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Setting

Consider a random walk

Sm = Y1 + · · · + Ym,

where the Y s are i.i.d. with known distribution. The
objective is to compute the probability

pm = P(Sm > am), for m large and a > E[Y ].

• Sometimes no analytical solution known.

•An alternative is stochastic simulation.

Monte Carlo

1. Generate n independent copies Sm(1), . . . , Sm(n).

2. Compute empirical estimate

p̂m =
1

n

n
∑

i=1

I{Sm(i) > am}.

Simple to implement, unbiased and consistent.
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Figure 1. The Monte Carlo estimate compared against the true probability in

the case when the Y s are Cauchy. The estimate is shown to converge to the

true value with number of simulations, but with considerable variation.

What about efficiency?

We would like the relative error Std(p̂m)/pm to be
bounded (or vanishing). For the Monte Carlo estimate

Std(p̂m)

pm
=

1√
n

√

pm − p2m
pm

∼ 1√
npm

→ ∞

as pm → 0. For rare events Monte Carlo requires a
large computational cost.

MC estimate is not efficient.

Importance sampling

Denote the original distribution of Sm by F and den-
sity by f .

1. Generate n independent copies Sm(1), . . . , Sm(n)
from a sampling distribution G.

2. Compute empirical estimate

p̂m =
1

n

n
∑

i=1

dF

dG
I
{

Sm(i) > am
}

.

Both unbiased and consistent.

Problem reduced to finding a suitable sampling dis-

tribution G - can be difficult.

MCMC algorithm

There exists a best choice for G that gives zero vari-
ance, the conditional distribution given by

P(Sm ∈ ·|Sm > am).

Its density is given by

g(x) =
f (x)I{x > am}
P(Sm > am)

.

An MCMC algorithm is a tool to sample a random
variable despite only knowing its density up to a
normalising constant. The density of Sm under G is
precisely of that nature.

Sample n (dependent) copies Sm(1), . . . , Sm(n) via
MCMC from the zero variance distribution G.

Sm(i) ∼ g(·) = f (·)I{· > am}
pm

.

How to extract the information about the

normalising constant pm from the sample?

MCMC estimator

E[u(Sm)] =

∫

u(x)g(x)dx =

∫

x>am
u(x)

f (x)

pm
dx.

Setting u(x) =
v(x)
f(x)

I{x > am}

E[u(Sm)] =
1

pm

∫

x>am
v(x)dx.

So choosing v is such that
∫

x>am v(x)dx = 1

E[u(Sm)] =
1

pm
.

Consistent MCMC estimator given by

p̂m =
(1

n

n
∑

i=1

u(Sm(i))
)−1

, (1)

where u and v are given by the above.

How should one choose v to ensure efficiency such

as in the Importance Sampling case?

Efficiency of the MCMC estimator

Consider the relative error of the estimator in (1). First
order Taylor approximation gives

Var(p̂m)

p2m
≈ p2m

n
Var

(

u(Sm)
)

+ covariance term.

The covariance term can be shown to be vanishing and
have no significant impact on the convergence.

p2m
n
Var

(

u(Sm)
)

=
p2m
n

(

E
[

u(Sm)2
]

−
(

E[u(Sm)]
)2
)

=
p2m
n

(

E
[

u(Sm)2
]

− 1

p2m

)

=
1

n

(

p2m

∫

x>am

v(x)2

f (x)2
− 1

)

Choosing v(x) = g(x) =
f(x)I{x>am}

pm
gives zero vari-

ance.

Heuristics: v is chosen as an approximation of the
zero variance density g

Main Result

Consider a random walk

Sm = Y1 + · · · + Ym,

where the Y s are i.i.d. with heavy tails in the following
sense

P(Sm > am)

P(Mm > am)
→ 1 as m → ∞,

Mm = max{Y1, . . . , Ym}, e.g. Cauchy, regularly vary-
ing, subexponential. The objective is to compute the
probability

pm = P(Sm > am), for m large and a > E[Y ].

The zero variance distribution is

P(Sm ≤ x|Sm > am),

and because of the heavy-tail nature of the Y s, choose
v as the density of

P(Sm ≤ x|Mm > am).

This choice of v gives a consistent and efficient MCMC
estimator:

p̂m =
(1

n

n
∑

i=1

v(Sm(i))

f (Sm(i))
I{Sm(i) > am}

)−1

= pmax

(1

n

n
∑

i=1

I{Mm(i) > am}
)−1

,

where

pmax = P(Mm > am) = 1− FY (am)m,

is easily calculated.
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Figure 2. The Markov Chain Monte Carlo estimate compared against the true

probability in the case when the Y s are Cauchy. The initial value is pmax and

the estimate converges to the true value with number of simulations, with little

variation.
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