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Setting
Consider a random walk

where the Y's are 1.1.d. with known distribution. The
objective is to compute the probability

pm = P(Sy, > am), for m large and a > E|Y].

e Sometimes no analytical solution known.

e An alternative is stochastic simulation.

Monte Carlo

1. Generate n independent copies Sy, (1),...,Sm(n).

2. Compute empirical estimate

Simple to implement, unbiased and consistent.
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Figure 1. The Monte Carlo estimate compared against the true probability in
the case when the Y's are Cauchy. The estimate is shown to converge to the

true value with number of simulations, but with considerable variation.

What about efficiency?
We would like the relative error Std(pm,)/pm to be
bounded (or vanishing). For the Monte Carlo estimate

Std(pm) _ 1 \/pm — Py N 1
Pm \/ﬁ Pm vV PPm

as p;m — 0. For rare events Monte Carlo requires a
large computational cost.
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MC estimate is not efficient.

Importance sampling
Denote the original distribution of Sy, by F' and den-

sity by f.
1. Generate n independent copies Sy,(1),...,Sm(n)
from a sampling distribution G.

2. Compute empirical estimate

. L ~dF ,
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Both unbiased and consistent.

Problem reduced to finding a suitable sampling dis-
tribution G - can be difficult.

MCMC algorithm
There exists a best choice for GG that gives zero vari-

ance, the conditional distribution given by

Its density is given by

- flx)I{z > am}
glw) = P(S,, > am)

An MCMC algorithm is a tool to sample a random
variable despite only knowing its density up to a
normalising constant. The density of .5;, under G is
precisely of that nature.

Sample n (dependent) copies Sy,(1),...,Sn(n) via
MCMC from the zero variance distribution G.

oy SO > am)
g(*) . .

How to extract the information about the
normalising constant py, from the sample?

MCMC estimator

1
= —/ v(x)dx.
Pm Jx>am

So choosing v is such that [ v(x)de =1

>am

Elu(Sm)| = Z%

Consistent MCMC estimator given by

: I« L
P = (= ulSm(@))
1=1
where u and v are given by the above.

How should one choose v to ensure efficiency such
as in the Importance Sampling case?

Efficiency of the MCMC estimator
Consider the relative error of the estimator in (1). First
order Taylor approximation gives

\V A 2
Gﬂ“gpm) ~ Mg (u(Sm)) + covariance term.

Pm n

The covariance term can be shown to be vanishing and
have no significant impact on the convergence.
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Choosing v(z) = g(x) = gives zero vari-

alce.

Heuristics: v is chosen as an approximation of the
zero variance density g

Main Result
Consider a random walk

where the Y's are i.i.d. with heavy tails in the following
sense

P(Sy, > am)

P(M;, > am)
My, = max{Yy,..., Yy}, eg Cauchy, regularly vary-
ing, subexponential. The objective is to compute the
probability

»1 asm — oo,

pm = P(Sy, > am), for m large and a > E[Y].
The zero variance distribution is
P(Sy, < x|Sm > am),

and because of the heavy-tail nature of the Y's, choose
v as the density of

P(Sy, < x|My, > am).

This choice of v gives a consistent and efficient MCMC
estimator:

i = (2 Ty (500 > om)

P Sm(i))
— pmax(l > I{Mp(i) > am})_ 7
1=1

where
Pmax = P(My, > am) =1 — Fy(am)™,

is easily calculated.
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Figure 2. The Markov Chain Monte Carlo estimate compared against the true
probability in the case when the Y's are Cauchy. The initial value is pya.x and
the estimate converges to the true value with number of simulations, with little

variation.
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