAk (A1, . . . , Am, B1, . . . , Bm, D1 × . . .×Dm × E1 × . . .× Em)

]
.

(5.3)

Similarly to prove that stationarity is preserved under updating via Step 2ii it
is sufficient to show

F (m)
cn (D1 × · · · ×Dm × E1 × · · · × Em)

= E
F

(m)
cn

[
PBk (A1, . . . , Am, B1, . . . , Bm, D1 × · · · ×Dm × E1 × · · · × Em)

]
.

(5.4)

The following computation shows that (5.3) holds.

F (m)
cn (D1 × · · · ×Dm × E1 × · · · × Em)

= E
F

(m)
cn

[ m∏
j=1

I{Aj ∈ Dj}
m∏
i=1

I{Bi ∈ Ei}
]

=
E
[
I{Ak ∈ Dk}I{Xm > cn} ·

∏m
j=1,6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]
P(Xm > cn)

=
E
[
E[I{Ak∈Dk}|Ak>sAk

,A−k,B]

P(Ak>sAk
) ·

∏m
j=1,6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]
P(Xm > cn)

=
E
[
PAk (A,B, D1 × · · · ×Dm × E1 × · · · × Em) ·

∏m
j=1,6=k I{Aj ∈ Dj}

∏m
i=1 I{Bi ∈ Ei}

]
P(Xm > cn)

= E
[
PAk (A,B, D1 × · · · ×Dm × E1 × · · · × Em) | Xm > cn

]
= E

F
(m)
cn

[
PAk (A,B, D1 × · · · ×Dm × E1 × · · · × Em)

]
,

with the conventional notation A−k = (A1, . . . , Ak−1, Ak+1, . . . , Am).
The proof is completed by showing that (5.4) holds with similar computation

as above.

The Markov chain (A(m)
t ,B(m)

t )t≥0 constructed by Algorithm 5.1 is uni-
formly ergodic, thus ensuring large-sample efficiency.

Proposition 5.3. For any m ≥ 1, the Markov chain (A(m)
t ,B(m)

t )t≥0 is uni-
formly ergodic.

Proof. Let m ≥ 1 be given and set

R =
{
(A1, . . . , Am, B1, . . . , Bm) | Xm > cn}.

Uniform ergodicity follows from the minorization condition (see Nummelin [44])
: there exists a probability measure ν, δ > 0 and t0 ∈ N such that

P
(
(A(m)

t0 ,B(m)
t0 ) ∈ D × E | (A(m)

0 ,B(m)
0 ) = (a,b)

)
≥ δν(D × E),

30



for any (a,b) and D × E ⊂ R. The goal is to prove this inequality for t0 = 1,
δ = p(n)/(2m)! and ν = F

(m)
cn .

Take c = (a,b) and let g(· | a,b) be the density of P(A1,B1 ∈ · | A0,B0 =
a,b).

Observe that for any z = (x,y) ∈ R there exists an ordering j1, . . . , j2m of
{1, . . . , 2m} such that

cj1 ≤ zj1 , . . . , cjk ≤ zjk
cjk+1

≥ zjk+1
, . . . , cj2m ≥ zj2m ,

for some k. When updating from c to z using this particular ordering, then first
all of elements in z which are larger than their counterparts in c are updated,
and then all of the elements in z which are smaller are updated. This guarantees
that after every updating step, the updated vector belongs to R.

The probability for this particular ordering is 1/(2m)!. To simplify notation,
introduce

Zk =

{
Ai if update jk corresponds to updating Ai for some i
Bi if update jk corresponds to updating Bi for some i

and

sZk
=

{
sAi if update jk corresponds to updating Ai for some i
sBi if update jk corresponds to updating Bi for some i

Therefore

g(x,y) =
1

(2m)!

fZ1(zj1)I{Z1 > sZ1}
P(Z > sZ1

)

×fZ2
(zj2)I{Z2 > sZ2

}
P(Z > sZ2)

...

×fZ2m
(zj2m)I{Z2m > sZ2m

}
P(Z > sZ2m

)
.

By construction all of the indicator functions are equal to 1 and the normalizing
probabilities are bounded by 1 so the last display is bounded from below by

1

(2m)!

2m∏
k=1

fZk
(zk) =

p(n)

(2m)!
·
∏2m
k=1 fZk

(zk)I{z ∈ R}
p(m)

.

The proof is completed by integrating both sides.

Remark 5.4. The lower bound δ in the proof of Proposition 5.3 can be chosen
to be larger, but that would complicate and lengthen the proof.

5.2 Constructing an efficient estimator
As mentioned in Section 2 a good candidate for V (n) is a probability distribution

P
(
(A,B) ∈ · | (A(m),B(m)) ∈ R(n)

)
,
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where r(n) = P
(
(A(m),B(m)) ∈ R(n)

)
is asymptotically close to p(n) = P(Xm >

cn) in the sense that r(n)/p(n) → 1 as n→∞.
Observe that so far no limitation have been set on the probabilistic proper-

ties of A and B. The distributional assumptions have been very general. For
the design of V (n) the probabilistic properties of A and B are of central impor-
tance and here they come into play. This paper considers the setting where the
innovations B are most likely responsible for extreme values of the solution to
the stochastic recurrence equation. We make the following assumptions.

1. The generic random variables A and B are nonnegative.

2. The generic random variable B has a regularly varying tail, with index
−α < 0. Formally,

lim
t→∞

P(B > xt)

P(B > t)
= x−α, for all x > 0.

3. The Breiman condition holds for the generic random variable A. That is,
there exists ε > 0 such that

E[Aα+ε] <∞.

Under the assumptions (1)-(3) it is possible to derive the asymptotic decay of
p(n). Indeed, it follows from the representation (5.1) as a weighted random walk
and Theorem 3.1 in [31] that

P(Xm > cn)

P(B > cn)
→

m−1∑
k=0

E[Aα]k.

Now consider the choice of V (n). Let V (n) be defined as the probability
distribution

V (n)(·) = P
(
(A(m),B(m)) ∈ · | (A(n),B(n)) ∈ R(n)

)
,

with

R(n) = {Ak > a, for all k = 1, . . . ,m− 1} ∩ {∃!j : am−jBj > cn}.

The probability of this conditioning event can be computed explicitly as

r(n) = P
(
{Ak > a, for all k = 1, . . . ,m− 1} ∩ {∃!j : am−jBj > cn}

)
= P(A > a)m−1

×
(
P(Bm > x)P(Bm−1 < x/a) · · ·P(B1 < x/am−1)

+P(Bm < x)P(Bm−1 > x/a)P(Bm−2 < x/a2) · · ·P(B1 < x/am−1)

+ · · ·+ P(Bm < x) · · ·P(B2 < x/am−2)P(B1 > x/am−1)
)

= FA(a)
m−1

m∑
i=1

FB(x/a
m−i)

m∏
j=1,6=i

FB(x/a
m−j).
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From the regular variation property of the distribution of B, assumption (2),
it follows that

r(n) ∼ FA(a)
m−1FB(cn)

{
1 + aα + (aα)2 + · · ·+ (aα)m−1

}
as n→∞.

A convenient choice of the level a = an is such that r(n)/p(n) → 1, as n → ∞.
That is, a may be chosen as the solution to

FA(a)
m−1

m−1∑
k=0

akα =

m−1∑
k=0

E[Aα]k.

The distribution V (n) has a known density with respect to F (·) = P
(
(A(m),B(m)) ∈

·) given by
dV (n)

dF (·)
(a,b) =

1

r(n)
I
{
(a,b) ∈ Rm

}
.

Thus the MCMC estimator q̂(n)T of 1/p(n) is given by

q̂
(n)
T =

1

r(n)
1

T

T−1∑
t=0

I
{
(A(m)

t ,B(m)
t ) ∈ R(n)

}
, (5.5)

where (At,Bt)
T−1
t=0 is generated via Algorithm 5.1. Observe that the estimator

first factor of the estimator q̂(n)T may be interpreted as the asymptotic approxi-
mation 1/r(n) multiplied by a stochastic correction factor.

Theorem 5.5. The estimator q(n)T given by 5.5 has vanishing normalized vari-
ance for estimating 1/p(n),

lim
n→∞

(
p(n)

)2
VarFcn

(q̂
(n)
T )→ 0.

Proof. With u(n)(a,b) = 1
r(n) I{(a,b) ∈ R} it follows from assumptions 1-3

made above that

(p(n))2 Var
F

(m)
cn

( 1

r(n)
I{(a,b) ∈ R}

)
=

(p(n))2

(r(n))2
Var

F
(m)
cn

(
I{(a,b) ∈ R}

)
=

(p(n))2

(r(n))2
P
(
I{(a,b) ∈ R} | Xm > cn

)
P
(
I{(a,b) /∈ R} | Xm > cn

)
=
p(n)

r(n)
P
(
1− r(n)

p(n)

)
→ 0.

This completes the proof.

5.3 Numerical experiments

Theorem 5.5 of this paper proves that q̂(n)T is an efficient estimator of 1/p(n).
Most existing algorithms however design an efficient estimator p̂(n)T of p(n), so
for comparison reasons the numerical experiments are based on (q̂

(n)
T )−1.
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By construction each simulation run of the MCMC algorithm only generates
a single random variable (one simulation step) while both importance sampling
and standard Monte Carlo generate 2m number of random variables (2m sim-
ulation steps). Therefore the number of runs for the MCMC is scaled up by
a factor of 2m so that all of the algorithms (MCMC, Monte Carlo and im-
portance sampling) generate essentially the same number of random numbers.
Thus getting a fairer comparison of the computer runtime between the three
approaches.

Consider estimating P(Xn > cn) where Xn is a solution to the recurrence
equation Xn = AnXn−1 + Bn with X0 = 0. The innovation B is a Pareto
distributed variable with index α while the A is exponentially distributed with
intensity λ. Each estimate is calculated using b number of batches, each con-
sisting of T simulations in the case of importance sampling and standard Monte
Carlo and 2nT in the case of MCMC. The results are presented in Table 3.

Table 3: The table displays the batch mean and standard deviation of the estimates
of P(Xn > c) as well as the average runtime per batch for time comparison. The
number of batches run is b, each consisting of T simulations for importance sampling
(IS) and standard Monte Carlo (MC) and T 2n simulations for Markov chain Monte
Carlo (MCMC).

b = 25, T = 105, n = 4, c = 10, α = 2, λ = 3
MCMC IS MC

Avg. est. 1.233e-2 1.223e-2 1.221e-2
Std. dev. 43e-5 9e-5 43e-5

Avg. time per batch(s) 35 36 2
b = 25, T = 105, n = 4, c = 102, α = 2, λ = 3

MCMC IS MC
Avg. est. 1.298e-4 1.278e-4 1.360e-4
Std. dev. 7e-6 1e-6 35e-6
b = 25, T = 105, n = 4, c = 103, α = 2, λ = 3

MCMC IS MC
Avg. est. 1.149e-6 1.284e-6 2.000e-6
Std. dev. 36e-8 7e-8 408e-8
b = 25, T = 105, n = 5, c = 2, α = 5, λ = 3
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6 Ruin probability in an Insurance Model with
Risky Investments

In this section the Markov chain Monte Carlo approach to rare-event simulation
is applied to compute the ruin probability in an insurance model with risky
investments.

The ruin problem with investment is reasonably well studied. A recent
overview is given by Paulsen [46]. In the infinite horizon setting there are two
asymptotic regimes. Power tail asymptotics can arise either as the cumulative
effect of negative returns on the investment asset or because of power tails of
the claim size distribution. In the first case the power tail asymptotics can be
derived by expressing the risk reserve as the solution to a stochastic recurrence
equation whose stationary solution has a power tail. See e.g. [45, 36, 20, 47, 38].
In the second case the power asymptotics of the ruin probability is more directly
inferred from the power tail of the claim size distribution, see [21, 50, 38].

The following model, in discrete time, for the risk reserve of an insurance
company is considered here. Denote by Bk the net loss, claims minus premiums,
over the kth period. Suppose the insurance company invests the risk reserve in
a risky asset and denote by Rk the stochastic return on the risky asset over the
kth period. It is assumed that {Bk} and {Rk} are independent sequences, each
consisting of independent and identically distributed random variables. The risk
reserve Uk at the end of the kth period is modeled as

Uk = Rk(Zk−1 −Bk), for k ≥ 1,
U0 = u.

Iterating the relation above yields

Un = Rn · · ·R1u−
(
Rn · · ·R1B1 +Rn · · ·R2B2 + · · ·+RnBn

)
.

Assume that Rk > 0 a.s. for all k and put Ak = 1/Rk. The last display is
equivalent to

A1 · · ·AnUn = u−Wn,

where
Wn = B1 +A1B2 + · · ·+A1 · · ·An−1Bn.

Observe that Wn represents the discounted losses that have accumulated up
until time n. The event of ruin up until time n is equivalent to{

inf
0≤k≤n

Uk < 0

}
=

{
sup

0≤k≤n
Wk > u

}
.

Our objective is to construct an efficient algorithm to compute the ruin proba-
bility

p(n) = P
(

sup
0≤k≤n

Wk > un

)
.

As in the previous section we denote by A(n) = (A1, . . . , An−1) and B(n) =
(B1, . . . , Bn). To compute p(n) with the MCMC approach a Gibbs sampler is
proposed with the conditional distribution

Fnun
(·) = P((A(n),B(n)) ∈ · | sup

0≤k≤n
Wk > un).
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6.1 A Gibbs sampler for computing the ruin probability
The Gibbs sampler is constructed similarly as in Section 5 with the difference
that the conditioning event is {sup0≤k≤nWk > un} instead of {Xm > cn}.

Algorithm 6.1. Start with initial state (A(n)
0 ,B(n)

0 ) = (A0,1, . . . , A0,n, B0,1, . . . , B0,n)

where X(n)
0 > un. Given (A(n)

t ,B(n)
t ), for some t = 0, 1, . . ., the next state

(A(n)
t+1,B

(n)
t+1) is sampled as follows:

1. Draw a randomized ordering j1, . . . , j2n of {1, . . . , 2n} and proceed updat-
ing (A(n)

t ,B(n)
t ) in the order thus obtained.

2. For m = 1, . . . , 2n, set k = jm and do the following:

i. If k ∈ {1, . . . , n} then At,k is to be updated. Sample A′ from the
conditional distribution

P(A′ ∈ · | A′ > s),

where

s = min
1≤k≤n

{
un −

∑k
i=1Bt,i

∏k−1
j=1 At,j∑n

i=k+1Bt,i
∏i−1
j=1,6=k At,j

}
.

Put A(n)
t+1 = (At,1, . . . , At,k−1, A

′, At,k+1, . . . , At,n) and B(n)
t+1 = B(n)

t .

ii. If k ∈ {n + 1, . . . , 2n} then Bt,(k−n) is to be updated. Sample B′
from the conditional distribution

P(B′ ∈ · | B′ > s),

where

s = min
1≤(k−n)≤n

{
un −

∑n
i=1,6=(k−n)Bt,i

∏i−1
j=1At,j∏(k−n)−1

j=1 At,j

}
.

PutA(n)
t+1 = A(n)

t andB(n)
t+1 = (Bt,1, . . . , Bt,(k−n)−1, B

′, Bt,(k−n)+1, . . . , Bt,n).

Iterate steps 1 and 2 until the entire Markov chain (A(n)
t ,B(n)

t )T−1t=0 is con-
structed.

Proposition 6.2. The Markov chain (A(n)
t ,B(n)

t )t≥0 generated by Algorithm
6.1, has the conditional distribution F

(n)
un as its invariant distribution and is

uniformly ergodic.

The proof of the above result is essentially identical to the proofs of Propo-
sition 5.2 and 5.3 is therefore omitted.

6.2 Constructing an efficient estimator of the reciprocal
ruin probability

As mentioned in Section 2 a good candidate for V (n) is a probability distribution

P
(
(A,B) ∈ · | (A(n),B(n)) ∈ R(n)

)
,
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where r(n) = P
(
(A(n),B(n)) ∈ R(n)

)
is asymptotically close to p(n) in the sense

that r(n)/p(n) → 1 as n→∞.
Observe that, apart from the independence assumptions, the distributional

assumptions on B and R have been completely general. For the design of V (n)

the probabilistic properties of B and R are of central importance and here they
come into play. This paper considers the setting where large claims are most
likely responsible for ruin. We make the following assumptions.

1. The distribution of B has a regularly varying right tail, with index −α < 0:

lim
t→∞

P(B > xt)

P(B > t)
= x−α, for all x > 0.

2. The stochastic returns R are almost surely strictly positive. In addition,
there exists ε > 0 such that E[R−α−ε] < 1.

Under the assumptions (1)-(2) it is possible to derive the asymptotic decay of
p(n). Note first that (2) translates into the conditions that the generic random
variables A is strictly positive and E[Aα+ε] < 1 for some ε > 0. It follows from
the representation ofWn as a weighted random walk and by combining Example
2.2 and Corollary 5.1 in [32] that

lim
n→∞

P(sup 0≤k≤nWk > un)

nP(B > un)
= E

[(
sup
k≥1

k∏
j=1

Aj

)α]
.

Now consider the choice of V (n). Let V (n) be defined as the probability
distribution

V (n)(·) = P
(
(A(n),B(n)) ∈ · | (A(n),B(n)) ∈ R(n)

)
,

with

R(n) = {Ak > an, for all k = 1, . . . , n− 1} ∩ {∃!j : an−jn Bj > un}.

The probability of this conditioning event can be computed explicitly as

r(n) = P
(
{Ak > an, for all k = 1, . . . , n− 1} ∩ {∃!j : an−jn Bj > un}

)
= P(A > an)

n−1

(
P(Bn > un)P(Bn−1 < un/an) · · ·P(B1 < un/a

n−1
n )

+P(Bn < un)P(Bn−1 > un/an)P(Bn−2 < un/a
2
n) · · ·P(B1 < un/a

n−1
n )

+ · · ·+ P(Bn < un) · · ·P(B2 < un/a
n−2
n )P(B1 > un/a

n−1
n )

= FA(an)
n−1

n∑
i=1

FB(un/a
n−i
n )

n∏
j=1,6=i

FB(un/a
n−j
n ).

From the regular variation property of the distribution of B, assumption (2),
it follows that if un/an−1n →∞, then

r(n) ∼ FA(an)
n−1FB(un)

{
1 + aαn + (aαn)

2 + · · ·+ (aαn)
n−1} as n→∞.
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A convenient choice of the level an is such that r(n)/p(n) → 1, as n→∞. That
is, an may be chosen as the solution to

FA(an)
n−1

n−1∑
k=0

akαn = nE
[(

sup
k≥1

k∏
j=1

Aj

)α]
.

The distribution V (n) has a known density with respect to F (·) = P
(
(A(n),B(n)) ∈

·) given by
dV (n)

dF (·)
(a,b) =

1

r(n)
I
{
(a,b) ∈ Rn

}
.

Thus the MCMC estimator q̂(n)T of 1/p(n) is given by

q̂
(n)
T =

1

r(n)
1

T

T−1∑
t=0

I
{
(A(n)

t ,B(n)
t ) ∈ R(n)

}
, (6.1)

where (At,Bt)
T−1
t=0 is generated via Algorithm 6.1. Observe that the estimator

first factor of the estimator q̂(n)T may be interpreted as the asymptotic approxi-
mation 1/r(n) multiplied by a stochastic correction factor.

Theorem 6.3. The estimator q(n)T given by (6.1) has vanishing normalized
variance for estimating 1/p(n),

lim
n→∞

(
p(n)

)2
Var

F
(n)
un

(q̂
(n)
T )→ 0.
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