Borel-Cantelli lemmas and the law of large numbers

Gunnar Englund \& Timo Koski
Matematisk statistik
KTH

2008

1 Introduction

Borel-Cantelli lemmas are interesting and useful results especially for proving the law of large numbers in the strong form.
We consider a sequence events $A_{1}, A_{2}, A_{3}, \ldots$ and are intrested in the question of whether infinitely many events occur or if possibly only a finite number of them occur.
We set

$$
\begin{equation*}
F_{n}=\bigcup_{k=n}^{\infty} A_{k} \text { and } G_{n}=\bigcap_{k=n}^{\infty} A_{k} . \tag{1}
\end{equation*}
$$

If G_{n} in (1) occurs, this means that all A_{k} for $k \geq n$ occur. If there is some such n, this means in other words that from this n on all A_{k} occur for $k \geq n$. With

$$
H=\bigcup_{n=1}^{\infty} G_{n}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}
$$

we have that if H occurs, then there is an n such that all A_{k} with $k \geq n$ occur. Sometimes we denote H with $\lim \inf A_{k}$.
The fact that F_{n} occurs implies that there is some A_{k} for $k \geq n$ which occurs. If F_{n} in (1) occurs for all n this implies that infinitely many of the A_{k} :s occur. We form therefore

$$
E=\bigcap_{n=1}^{\infty} F_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} .
$$

If E occurs, then infinitely many of A_{k} :s occur. Sometimes we write this as $E=\left\{A_{n}\right.$ i.o. $\}$ where i.o. is to be read as "infinitely often", i.e., infinitely many times. E is sometimes denoted with $\lim \sup A_{k}$.
We need a couple of auxiliary results (the lemmas below) of probability calculus (found, e.g., on page 3 of [1]) that are basic in the sense that they are derived directly from the Kolmogorov axioms.

First, we consider a sequence of events $B_{k} \in \mathcal{F}$ that is increasing to $B \in \mathcal{F}$. This means that

$$
B_{1} \subset B_{2} \subset B_{3} \subset \ldots \subset B_{n} \subset B_{n+1} \subset \ldots \subset B
$$

and thus

$$
\cup_{k=1}^{\infty} B_{k}=B .
$$

We can write this as

$$
B_{n} \uparrow B
$$

Lemma 1 If $B_{n} \uparrow B$, then $P(B)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)$.

Proof: We can write $\cup_{k=1}^{\infty} B_{k}=\cup_{k=2}^{\infty}\left(B_{k} \backslash B_{k-1}\right) \cup B_{1}$, since B_{k} are increasing.

$$
P(B)=P\left(\cup_{k=1}^{\infty} B_{k}\right)=P\left(\cup_{k=2}^{\infty}\left(B_{k} \backslash B_{k-1}\right) \cup B_{1}\right)
$$

But the sets in the decomposition are seen to be disjoint, and hence the axiom of countable additivity yields

$$
\begin{gathered}
P\left(\cup_{k=2}^{\infty}\left(B_{k} \backslash B_{k-1}\right) \cup B_{1}\right)=\sum_{k=2}^{\infty} P\left(B_{k} \backslash B_{k-1}\right)+P\left(B_{1}\right) \\
=\lim _{n \rightarrow \infty} \sum_{k=2}^{n} P\left(B_{k} \backslash B_{k-1}\right)+P\left(B_{1}\right)
\end{gathered}
$$

Now we observe that since $B_{k-1} \subset B_{k}$, we have

$$
P\left(B_{k} \backslash B_{k-1}\right)=P\left(B_{k}\right)-P\left(B_{k-1}\right) .
$$

Therefore we get a telescoping series

$$
\begin{gathered}
\sum_{k=2}^{n} P\left(B_{k} \backslash B_{k-1}\right)+ \\
P\left(B_{1}\right)=P\left(B_{n}\right)-P\left(B_{n-1}\right)+P\left(B_{n-1}\right)-P\left(B_{n-2}\right)+\ldots+ \\
+P\left(B_{2}\right)-P\left(B_{1}\right)+P\left(B_{1}\right)=P\left(B_{n}\right)
\end{gathered}
$$

In other words we have shown that

$$
P(B)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)
$$

We take next a sequence of events $B_{k} \in \mathcal{F}$ that is decreasing. This means that

$$
B_{1} \supset B_{2} \supset B_{3} \supset \ldots \supset B_{k} \supset B_{k+1} \supset \ldots \supset \cap_{k=1}^{\infty} B_{k}
$$

and thus we write

$$
B_{n} \downarrow \cap_{k=1}^{\infty} B_{k} .
$$

Lemma 2 If $B_{n} \downarrow \cap_{k=1}^{\infty} B_{k}$, then $P\left(\cap_{k=1}^{\infty} B_{k}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)$.

Proof: We use the axiom of probability of complementary events

$$
\begin{equation*}
P\left(\cap_{k=1}^{\infty} B_{k}\right)=1-P\left(\left(\cap_{k=1}^{\infty} B_{k}\right)^{c}\right) . \tag{2}
\end{equation*}
$$

When we apply one of De Morgan's rules we get

$$
\left(\cap_{k=1}^{\infty} B_{k}\right)^{c}=\cup_{k=1}^{\infty} B_{k}^{c} .
$$

Now we observe that if $B_{k} \supset B_{k+1}$, then $B_{k}^{c} \subset B_{k+1}^{c}$, i.e., the complement events of a decreasing sequence of events are an increasing sequence of events. Thus the first lemma implies

$$
P\left(\cup_{k=1}^{\infty} B_{k}^{c}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}^{c}\right) .
$$

Hence we have that

$$
\begin{gathered}
P\left(\left(\cap_{k=1}^{\infty} B_{k}\right)^{c}\right)=P\left(\cup_{k=1}^{\infty} B_{k}^{c}\right) \\
=\lim _{n \rightarrow \infty} P\left(B_{n}^{c}\right) .
\end{gathered}
$$

This we shall insert in (2) and get

$$
\begin{gathered}
P\left(\cap_{k=1}^{\infty} B_{k}\right)=1-\lim _{n \rightarrow \infty} P\left(B_{n}^{c}\right) \\
=1-\lim _{n \rightarrow \infty}\left(1-P\left(B_{n}\right)\right) \\
=1-1+\lim _{n \rightarrow \infty} P\left(B_{n}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right) .
\end{gathered}
$$

This completes the proof.

2 The Borel-Cantelli results

One notes that F_{n} is a decreasing set of events. This is simply so because

$$
F_{n}=\bigcup_{k=n}^{\infty} A_{k}=A_{n} \bigcup\left(\bigcup_{k=n+1}^{\infty} A_{k}\right)=A_{n} \bigcup F_{n+1}
$$

and thus

$$
F_{n} \supset F_{n+1} .
$$

Thus the second lemma above gives

$$
P(E)=P\left(\bigcap_{n=1}^{\infty} F_{n}\right)=\lim _{n \rightarrow \infty} P\left(F_{n}\right)=\lim _{n \rightarrow \infty} P\left(\bigcup_{k=n}^{\infty} A_{k}\right) .
$$

We have, however, by Boole's inequality that

$$
P\left(\bigcup_{k=n}^{\infty} A_{k}\right) \leq \sum_{k=n}^{\infty} P\left(A_{k}\right)
$$

and this sum $\rightarrow 0$ as $n \rightarrow \infty$, if the sum $\sum_{1}^{\infty} P\left(A_{k}\right)$ converges. This implies that we have shown following proposition, also known as the Borel-Cantelli lemma.

Proposition 1 Borel-Cantelli lemma
If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$ then it holds that $P(E)=P\left(A_{n}\right.$ i.o $)=0$, i.e., that with probability 1 only finitely many A_{n} occur.

One can observe that no form of independence is required, but the proposition holds in general, i.e., for any sequence of events.
There is a converse to the Borel-Cantelli lemma obtained if we assume that the events A_{1}, A_{2}, \ldots are independent .

Proposition 2 Converse Borel-Cantelli lemma
If A_{1}, A_{2}, \ldots are independent and

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty
$$

then it holds that $P(E)=P\left(A_{n}\right.$ i.o $)=1$, i.e., it holds with probability 1 that infinitely many A_{n} occur.

Proof: We have by independence

$$
P\left(\bigcap_{k=n}^{\infty} A_{k}^{*}\right)=\prod_{k=n}^{\infty} P\left(A_{k}^{*}\right)=\prod_{k=n}^{\infty}\left(1-P\left(A_{k}\right)\right) .
$$

Since $1-x \leq e^{-x}$ we get $1-P\left(A_{k}\right) \leq e^{-P\left(A_{k}\right)}$ and

$$
P\left(\bigcap_{k=n}^{\infty} A_{k}^{*}\right) \leq \exp \left(-\sum_{k=n}^{\infty} P\left(A_{k}\right)\right) .
$$

If now $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$, then the sum in the exponent diverges and we obtain

$$
P\left(\bigcap_{k=n}^{\infty} A_{k}^{*}\right)=0 .
$$

Thus it holds also that

$$
P\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}^{*}\right)=0
$$

which implies by De Morgan's rules that

$$
P\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}\right)=1-P\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}^{*}\right)=1-0=1
$$

i.e., that infinitely many A_{k} :n occur with probability 1 .

3 Some examples of applications

Exempel 1 Let $X_{1}, X_{2}, X_{3} \ldots$ be independent equidistributed with continuous distribution. We let

$$
U_{n}= \begin{cases}1 & \text { if } X_{n}>X_{j} \text { for } j=1,2, \ldots n-1 \\ 0 & \text { annars }\end{cases}
$$

This says simply that $U_{n}=1$ if X_{n} is a "record", i.e., the largest value observed so far. We set $A_{n}=\left\{U_{n}=1\right\}$.
We see that $P\left(U_{n}=1\right)=1 / n$, since the probability that the largest of n values should occur in the round n is $1 / n$ for reasons of symmetry. Furthermore, A_{1}, A_{2}, \ldots are independent. We have

$$
P\left(A_{m} \cap A_{m+1} \cap \ldots A_{m+k}\right)=P\left(A_{m} \mid A_{m+1} \cap \ldots A_{m+k}\right) P\left(A_{m+1} \cap \ldots A_{m+k}\right)
$$

and A_{m} and $A_{m+1} \cap \ldots A_{m+k}$ are, of course, independent since A_{m} is only concerned with the relative magnitudes of the m first of X-variables.
We get then, as

$$
\sum_{n=1}^{\infty} P\left(A_{n}\right)=\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

that $P\left(A_{n}\right.$ i.o. $)=1$ i.e., infinitely many A_{n} occur. We get infinitely many records - a result which perhaps (?) is self-evident. Furthermore, we get

$$
E\left(\sum_{n=1}^{\infty} U_{n} U_{n+1}\right)=\sum_{n=1}^{\infty} E\left(U_{n} U_{n+1}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right) P\left(A_{n+1}\right)=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}<\infty
$$

and hence $\sum_{1}^{\infty} U_{n} U_{n+1}$ is finite with probability 1 . The conclusion is that there only occurs a finitely number of "double records", i.e., a record two times in a row - this result is by no means trivial.
Exempel 2 Let X_{1}, X_{2}, \ldots be independent and equidistributed. Then it holds that

$$
\begin{aligned}
E\left(\left|X_{1}\right|\right)=\int_{0}^{\infty} P\left(\left|X_{1}\right|>x\right) d x & =\sum_{n=0}^{\infty} \int_{n}^{n+1} P\left(\left|X_{1}\right|>x\right) d x \\
& \leq \sum_{n=0}^{\infty} P\left(\left|X_{1}\right|>n\right) \leq 1+\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>n\right),
\end{aligned}
$$

but also
$E\left(\left|X_{1}\right|\right)=\sum_{n=0}^{\infty} \int_{n}^{n+1} P\left(\left|X_{1}\right|>x\right) d x \geq \sum_{n=0}^{\infty} P\left(\left|X_{1}\right|>n+1\right)=\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>n\right)$.
If now $E\left(\left|X_{1}\right|\right)<\infty$ we see that $\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>n\right)<\infty$ which according to Borel-Cantelli lemma implies $P\left(\left|X_{n}\right|>n\right.$ i.o. $)=0$. On the other hand, if $E\left(\left|X_{1}\right|\right)=\infty$ and thereby $\sum_{n=0}^{\infty} P\left(\left|X_{n}\right|>n\right)=\infty$, the converse Borel-Cantelli lemma entails that $P\left(\left|X_{n}\right|>n\right.$ i.o.) $=1$. If $E\left(\left|X_{k}\right|\right)$ are finite (respectively infinite) $\left|X_{n}\right|$ will be larger than n infinitely many times with probability 0 (respectively 1).

4 Proof of the strong form of the law of large numbers

We let X_{1}, X_{2}, \ldots be independent equidistributed with $E\left(X_{i}\right)=m$ and $\operatorname{Var}\left(X_{i}\right)=$ $\sigma^{2}<\infty$ and define $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. We are interested in showing the strong form of the law of large numbers (SLLN), i.e., that it holds with probability one that $S_{n} / n \rightarrow m$ as $n \rightarrow \infty$. This means that we want to prove that

$$
P\left(\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=m\right)=1
$$

i.e., that there exists a set Ω_{0} with $P\left(\Omega_{0}\right)=1$ where for every $\omega \in \Omega_{0}$ it holds that

$$
\lim _{n \rightarrow \infty}\left|\frac{S_{n}}{n}-m\right|=0
$$

We need in other words to prove that for every $\omega \in \Omega_{0}$ and for every $\varepsilon>0$ there is $N(\omega, \varepsilon)$ so that if $n \geq N(\omega, \varepsilon)$ holds that $\left|S_{n} / n-m\right| \leq \varepsilon$.
It suffices to prove that $\left|\frac{S_{n}}{n}-m\right|>\varepsilon$ can occur only a finite number of times, i.e.,

$$
\lim _{N \rightarrow \infty} P\left(\left|\frac{S_{n}}{n}-m\right|>\varepsilon \quad \text { some } n \geq N\right)=0
$$

Note the distinction with regard to the law of large numbers in the weak form, which says that that for all $\varepsilon>0$

$$
P\left(\left|\frac{S_{n}}{n}-m\right|>\varepsilon\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

In words: for the law of large numbers in the strong form $\left|S_{n} / n-m\right|$ must be small for all sufficiently large n for all $\omega \in \Omega_{0}$ where $P\left(\Omega_{0}\right)=1$.
In tossing a coin we can code heads and tails with 0 and 1 , respectively, and we can identify an ω with a number in the intervall $[0,1]$ drawn at random, where binary expansion gives the sequence of zeros and ones. The law of large numbers says in this case that we will obtain with probability 1 a number such that the proportion of $1: s$ in sequence converges towards $1 / 2$. There can be "exceptional" $-\omega$ - for example the sequence $000 \ldots$ is possible, but such exceptional sequences have the probability 0 .
After these deliberations of pedagogic nature let us get on with the proof.
Proof of SLLN: Without restriction of generality we can assume that $E\left(X_{i}\right)=$ $m=0$, since we in any case can consider $X_{i}-m$. We have $V\left(S_{n}\right)=n \sigma^{2}$. By Chebyshev's inequality it holds that

$$
P\left(\left|S_{n}\right|>n \varepsilon\right) \leq \frac{V\left(S_{n}\right)}{(n \varepsilon)^{2}}=\frac{n \sigma^{2}}{(n \varepsilon)^{2}}=\frac{\sigma^{2}}{n \varepsilon^{2}}
$$

Unfortunately the harmonic series $\sum_{1}^{\infty} 1 / n$ is divergent so we cannot use BorelCantelli lemma directly. But it holds that $\sum_{1}^{\infty} 1 / n^{2}<\infty$ and this means that
we can use the lemma for $n^{2}, n=1,2, \ldots$. We have

$$
P\left(\left|S_{n^{2}}\right|>n^{2} \varepsilon\right) \leq \frac{\sigma^{2}}{n^{2} \varepsilon^{2}}
$$

In other words it holds by Borel-Cantelli lemma that $P\left(\left|\frac{S_{n^{2}}}{n^{2}}\right|>\varepsilon\right.$ i.o. $)=0$ which proves that (with probability 1) $S_{n}^{2} / n^{2} \rightarrow 0$. We have in other words managed to prove that for the subsequence $n^{2}, n=1,2, \ldots$ there is convergence with probability 1 . It remains to find out what will happen between these n^{2}. We define therefore

$$
D_{n}=\max _{n^{2} \leq k<(n+1)^{2}}\left|S_{k}-S_{n^{2}}\right|
$$

i.e., the largest of the deviation from $S_{n^{2}}$ that can occur between n^{2} and $(n+1)^{2}$. We get

$$
D_{n}^{2}=\max _{n^{2} \leq k<(n+1)^{2}}\left(S_{k}-S_{n^{2}}\right)^{2} \leq \sum_{k=n^{2}}^{(n+1)^{2}-1}\left(S_{k}-S_{n^{2}}\right)^{2}
$$

where we used the rather crude inequality $\max (|x|,|y|) \leq(|x|+|y|)$. This entails

$$
E\left(D_{n}^{2}\right) \leq \sum_{k=n^{2}}^{(n+1)^{2}-1} E\left(\left(S_{k}-S_{n^{2}}\right)^{2}\right)
$$

But $E\left(\left(S_{k}-S_{n^{2}}\right)^{2}\right)=\left(k-n^{2}\right) \sigma^{2} \leq 2 n \sigma^{2}$ as $n^{2} \leq k<(n+1)^{2}$ and there are $2 n$ terms in the sum and this entails

$$
E\left(D_{n}^{2}\right) \leq(2 n)(2 n) \sigma^{2}=4 n^{2} \sigma^{2}
$$

With Chebyshev's inequality this gives

$$
P\left(D_{n}>n^{2} \varepsilon\right) \leq \frac{4 n^{2} \sigma^{2}}{\left(n^{2} \varepsilon\right)^{2}}=\frac{4 \sigma^{2}}{n^{2} \varepsilon^{2}}
$$

In other words, $D_{n} / n^{2} \rightarrow 0$ holds with probability 1 . Finally this yields for k between n^{2} and $(n+1)^{2}$ that

$$
\left|\frac{S_{k}}{k}\right| \leq \frac{\left|S_{n^{2}}\right|+D_{n}}{k} \leq \frac{\left|S_{n^{2}}\right|+D_{n}}{n^{2}} \rightarrow 0
$$

This means that we have succeeded in proving that $S_{n} / n \rightarrow 0$ with probability 1. We have done this under additional condition that $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, but with a painstaking effort we can in fact prove that this additional condition is not necessary.

Referenser

[1] Z. Brezniak and T. Zastawniak (2007): Basic Stochastic Processes. Springer Verlag, London.

