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1 Introduction

Borel-Cantelli lemmas are interesting and useful results especially for proving
the law of large numbers in the strong form.

We consider a sequence events Aq, Ay, Az, ... and are intrested in the question
of whether infinitely many events occur or if possibly only a finite number of
them occur.

We set

k=n k=n

If G, in (1) occurs, this means that all Ay for & > n occur. If there is some
such n, this means in other words that from this n on all A, occur for £ > n.
With

H= U G, = U ﬂ Ay,
n=1 n=1k=n

we have that if H occurs, then there is an n such that all A, with & > n occur.
Sometimes we denote H with liminf Aj.

The fact that F,, occurs implies that there is some Aj, for k& > n which occurs.
If F,, in (1) occurs for all n this implies that infinitely many of the Ay:s occur.
We form therefore

E= ﬂ F, = ﬂ U Ag.
n=1 n=1k=n

If F occurs, then infinitely many of Ag:s occur. Sometimes we write this as
E ={A, i.o.} where i.0. is to be read as ”infinitely often”, i.e., infinitely many
times. E' is sometimes denoted with lim sup Ay.

We need a couple of auxiliary results (the lemmas below) of probability calculus
(found, e.g., on page 3 of [1]) that are basic in the sense that they are derived
directly from the Kolmogorov axioms.



First, we consider a sequence of events By € F that is increasing to B € F.
This means that

B cB,CcByCc...CB,CB,,,C...CB

and thus

We can write this as
B,1B

Lemma 1 [f B, T B, then P(B) = lim, o, P (B,).

Proof: We can write U2, By = U2, (By \ Br—1) U By, since By are increasing.
P(B) = P (U, By) = P (Up2s(By \ Br-1) U Bi)

But the sets in the decomposition are seen to be disjoint, and hence the axiom
of countable additivity yields

NE

P (UZa(Be \ Bi-1) U B1) = » P (By\ Bio1) + P (B1)

B
||
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:q}i_{gozn:P(Bk\Bk—l)‘i‘P(Bl)

k=2

Now we observe that since By_; C By, we have
P (B \ By_1) = P(Bx) — P(Bg_1) -
Therefore we get a telescoping series

S"P(Bi\ Bi)+ P(B) = P(By)— P (Bu) + P (Byt)— P (Bya) .+

+P(B,) — P (By)+ P (By) = P(B,).

In other words we have shown that

P(B) = lim P (B,).

n—~0o0

We take next a sequence of events By € F that is decreasing. This means that
ByD>DByDBsD...D B D Bgy1D... DN By

and thus we write

Lemma 2 If B, | N2 By, then P (N2, By) = lim,, .o P (By).
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Proof: We use the axiom of probability of complementary events
P(MZiBe) = 1= P (M1 Br)%) - (2)
When we apply one of De Morgan’s rules we get
(ﬂiilBk)c = U2, By

Now we observe that if By D Byi1, then By C Bj,,, i.e., the complement
events of a decreasing sequence of events are an increasing sequence of events.
Thus the first lemma implies

P(U,By) = lim P(B).

n—oo

Hence we have that
P (M2, Be)") = P (UL, By)

= lim P(B;).

n—~o0

This we shall insert in (2) and get
PN Br) =1— lim P(BY)

n—~o0

—1- lim (1— P(B,))

=1-—14 lim P(B,) = lim P(B,).
This completes the proof. "

2 The Borel-Cantelli results

One notes that F), is a decreasing set of events. This is simply so because

F, = UAsznU< U Ak> = A P
k=n

k=n+1
and thus

E, D F,1.
Thus the second lemma above gives

H@:Hﬁﬂﬁﬁmﬂﬂﬁhmﬂﬁﬂ)

n—oo n—oo
n=1 k=n

We have, however, by Boole’s inequality that

P(U Ap) < ZP(Ak)

and this sum — 0 as n — oo, if the sum ) ;" P(A;) converges. This implies
that we have shown following proposition, also known as the Borel-Cantelli
lemma.



Proposition 1 Borel-Cantelli lemma
If Y P(A,) < oo then it holds that P(E) = P(4, i.0) =0, i.e., that with
probability 1 only finitely many A, occur.

|
One can observe that no form of independence is required, but the proposition
holds in general, i.e., for any sequence of events.
There is a converse to the Borel-Cantelli lemma obtained if we assume that
the events A;, A,, ... are independent .

Proposition 2 Converse Borel-Cantelli lemma
If A, Ay, ... are independent and

then it holds that P(E) = P(A, i.0) = 1, i.e., it holds with probability 1 that
infinitely many A,, occur.

Proof: We have by independence

P(() A4 =] P =T - P(ay).

k=n

Since 1 — 2 < e~ we get 1 — P(A;) < e P4 and

P(() 45) < exp(= 3 P(A)).

k=n

If now Y7 | P(A,) = oo, then the sum in the exponent diverges and we obtain
P(() Ap) =0.
k=n

Thus it holds also that

[e.e]

P(J M4 =o,

n=1k=n

which implies by De Morgan’s rules that

o) 00 -1 0 (a0 -1 -0

i.e., that infinitely many Aj:n occur with probability 1. "



3 Some examples of applications

Exempel 1 Let X, X5, X3... be independent equidistributed with continu-
ous distribution. We let

- :{1 if X, > X, forj=12...n—1

0 annars.

This says simply that U,, = 1 if X,, is a "record”, i.e., the largest value observed
so far. We set A, = {U,, = 1}.

We see that P(U,, = 1) = 1/n, since the probability that the largest of n values
should occur in the round n is 1/n for reasons of symmetry. Furthermore,
Ay, Ay, ... are independent. We have

P(Am N Am+1 M... Am+k> - P(Am|Am+1 M... Am+k)P(Am+1 Mn... Am+k>

and A,, and A, 1 N ... A, are, of course, independent since A,, is only
concerned with the relative magnitudes of the m first of X-variables.
We get then, as

n=1 n=1

that P(A, i.0.) = 1 i.e., infinitely many A, occur. We get infinitely many
records — a result which perhaps (7) is self-evident. Furthermore, we get
o o o o 1
E U, Uni1) = EU,U,4q) = P(A,)P(A,41) = — <
(; ) ; (UnUns1) ; (A)P(Ans) ;n(nH)

and hence (" U,U,+1 is finite with probability 1. The conclusion is that there
only occurs a finitely number of ”double records”, i.e., a record two times in a
row — this result is by no means trivial.

Exempel 2 Let X;, Xo,... beindependent and equidistributed. Then it holds

that

E(\Xl\):/ (|X1|>xdx—2/ P(IX)| > 2)dx

0
<3 P(Xl > ) < 1+ 30 P(X,| > ).
n=0 n=1

but also

(X)) Z/ PUXy| > a)de = 3 PX] > 4 1) = 3 P(X| > n).

n=0 n=1

If now E(|X;|) < oo we see that >~ P(|X,| > n) < oo which according
to Borel-Cantelli lemma implies P(|X,| > n i.0.) = 0. On the other hand, if
E(|X1]) = oo and thereby >~/ P(|X,| > n) = oo, the converse Borel-Cantelli
lemma entails that P(|X,| > nio.) = 1. If E(|Xj|) are finite (respectively
infinite ) |X,,| will be larger than n infinitely many times with probability 0
(respectively 1).



4 Proof of the strong form of the law of large
numbers

We let X, Xo, ... beindependent equidistributed with F(X;) = m and Var(X;) =
0% < 0o and define S,, = X; + X5 + --- + X,,. We are interested in showing
the strong form of the law of large numbers (SLLN), i.e., that it holds with
probability one that S, /n — m as n — oo. This means that we want to prove
that s

P(lim — =m)=1
G =m =1

i.e., that there exists a set {2y with P(€g) = 1 where for every w € € it holds
that

Sn
lim |— —m| =0.
n—oo N

We need in other words to prove that for every w € €y and for every ¢ > 0
there is N(w,€) so that if n > N(w,¢) holds that |S,,/n —m| <e.

It suffices to prove that |— —m| > ¢ can occur only a finite number of times,
. n
ie.,

lim P(\&—m| >¢ some n>N)=0.
n

N—o0

Note the distinction with regard to the law of large numbers in the weak form,
which says that that for all € > 0

S

P(|=% —m| >¢) — 0 asn — oo.
n

In words: for the law of large numbers in the strong form |S,,/n —m| must be
small for all sufficiently large n for all w € Qg where P() = 1.

In tossing a coin we can code heads and tails with 0 and 1, respectively, and
we can identify an w with a number in the intervall [0, 1] drawn at random,
where binary expansion gives the sequence of zeros and ones. The law of large
numbers says in this case that we will obtain with probability 1 a number
such that the proportion of 1:s in sequence converges towards 1/2. There can
be ”exceptional” -w - for example the sequence 000... is possible, but such
exceptional sequences have the probability 0.

After these deliberations of pedagogic nature let us get on with the proof.

Proof of SLLN: Without restriction of generality we can assume that F(X;) =
m = 0, since we in any case can consider X; —m. We have V(S,) = no?. By
Chebyshev’s inequality it holds that

V(S
< — = —,
P(Sal > ne) < (ne)?  (ne)®  ne?

Unfortunately the harmonic series Y ° 1/n is divergent so we cannot use Borel-
Cantelli lemma directly. But it holds that >"°1/n? < oo and this means that



we can use the lemma for n?, n =1,2,.... We have

2
P(|S,2| > n%) <

n2g2 ’

In other words it holds by Borel-Cantelli lemma that P(|S—"22\ >¢cio) =0
n

which proves that (with probability 1) S%/n? — 0. We have in other words ma-
naged to prove that for the subsequence n?, n = 1,2, ... there is convergence
with probability 1. It remains to find out what will happen between these n?.
We define therefore
D, = max |Sp— Spz|,
n2<k<(n+1)2
i.e., the largest of the deviation from S,,> that can occur between n? and (n+1)2.
We get
(n+1)2-1
D? = Sp — Sp2)? < S — Sp2)?
" n2§£22(1r)f+1)2( k 2) - l; ( k 2) ’
where we used the rather crude inequality max(|z|, |y|) < (Jz| + |y|). This

entails
(n+1)2-1

B < S B(Sk - Si)?).

k=n?2

But E((Sy — Sp2)?) = (k — n?)o? < 2no? as n®* < k < (n+ 1)? and there are
2n terms in the sum and this entails

E(D?) < (2n)(2n)o? = 4n*c?.
With Chebyshev’s inequality this gives

4n?c?  4do?
P(D,, > n%) < = ——.
(Dn > ne) < (n2e)?  n2e?

In other words, D,,/n? — 0 holds with probability 1. Finally this yields for
between n? and (n + 1)? that

|Sn2|+Dn |Sn2‘+Dn
< —
k - n?
This means that we have succeeded in proving that S, /n — 0 with probability
1. We have done this under additional condition that Var(X;) = o2, but with

a painstaking effort we can in fact prove that this additional condition is not
necessary. .

0.
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