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1 Introduction

Borel-Cantelli lemmas are interesting and useful results especially for proving
the law of large numbers in the strong form.
We consider a sequence events A1, A2, A3, . . . and are intrested in the question
of whether infinitely many events occur or if possibly only a finite number of
them occur.
We set

Fn =

∞
⋃

k=n

Ak and Gn =

∞
⋂

k=n

Ak. (1)

If Gn in (1) occurs, this means that all Ak for k ≥ n occur. If there is some
such n, this means in other words that from this n on all Ak occur for k ≥ n.
With

H =
∞
⋃

n=1

Gn =
∞
⋃

n=1

∞
⋂

k=n

Ak

we have that if H occurs, then there is an n such that all Ak with k ≥ n occur.
Sometimes we denote H with lim inf Ak.
The fact that Fn occurs implies that there is some Ak for k ≥ n which occurs.
If Fn in (1) occurs for all n this implies that infinitely many of the Ak:s occur.
We form therefore

E =
∞
⋂

n=1

Fn =
∞
⋂

n=1

∞
⋃

k=n

Ak.

If E occurs, then infinitely many of Ak:s occur. Sometimes we write this as
E = {An i.o.} where i.o. is to be read as ”infinitely often”, i.e., infinitely many
times. E is sometimes denoted with lim sup Ak.
We need a couple of auxiliary results (the lemmas below) of probability calculus
(found, e.g., on page 3 of [1]) that are basic in the sense that they are derived
directly from the Kolmogorov axioms.
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First, we consider a sequence of events Bk ∈ F that is increasing to B ∈ F .
This means that

B1 ⊂ B2 ⊂ B3 ⊂ . . . ⊂ Bn ⊂ Bn+1 ⊂ . . . ⊂ B

and thus
∪∞

k=1Bk = B.

We can write this as
Bn ↑ B

Lemma 1 If Bn ↑ B, then P (B) = limn→∞ P (Bn).

Proof: We can write ∪∞
k=1Bk = ∪∞

k=2(Bk \Bk−1) ∪ B1, since Bk are increasing.

P (B) = P (∪∞
k=1Bk) = P (∪∞

k=2(Bk \ Bk−1) ∪ B1)

But the sets in the decomposition are seen to be disjoint, and hence the axiom
of countable additivity yields

P (∪∞
k=2(Bk \ Bk−1) ∪ B1) =

∞
∑

k=2

P (Bk \ Bk−1) + P (B1)

= lim
n→∞

n
∑

k=2

P (Bk \ Bk−1) + P (B1)

Now we observe that since Bk−1 ⊂ Bk, we have

P (Bk \ Bk−1) = P (Bk) − P (Bk−1) .

Therefore we get a telescoping series

n
∑

k=2

P (Bk \ Bk−1)+P (B1) = P (Bn)−P (Bn−1)+P (Bn−1)−P (Bn−2)+ . . .+

+P (B2) − P (B1) + P (B1) = P (Bn) .

In other words we have shown that

P (B) = lim
n→∞

P (Bn) .

We take next a sequence of events Bk ∈ F that is decreasing. This means that

B1 ⊃ B2 ⊃ B3 ⊃ . . . ⊃ Bk ⊃ Bk+1 ⊃ . . . ⊃ ∩∞
k=1Bk

and thus we write
Bn ↓ ∩∞

k=1Bk.

Lemma 2 If Bn ↓ ∩∞
k=1Bk, then P (∩∞

k=1Bk) = limn→∞ P (Bn).
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Proof: We use the axiom of probability of complementary events

P (∩∞
k=1Bk) = 1 − P ((∩∞

k=1Bk)
c) . (2)

When we apply one of De Morgan,s rules we get

(∩∞
k=1Bk)

c = ∪∞
k=1B

c
k.

Now we observe that if Bk ⊃ Bk+1, then Bc
k ⊂ Bc

k+1, i.e., the complement
events of a decreasing sequence of events are an increasing sequence of events.
Thus the first lemma implies

P (∪∞
k=1B

c
k) = lim

n→∞
P (Bc

n) .

Hence we have that
P ((∩∞

k=1Bk)
c) = P (∪∞

k=1B
c
k)

= lim
n→∞

P (Bc
n) .

This we shall insert in (2) and get

P (∩∞
k=1Bk) = 1 − lim

n→∞
P (Bc

n)

= 1 − lim
n→∞

(1 − P (Bn))

= 1 − 1 + lim
n→∞

P (Bn) = lim
n→∞

P (Bn) .

This completes the proof.

2 The Borel-Cantelli results

One notes that Fn is a decreasing set of events. This is simply so because

Fn =
∞
⋃

k=n

Ak = An

⋃

(

∞
⋃

k=n+1

Ak

)

= An

⋃

Fn+1

and thus
Fn ⊃ Fn+1.

Thus the second lemma above gives

P (E) = P (
∞
⋂

n=1

Fn) = lim
n→∞

P (Fn) = lim
n→∞

P (
∞
⋃

k=n

Ak).

We have, however, by Boole,s inequality that

P (
∞
⋃

k=n

Ak) ≤
∞
∑

k=n

P (Ak)

and this sum → 0 as n → ∞, if the sum
∑∞

1 P (Ak) converges. This implies
that we have shown following proposition, also known as the Borel-Cantelli
lemma.
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Proposition 1 Borel-Cantelli lemma

If
∑∞

n=1 P (An) < ∞ then it holds that P (E) = P (An i.o) = 0, i.e., that with
probability 1 only finitely many An occur.

One can observe that no form of independence is required, but the proposition
holds in general, i.e., for any sequence of events.
There is a converse to the Borel-Cantelli lemma obtained if we assume that
the events A1, A2, . . . are independent .

Proposition 2 Converse Borel-Cantelli lemma

If A1, A2, . . . are independent and

∞
∑

n=1

P (An) = ∞,

then it holds that P (E) = P (An i.o) = 1, i.e., it holds with probability 1 that
infinitely many An occur.

Proof: We have by independence

P (
∞
⋂

k=n

A∗
k) =

∞
∏

k=n

P (A∗
k) =

∞
∏

k=n

(1 − P (Ak)).

Since 1 − x ≤ e−x we get 1 − P (Ak) ≤ e−P (Ak) and

P (

∞
⋂

k=n

A∗
k) ≤ exp(−

∞
∑

k=n

P (Ak)).

If now
∑∞

n=1 P (An) = ∞, then the sum in the exponent diverges and we obtain

P (
∞
⋂

k=n

A∗
k) = 0.

Thus it holds also that

P (
∞
⋃

n=1

∞
⋂

k=n

A∗
k) = 0,

which implies by De Morgan,s rules that

P (

∞
⋂

n=1

∞
⋃

k=n

Ak) = 1 − P (

∞
⋃

n=1

∞
⋂

k=n

A∗
k) = 1 − 0 = 1

i.e., that infinitely many Ak:n occur with probability 1.
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3 Some examples of applications

Exempel 1 Let X1, X2, X3 . . . be independent equidistributed with continu-
ous distribution. We let

Un =

{

1 if Xn > Xj for j = 1, 2, . . . n − 1

0 annars.

This says simply that Un = 1 if Xn is a ”record”, i.e., the largest value observed
so far. We set An = {Un = 1}.
We see that P (Un = 1) = 1/n, since the probability that the largest of n values
should occur in the round n is 1/n for reasons of symmetry. Furthermore,
A1, A2, . . . are independent. We have

P (Am ∩ Am+1 ∩ . . . Am+k) = P (Am|Am+1 ∩ . . . Am+k)P (Am+1 ∩ . . . Am+k)

and Am and Am+1 ∩ . . . Am+k are, of course, independent since Am is only
concerned with the relative magnitudes of the m first of X-variables.
We get then, as

∞
∑

n=1

P (An) =
∞
∑

n=1

1

n
= ∞,

that P (An i.o.) = 1 i.e., infinitely many An occur. We get infinitely many
records – a result which perhaps (?) is self-evident. Furthermore, we get

E(

∞
∑

n=1

UnUn+1) =

∞
∑

n=1

E(UnUn+1) =

∞
∑

n=1

P (An)P (An+1) =

∞
∑

n=1

1

n(n + 1)
< ∞

and hence
∑∞

1 UnUn+1 is finite with probability 1. The conclusion is that there
only occurs a finitely number of ”double records”, i.e., a record two times in a
row – this result is by no means trivial.

Exempel 2 Let X1, X2, . . . be independent and equidistributed. Then it holds
that

E(|X1|) =

∫ ∞

0

P (|X1| > x)dx =
∞
∑

n=0

∫ n+1

n

P (|X1| > x)dx

≤
∞
∑

n=0

P (|X1| > n) ≤ 1 +
∞
∑

n=1

P (|Xn| > n),

but also

E(|X1|) =

∞
∑

n=0

∫ n+1

n

P (|X1| > x)dx ≥

∞
∑

n=0

P (|X1| > n+1) =

∞
∑

n=1

P (|Xn| > n).

If now E(|X1|) < ∞ we see that
∑∞

n=1 P (|Xn| > n) < ∞ which according
to Borel-Cantelli lemma implies P (|Xn| > n i.o.) = 0. On the other hand, if
E(|X1|) = ∞ and thereby

∑∞

n=0 P (|Xn| > n) = ∞, the converse Borel-Cantelli
lemma entails that P (|Xn| > n i.o.) = 1. If E(|Xk|) are finite (respectively
infinite ) |Xn| will be larger than n infinitely many times with probability 0
(respectively 1).
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4 Proof of the strong form of the law of large

numbers

We let X1, X2, . . . be independent equidistributed with E(Xi) = m and Var(Xi) =
σ2 < ∞ and define Sn = X1 + X2 + · · · + Xn. We are interested in showing
the strong form of the law of large numbers (SLLN), i.e., that it holds with
probability one that Sn/n → m as n → ∞. This means that we want to prove
that

P ( lim
n→∞

Sn

n
= m) = 1,

i.e., that there exists a set Ω0 with P (Ω0) = 1 where for every ω ∈ Ω0 it holds
that

lim
n→∞

|
Sn

n
− m| = 0.

We need in other words to prove that for every ω ∈ Ω0 and for every ε > 0
there is N(ω, ε) so that if n ≥ N(ω, ε) holds that |Sn/n − m| ≤ ε.

It suffices to prove that |
Sn

n
−m| > ε can occur only a finite number of times,

i.e.,

lim
N→∞

P (|
Sn

n
− m| > ε some n ≥ N) = 0.

Note the distinction with regard to the law of large numbers in the weak form,
which says that that for all ε > 0

P (|
Sn

n
− m| > ε) → 0 as n → ∞.

In words: for the law of large numbers in the strong form |Sn/n−m| must be
small for all sufficiently large n for all ω ∈ Ω0 where P (Ω0) = 1.
In tossing a coin we can code heads and tails with 0 and 1, respectively, and
we can identify an ω with a number in the intervall [0, 1] drawn at random,
where binary expansion gives the sequence of zeros and ones. The law of large
numbers says in this case that we will obtain with probability 1 a number
such that the proportion of 1:s in sequence converges towards 1/2. There can
be ”exceptional” -ω - for example the sequence 000 . . . is possible, but such
exceptional sequences have the probability 0.
After these deliberations of pedagogic nature let us get on with the proof.

Proof of SLLN: Without restriction of generality we can assume that E(Xi) =
m = 0, since we in any case can consider Xi − m. We have V (Sn) = nσ2. By
Chebyshev,s inequality it holds that

P (|Sn| > nε) ≤
V (Sn)

(nε)2
=

nσ2

(nε)2
=

σ2

nε2
.

Unfortunately the harmonic series
∑∞

1 1/n is divergent so we cannot use Borel-
Cantelli lemma directly. But it holds that

∑∞

1 1/n2 < ∞ and this means that
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we can use the lemma for n2, n = 1, 2, . . . . We have

P (|Sn2| > n2ε) ≤
σ2

n2ε2
.

In other words it holds by Borel-Cantelli lemma that P (|
Sn2

n2
| > ε i.o.) = 0

which proves that (with probability 1) S2
n/n2 → 0. We have in other words ma-

naged to prove that for the subsequence n2, n = 1, 2, . . . there is convergence
with probability 1. It remains to find out what will happen between these n2.
We define therefore

Dn = max
n2≤k<(n+1)2

|Sk − Sn2|,

i.e., the largest of the deviation from Sn2 that can occur between n2 and (n+1)2.
We get

D2
n = max

n2≤k<(n+1)2
(Sk − Sn2)2 ≤

(n+1)2−1
∑

k=n2

(Sk − Sn2)2,

where we used the rather crude inequality max(|x|, |y|) ≤ (|x| + |y|). This
entails

E(D2
n) ≤

(n+1)2−1
∑

k=n2

E((Sk − Sn2)2).

But E((Sk − Sn2)2) = (k − n2)σ2 ≤ 2nσ2 as n2 ≤ k < (n + 1)2 and there are
2n terms in the sum and this entails

E(D2
n) ≤ (2n)(2n)σ2 = 4n2σ2.

With Chebyshev,s inequality this gives

P (Dn > n2ε) ≤
4n2σ2

(n2ε)2
=

4σ2

n2ε2
.

In other words, Dn/n
2 → 0 holds with probability 1. Finally this yields for k

between n2 and (n + 1)2 that

|
Sk

k
| ≤

|Sn2 | + Dn

k
≤

|Sn2| + Dn

n2
→ 0.

This means that we have succeeded in proving that Sn/n → 0 with probability
1. We have done this under additional condition that Var(Xi) = σ2, but with
a painstaking effort we can in fact prove that this additional condition is not
necessary.
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