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Abstract
The convergence and rate of convergence of gradient descent to the

least squares solution is studied. It is additionally shown that gradi-
ent descent converges to the unique solution of the minimum norm least
squares problem. This gives a new insight in linear regression without any
assumptions on the rank of the regressor matrix.

1 Introduction
Gradient descent is a widely used simple but effective method for minimization
of functions, when there are no constraints. Applications to training of artificial
neural networks and recurrent neural networks are exemplified in [9, Chapter 6
& Chapter 9, respectively]. Gradient decent is also a topic in optimization of
convex functions, see, e.g., [2] and [13].
These lecture notes specialize the treatment in [2] and [13] to linear regres-
sion models and include a theorem from [6], which connects gradient decent to
minimum norm least squares.

2 Gradient Descent Algorithm
2.1 Definition
A great number of tasks in computational statistics and machine learning are
as follows.
We have a training set Dtr = (X, y). Here X is a data matrix and y is a
vector of targets. L (X, y; θ) is a differentiable cost/loss function, which is to
be minimized for a fixed Dtr as a function of θ ∈ Rd, i.e., one wants to find a
θ̂ (X, y) satisfying

θ̂ (X, y) := argminθL (X, y; θ) .
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The Gradient Descent Algorithm (GD) is an iteration for computing θ̂ (x) as
follows, see e.g. [13]:

INPUT θ0, µ > 0.

1. For t = 0, . . . , stop

2.
θt+1 = θt − µ∇θL (X, y; θ) (2.1)

3. Set θt ← θt+1, t + 1← t.

4. Return to (2.1) with θt

5. Continue till t = stop

Here ∇θL (X, y; θ) is the gradient of the cost function, see (D.1) in the Ap-
pendix. One important geometric property of the gradient to be recalled for
understanding of (2.1) is that a function f (x) decreases most rapidly in the
direction −∇f (x), see [1, p. 720].
µ is the learning rate. In certain algorithms the learning rate is changing in every
iteration. If the learning rate is too high, the GD may overshoot the minimum.
If µ is too low, the training will take too long and may never reach the global
minimum, or else get stuck in local minima of L (X, y; θ). It is possible to hit
saddle points of L (X, y; θ), too.
It holds, under certain assumptions, that if µ is sufficiently small, then

L (θt+1) < L (θt) .

We shall establish this decrease for minimization of least squares in linear regres-
sion, where the assumption of Lipschitz continuity of the gradient ∇θL (X, y; θ)
is shown to hold. We shall also show that the GD Algorithm converges to the
minimum norm least squares estimate and provide two convergence rates.

2.2 Stochastic Gradient Descent (SGD)
SGD has been called the workhorse of statistical/machine learning. The appli-
cations of SGD to training of neural networks by backpropagation are presented
in [9, Chapter 6]. In one version SGD computes the gradient of the parameters
using a few (=N) examples XN , yN randomly chosen from a training set. The
iteration looks then like

θt+1 = θt − µ∇θL (XN , yN ; θt) . (2.2)

Another version is to pick at random a new item (xi, yi) from the training set
for each step of iteration

θt+1 = θt − µ∇θL (xi, yi; θt) . (2.3)
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2.3 GD derived
GD was invented by Augustin-Louis Cauchy in 1847, [8], as a way of uncon-
strained minimimization of a function. One makes a second order Taylor ex-
pansion

f (y) ≈ f (x) +∇f (x)T (y− x) + 1
2(y− x)TH (x) (y− x),

and replaces the Hessian by 1
µ I,

f (y) ≈ f (x) + (y− x)T∇f (x) + 1
2µ

(y− x)T I(y− x).

This means that we go from something elliptical to something spherical. Then
one optimizes w.r.t. y and sets ∇yf (y) = 0, which gives by the rules in
Appendix D.1

∇f (x) + 1
µ

(y− x) = 0

or
y = x− µ∇f (x) .

Cauchy did not prove the convergence of GD, but he seems to have believed
that there was a convergence [8].

2.4 Organization of the Lecture Notes
In section 3 GD is stated for the least squares object function for minimization
in linear regression. The crucial Lipschitz continuity of the gradient of the least
squares objecti function is established. This requires the Rayleigh principle as
found in Appendix B.3. A number of inequalities are established by means of
this Lipschitz continuity.
In section 4 these inequalities are used to prove the monotone decrease of the
the least squares object function at each iteration and the convergence of GD in
linear regression and least squares. Section 5 shoows that the limit of the GD
iterations is the unique solution of the minimum norm least squares.
In section 6 rates of convergence statement for GD is established under a suffi-
ciently small learning rate. The general rate is valid for all regressor matrices,
but there is another different rate for invertible regressor matrices.
Appendix A recapitulates the proof of Proposition 3.1 on the minimum of the
least squares distance. Appendix B.2 contains various standard definitions and
rules of linear algebra. Appendix C deals with generalized inverses and their
applications to linear regression. The key result is Proposition C.12, which gives
a representation of any solution to the normal equations by means of a certain
Bjerhammar- Moore-Penrose generalized inverse, a.k.a. pseudoinverse.
In appendix C.4 the theory of minimum norm least squares is presented. This
theory is essential for analysis of GD in the cases, where the number of predictors
is larger than the number of training samples. Asymptic convergence in mean
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square of the least squares estimate, as the number of data points in the training
set generated by a true multiple regression model increases without bounds, is
given in section C.4.2. Appendices D and E contain auxiliary results from
multivarible calculus and monotonic convergence of sequences, respectively.

3 Least Squares of Linear Regression
3.1 GD Algorithm for Minimization of the Least Squares

Cost Function
We have the least squares distance

Q (β) := 1
2 ∥ y−Xβ ∥2 (3.4)

to be minimized as a function of the k× 1 vector β of regression coefficients. y
is n× 1 vector of responses and X is n× k regressor matrix.
We are not assuming anything about the rank of X at this moment,
or of whether k > n or k ≤ n.
By definition of the norm in (B.1) we expand

1
2 ∥ y−Xβ ∥2= 1

2 (y−Xβ)T (y−Xβ) = 1
2yT y− βT XT y + 1

2βT XT Xβ.

By the rules in Appendix D.1 we get the gradient

∇βQ (β) = −XT y + XT Xβ, (3.5)

where we used the fact that XT X is symmetric. With respect to (2.1) we have
the iteration step

βt+1 = βt + µXT (y−Xβt) . (3.6)

The assertion to be proved is that this iteration converges to a minimum of
Q (β). Here we need the following result.

Proposition 3.1: Any βsol ∈ Rk that satisfies the equation

∇βQ (βsol) = 0k (3.7)

minimizes Q (β), i.e., for all β

Q (βsol) ≤ Q (β) .

Proof: We are for the moment assuming that there are solutions to (3.7). The
proof is found in Appendix A. ■
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3.2 Why GD for Linear Regression ?
When n > k and the regression matrix X has full column rank, we know that

β̂ := argminβQ (β)⇔ β̂ = (XT X)−1XT y.

i.e. β̂ is the unique solution to the normal equations in (4.24). Hence one might
raise the question, as to what is the rationale for discussing GD in this case?
A first answer is that forming XT X is claimed by sources to be unstable for
all but the most well-conditioned systems; hence in practice one would avoid
forming XT X directly, c.f. [4, Chapter 2.3].
If n < k, then X does not have full column rank, and there are many solutions
to the normal equations. Clearly, the gradient descent iteration

βt+1 = βt + µXT (y−Xβt)

can be implemented in both situations, as neither XT X nor inversion of it is
needed. Moreover, it has been pointed out that

• The inversion of a k×k matrix requires O
(
k3) operations, c.f., [7, p. 151],

• A GD update requires O (kn) operations, as is obvious.

For large k the difference between inversion and GD is more than considerable.
Hence, even if (XT X)−1 did exist, it may thus be advantageous to revert to
GD. It will turn out that the behavior of GD is critically influenced by a certain
matrix norm.

3.3 A Matrix Norm
One of the many possible matrix norms is defined by

∥A∥ = sup
x̸=0

∥Ax∥
∥x∥ , (3.8)

where the vector norms ∥Ax∥ and ∥x∥ are defined by (B.1) of Appendix B.
One reads sup as ’supremum’ and this means the smallest upper bound of a real
valued function or a set in Rn, see [17, p. 4]. Here we deal with the smallest upper
bound of ∥Ax∥

∥x∥ . The matrix norm satisfies the properties 1.-4. in Appendix B.1.
The norm in (3.8) has by the meaning of supremum the consistency property

∥Ax∥ ≤ ∥A∥ ∥x∥ . (3.9)

The norm in (3.8) is given by the following theorem

Proposition 3.2: If λ+ =largest eigenvalue of AT A, then

∥A∥ = sup
x̸=0

∥Ax∥
∥x∥ =

√
λ+. (3.10)
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Proof: This is given in Appendix B.3. ■

In fact it holds, see Appendix B.3, that the supremum is assumed by e+, the
eigenvector of AT A corresponding to λ+, and thus we have

∥A∥ = max
x̸=0

∥Ax∥
∥x∥ =

√
λ+.

3.4 Inequalities for Q (β)
We find next a case of the Lipschitz continuity of the gradient.

Lemma 3.3: Let β and β
′

be two vectors of regression coefficients. Then

∥ ∇βQ
(

β
′
)
−∇βQ (β) ∥≤ λ+

(
XT X

)
∥ β

′
− β ∥, (3.11)

where λ+
(
XT X

)
is the largest eigenvalue of XT X.

Proof: We get from (3.5) that

∇βQ
(

β
′
)
−∇βQ (β) = XT X

(
β

′
− β

)
.

Hence we have

∥ ∇βQ
(

β
′
)
−∇βQ (β) ∥=∥ XT X

(
β

′
− β

)
∥ .

By (3.9) we obtain

∥ XT X
(

β
′
− β

)
∥≤∥ XT X ∥∥

(
β

′
− β

)
∥

By Theorem 3.2 ∥ XT X ∥ equals the square root of the largest eigenvalue of
(XT X)T XT X. Here (XT X)T XT X = (XT X)(XT X) = (XT X)2. The eigen-
vectors of (XT X)2 are eigenvectors of XT X. If λi is the eigenvalue of XT X
corresponding to the eigenvector ei, then λ2

i is the eigenvalue of (XT X)2 cor-
responding to the eigenvector ei. By (3.10) we thus obtain, as the eigenvalues
of symmetric and positive semidefinite matrices are real and nonnegative, that

∥ XT X ∥=
√

λ+ ((XT X)2) =
√

λ2
+ (XT X) = |λ+

(
XT X

)
| = λ+

(
XT X

)
,

where λ+
(
(XT X)2) is the largest eigenvalue of (XT X)2 and λ+

(
XT X

)
is the

largest eigenvalue of XT X. Hence we have established (3.11) as claimed. ■

Proposition 3.4: For any β
′

and β we have

| Q
(

β
′
)
−Q (β)−∇Q (β)T

(
β

′
− β

)
|≤

λ+
(
XT X

)
2 ∥ β

′
− β ∥2 . (3.12)
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Proof: In view of (D.4) with h =
(

β
′
− β

)
and t ∈ [0, 1]

Q
(

β
′
)

= Q (β) +
∫ 1

0
∇Q (β + th)T

(
β

′
− β

)
dt,

and thus

Q
(

β
′
)

= Q (β) +∇Q (β)T
(

β
′
− β

)
+
∫ 1

0

[
∇Q (β + th)T

(
β

′
− β

)
−∇Q (β)T

(
β

′
− β

)]
dt.

Then
| Q
(

β
′
)
−Q (β)−∇Q (β)T

(
β

′
− β

)
|

=|
∫ 1

0

[
∇Q (β + th)T

(
β

′
− β

)
−∇Q (β)T

(
β

′
− β

)]
dt |

≤
∫ 1

0
|
[
∇Q (β + th)T

(
β

′
− β

)
−∇Q (β)T

(
β

′
− β

)]
| dt

=
∫ 1

0
|
[
(∇Q (β + th)−∇Q (β))T

(
β

′
− β

)]
| dt.

By the Cauchy-Schwarz inequality (B.2)

≤
∫ 1

0
∥ ∇Q (β + th)−∇Q (β) ∥∥ β

′
− β ∥ dt,

and (3.11) gives

≤ λ+
(
XT X

) ∫ 1

0
∥ β + th− β ∥∥ β

′
− β ∥ dt.

and by definition of h

= λ+
(
XT X

) ∫ 1

0
∥ t(β

′
− β) ∥∥ β

′
− β ∥ dt

According to rule 3. for the norm in Appendix B.1 we have, as 0 ≤ t ≤ 1,
∥ t(β

′
− β) ∥= t ∥ (β

′
− β) ∥. Hence we have

= λ+
(
XT X

)
∥ β

′
− β ∥2

∫ 1

0
tdt.

Thereby the inequality in (3.12) has been proven. ■
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4 On the Convergence of the GD Algorithm
4.1 GD for LSE in Multiple Regression Converges for a

Sufficiently Small Learning Rate
Let us next write the GD for LSE as

βt+1 = βt − µ∇βQ (βt) . (4.13)

We have from (3.12)

Q
(
βt+1

)
≤ Q (βt)+∇Q (βt)

T (
βt+1 − βt

)
+

λ+
(
XT X

)
2 ∥ βt+1−βt ∥2 (4.14)

Remark 1: |a − b| ≤ c is equivalent to −c ≤ a − b ≤ c, and the right hand
inequality says a ≤ b + c. Thus we got (4.14) from (3.12).

Next we insert the iteration from (4.13) in (4.14) and we get

Q
(
βt+1

)
≤ Q (βt)− µ∇Q (βt)

T ∇Q (βt) + µ2 λ+
(
XT X

)
2 ∥ ∇Q (βt) ∥2 (4.15)

where we used rule 3. for norm in Appendix B. By definitions∇Q (βt)
T ∇Q (βt) =∥

∇Q (βt) ∥2. Hence we have

Q
(
βt+1

)
≤ Q (βt)−

(
1− µ

λ+
(
XT X

)
2

)
µ ∥ ∇Q (βt) ∥2 (4.16)

Next set L := λ+
(
XT X

)
and assume that

µ ≤ 1
L

.

Then

−

(
1− µ

λ+
(
XT X

)
2

)
= µ

L

2 − 1 ≤ 1
2 − 1 = −1

2 . (4.17)

Hence we get in (4.16)

Q
(
βt+1

)
≤ Q (βt)−

µ

2 ∥ ∇Q (βt) ∥2 (4.18)

But since µ
2 ∥ ∇Q (βt) ∥2 is a positive number, we have

Q
(
βt+1

)
< Q (βt) . (4.19)

Proposition 4.1: The iterated GD sequence {Q (βt)}+∞
t=0 is converging for any

µ ≤ 1
L .

Proof: By (4.19) the positive sequence {Q (βt)}+∞
t=0 is monotonically decreasing.

It has a lower bound, as all Q (βt) > 0 for all t. By b) in Proposition E.1 the
asserted convergence follows. ■

The next question is the limit of {βt}+∞
t=0 . In view of Proposition 3.1 and (4.19)

one would expect convergence to some of argminβQ (β).
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4.2 The limit of GD for LSE in Multiple Regression for a
Sufficiently Small Learning Rate

Proposition 4.2: The gradient descent for minimizing the least squares

βt+1 = βt − µ∇βQ (βt) , (4.20)

where µ ≤ 1
λ+(XT X) , converges to a βc, which satisfies

∇βQ (βc) = 0k. (4.21)

Proof: Let us recall again that Lemma C.6 shows that solutions to the equations
∇βQ (βc) = 0k+1 exist.
For ease of writing, let us set again L := λ+

(
XT X

)
. Then (4.18) gives

Q (βt)−Q
(
βt+1

)
≥ 1

2L
∥ ∇Q (βt) ∥2≥ µ

2 ∥ ∇Q (βt) ∥2 (4.22)

Let us now sum over the iterations in the both sides of the left hand inequality
N∑

t=0

(
Q (βt)−Q

(
βt+1

))
≥ 1

2L

N∑
t=0
∥ ∇Q (βt) ∥2 . (4.23)

The sum in the left hand side is ’telescoping’, i.e.,
N∑

t=0

(
Q (βt)−Q

(
βt+1

))
= Q (β0)−Q (β1)

+ Q (β1)−Q (β2)
+ Q (β2)−Q (β3)
. . .

+ Q
(
βN−3

)
−Q

(
βN−2

)
+ Q

(
βN−2

)
−Q

(
βN−1

)
+ Q

(
βN−1

)
−Q (βN )

= Q (β0)−Q (βN )
≤ Q (β0)−Q (βmin) ,

where Q (βmin) = minβ Q (β)< Q (βN ). It is known that Q (β) has a minimum
by Proposition 3.1. We obtain thus via (4.22)

Q (β0)−Q (βmin) ≥ 1
2L

N∑
t=0
∥ ∇Q (βt) ∥2

Here Q (β0) − Q (βmin) > 0, if β0 ̸= βmin. Thus the monotonically increasing
series sN =

∑N
t=0 ∥ Q (βt) ∥2 is bounded. By Theorem E.1 sN converges as

N → +∞ and by Theorem E.2 this convergence implies that

∥ ∇Q (βt) ∥2→ 0, as t→ +∞.
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This means by a property of norms that

∇Q (βt)→ 0k+1, as t→ +∞.

Hence, by (4.20), βt+1 − βt → 0k+1, i.e. there is a βc such that

βt → βc,

In view of (3.5), ∇βQ (β) is a continuous function of β, and thus

∇Q (βc) = 0k.

Thus the assertion in the Proposition holds as claimed. ■

In view of (3.5), ∇βQ (βc) = 0k gives the normal equations

XT Xβc = XT y. (4.24)

We have by Lemma C.6 that there always exist solutions to (4.24). We shall
next show that GD converges to the unique solution of (4.24), which has the
minimum norm ∥ β ∥.

5 The limit of the GD sequence: Minimum
Norm Least Squares

Generalized inverses can be used to give (many different) solutions to the normal
equations (4.24). The definition and basics of generalized inverses, to the extent
required here, are presented in Appendix C. In particular, we need a special
case of generalized inverses known as the Bjerhammar-Moore-Penrose (BMP)
inverses, also known as pseudoinverses, found in Appendix C.3. The BMP
inverse of the regressor matrix X operating on y is also the unique solution
of the minimum norm minimum least squares, c.f. Appendix C.3.3. The next
result is [6, Proposition 1,p. 9 ]. The proof below fills in a number details
omitted in [6, loc.cit], where the proof is actually three lines long. The result is
dependent on the precise expression of the GD in (3.6).

Proposition 5.1: Take the starting value of GD in (4.20) as β0 = 0k and
µ ≤ 1

λ+(XT X) . Then, as t→ +∞, the βt in (3.6) converges to β+, which is the
unique minimum norm least squares solution of the normal equations (4.24),
and is given by

β+ = X+y,

where X+ is the BMP inverse of the regressor matrix X.

Proof: The convergence βt, as t → +∞, is established by Proposition 4.2, as
µ ≤ 1

λ+(XT X) is being assumed. The special assumption β0 = 0 means that the
first iteration of GD in (3.6) is

β1 = µXT y. (5.25)
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Hence β1 ∈ sp
(
XT
)
. Then β2 given by β2 = β1 + µXT (y−Xβ1) is a sum of

two vectors in sp
(
XT
)
. Since sp

(
XT
)

is a linear subspace (see Lemma C.11),
β2 ∈ sp

(
XT
)
, too. By this token βt ∈ sp

(
XT
)

for every iteration. Hence the
limit satisfies

lim
t→+∞

βt = βc ∈ sp
(
XT
)

,

since sp
(
XT
)

is a closed subspace (see Lemma C.11). Due to Proposition 4.2, βc

satisfies the normal equations. When k > n, there are many solutions of this
linear system of equations. It is shown in Proposition C.12 that every solution
of the normal equations satisfies (C.12). Hence it holds also for βc that

βc = X+y +
(
Ik −X+X

)
z. (5.26)

Here X+y is a particular solution of the normal equations and
(
Ik −XT X

)
z ∈

N (XT X). X+y is characterized in the Lemma C.14. Clearly X+y ∈ sp(X+).
Proposition C.9 gives that sp

(
XT
)

= sp (X+). Thus X+y ∈ sp
(
XT
)
, too.

X+X is a projector matrix according to Definition B.2, as is checked in the
proof of Proposition C.10. The matrix X+X projects onto sp

(
XT
)

in view of
Proposition C.10. By lemma B.3, sp

(
XT
)

= sp
(
XT X

)
. Since N (XT X) and

sp
(
XT X

)
are orthogonal complements, see [11, p. 244], it follows from (5.26)

that
βc = X+y = β+.

Proposition B.5 shows that X+X is a unique projector onto sp (X+). Hence
there is no other particular solution defined by some other generalized inverse
that could be used in (5.26), if βc ∈ sp

(
XT
)
. ■

We consider certain special cases of the preceding Proposition.

Corollary: µ ≤ 1
λ+(XT X) . β0 = 0k. If the regressor matrix has full column

rank, k < n, then it holds for the GD in (3.6) that

lim
t→+∞

βt = β̂ :=
(
XT X

)−1
XT y. (5.27)

■

Proof: In view of (C.3)

β+ = X+y =
(
XT X

)+
XT y.

We can check that this solves the normal equations (4.24), as it should, by means
of Proposition C.7. If XT X has full column rank, the BMP inverse

(
XT X

)+ is
the inverse

(
XT X

)−1, as checked in section C.1. ■

It should be noted that β̂ in (5.27) is in fact a minimum norm least squares
solution, since in this case the normal equations (4.24) have a unique solution.
We have also that the Hessian of Q (β) is

H (x) = XT X (5.28)
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by (3.5). If X has full column rank, then H (x) is positive definite, and this tells
also that a critical point is a local minimum of Q (β), c.f. Proposition D.1.
The rank of an n × k matrix is the size of the largest invertible square matrix
that can be found inside X. When k > n, the column rank of X cannot be
full, since the row rank equals the column rank. Hence the rank of the k × k
matrix XT X is smaller than k and the matrix is not invertible and there are
many solutions to the normal equations.

Corollary: µ ≤ 1
λ+(XT X) . β0 = 0k. k > n and the the regressor matrix X has

full row rank. Then it holds for the GD in (3.6) that

lim
t→+∞

βt = β+ = XT (XXT )−1y. (5.29)
■

Proof: When X has full row rank, rank X = n, then by (C.10) the BMP inverse
is

X+ = XT (XXT )−1

and
β+ := XT (XXT )−1y.

It is checked in section C.3.4 that β+ solves the normal equations. ■

By Proposition C.13 GD converges to an interpolation of the training set. The
intriguing implications of this are discussed in [6] and [10].

6 Rate of Convergence of GD for Least Squares
Regression

6.1 Inequalities
Let βmin = argminβQ (β). Since the Hessian of Q (β), XT X, is in view of
Lemma B.1, positive definite or positive semidefinite we get from (D.6) for βmin
and any β that

Q (βmin) ≥ Q (β) +∇Q (β)T (βmin − β). (6.30)

This is rearranged as

Q (β) ≤ Q (βmin) +∇Q (β)T (β − βmin). (6.31)

Let us recall (4.14), i.e.,

Q
(
βt+1

)
≤ Q (βt) +∇Q (βt)

T (
βt+1 − βt

)
+

λ+
(
XT X

)
2 ∥ βt+1 − βt ∥2 .

By the GD iteration and rules of norm,

λ+
(
XT X

)
∥ βt+1 − βt ∥2= µ2 λ+

(
XT X

)
2 ∥ ∇Q (βt) ∥2 .
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When we take µ ≤ 1
λ+(XT X) , we get µ2 λ+(XT X)

2 = µ
2 · (µλ+

(
XT X

)
) ≤ µ

2 , and

Q
(
βt+1

)
≤ Q (βt) +∇Q (βt)

T (
βt+1 − βt

)
+ 1

2µ ∥ ∇Q (βt) ∥2 .

Furthermore the GD iteration gives again

Q
(
βt+1

)
≤ Q (βt)− µ∇Q (βt)

T
Q (βt) + 1

2µ ∥ ∇Q (βt) ∥2 .

= Q (βt)−
1
2µ ∥ ∇Q (βt) ∥2 .

When we use (6.31) in the right hand side of the latest inequality above, we
have

Q
(
βt+1

)
≤ Q (βmin) +∇Q (β)T (βt − βmin)− 1

2µ ∥ ∇Q (βt) ∥2 .

Hence

Q
(
βt+1

)
−Q (βmin) ≤ 1

2µ

[
2µ∇Q (β)T (βt − βmin)− µ2 ∥ ∇Q (βt) ∥2

]
.

(6.32)
The right hand side is next rewritten:

2µ∇Q (β)T (βt − βmin)− µ2 ∥ ∇Q (βt) ∥2=

2µ∇Q (β)T (βt − βmin)− µ2 ∥ ∇Q (βt) ∥2 + ∥ βt − βmin ∥2 − ∥ βt − βmin ∥2 .

Then one observes that

∥ βt−µ∇Q (βt)−βmin ∥2=∥ βt−βmin ∥2 −2µ∇Q (βt)
T (βt − βmin)+µ2 ∥ ∇Q (βt) ∥2

When we insert this in the right hand side of (6.32) we obtain the inequality

Q
(
βt+1

)
−Q (βmin) ≤ 1

2µ

[
∥ βt − βmin ∥2 − ∥ βt − µ∇Q (βt)− βmin ∥2] .

By the GD iteration βt+1 = βt − µ∇Q (βt) and this gives

Q
(
βt+1

)
−Q (βmin) ≤ 1

2µ

[
∥ βt − βmin ∥2 − ∥ βt+1 − βmin ∥2] . (6.33)

6.2 Linear Convergence Rate
Now we use the final inequality (6.33) above to prove the following inequality.

Proposition 6.1: If one runs GD for least squares for linear regression k times
with µ ≤ 1/λ+

(
XT X

)
, then it holds that

Q (βk)−Q (βmin) ≤ 1
2kµ

∥ β0 − βmin ∥2 . (6.34)
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Proof: Since the inequality (6.33) holds for every iteration of GD,

k∑
t=1

(Q (βt)−Q (βmin)) ≤ 1
2µ

k∑
t=1

[
∥ βt−1 − βmin ∥2 − ∥ βt+1 − βmin ∥2] .

(6.35)
In view of (4.19) we have

k (Q (βk)−Q (βmin)) ≤
k∑

t=1
(Q (βt)−Q (βmin)) .

The sum in the right hand side of (6.35) is again ’telescoping’ and this gives

k∑
t=1

[
∥ βt−1 − βmin ∥2 − ∥ βt+1 − βmin ∥2] = ∥ βo − βmin ∥2 − ∥ βk+1 − βmin ∥2

< ∥ βo − βmin ∥2 .

Hence the inequality (6.34) has been established. ■

The convergence rate in (6.34) is called linear and depends on the distance
between the initial guess and the minimizer.

6.3 An Alternative Analysis for X with Full Column Rank
When XT X is invertible, an alternative analysis of convergence of GD is possi-
ble. The presentation below is due to [2, Chapter 3]. We have β̂ = (XT X)−1XT y.
From (3.6) we get

βt+1 − β̂ =
(
Ik − µXT X

) (
βt − β̂

)
. (6.36)

To see this note that(
Ik − µXT X

)
β̂ = β̂ − µXT X(XT X)−1XT y = β̂ − µXT y,

i.e.
β̂ =

(
Ik − µXT X

)
β̂β̂ + µXT y (6.37)

With (3.6) and when (6.37) is inserted in right hand side of

βt+1 − β̂ = βt + µXT (y−Xβt)− β̂,

we get (6.36) as stated. After p iterations of GD in (6.36) we have

βp − β̂ =
(
Ik − µXT X

)p
(

β0 − β̂
)

. (6.38)

Thus by the consistency property (3.9)

∥ βp − β̂ ∥≤∥
(
Ik − µXT X

)p ∥∥ β0 − β̂ ∥ . (6.39)
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Here by we have by Proposition 3.2 that

∥
(
Ik − µXT X

)p ∥=

the square root of the largest eigenvalue of (
(
Ik − µXT X

)p)T
(
Ik − µXT X

)p
.

But

(
(
Ik − µXT X

)p)T
(
Ik − µXT X

)p = (
(
Ik − µXT X

)T )p
(
Ik − µXT X

)p
.

Here
(
Ik − µXT X

)T =
(
Ik − µXT X

)
. Hence (

(
Ik − µXT X

)p)T
(
Ik − µXT X

)p =(
Ik − µXT X

)2p.
Let ei and λi be the i:th eigenvector and eigenvalue of XT X. Then(

Ik − µXT X
)

ei = ei − µXT Xei = (1− µλi)ei.

If λ1 is the smallest eigenvalue of XT X, then for every i

1− µλi ≤ 1− µλ1.

Hence (1−µλ1)2p = (1−µλ1)2p is the largest eigenvalue of
(
Ik − µXT X

)2p and

∥
(
Ik − µXT X

)p ∥=
√

(1− µλ1)2p =| (1− µλ1)p |

Now we make a theoretically advantageous selection of µ by taking

µ = 2
λ+ + λ1

,

where λ+ is the largest eigenvalue of XT X. This gives

1− µλ1 = 1− 2λ1

λ+ + λ1
= λ+ − λ1

λ+ + λ1
=

λ+
λ1
− 1

λ+
λ1

+ 1
.

Since XT X is invertible, λ1 > 0, and λ+
λ1
−1 > 0, hence | (1−µλ1)p] |= (1−µλ1)p.

Let us set c = λ+
λ1

(=condition number of XT X, see [18, pp. 366−367]). Hence
we insert in (6.38) to get

∥ βp − β̂ ∥≤
(

c− 1
c + 1

)p

∥ β0 − β̂ ∥ . (6.40)

Here 0 < c−1
c+1 < 1. Hence

(
c−1
c+1

)p

→ 0, as p→ +∞, i.e. GD converges to β̂ at
an exponential (or linear) rate.
A consequence of (6.40) is that if one desires to have an error ∥ βp − β̂ ∥< ϵ,
then this happens, when (

c− 1
c + 1

)p

∥ β0 − β̂ ∥< ϵ,
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i.e, (
c− 1
c + 1

)p

<
ϵ

∥ β0 − β̂ ∥
i.e,

p ln
(

c− 1
c + 1

)
< C1 ln ϵ.

where C1 = 1/ ∥ β0 − β̂ ∥. But ln
(

c−1
c+1

)
< 0, as 0 < c−1

c+1 < 1 and thus

p > C1 ln ϵ/ ln
(

c− 1
c + 1

)
,

Here we note that if x < 0, then x = (−1)|x| and thus with C2 = C1/| ln
(

c−1
c+1

)
|

p > C1 ln ϵ/(−1)| ln
(

c− 1
c + 1

)
| = C2(−1) ln ϵ = C2 ln 1

ϵ
.

Hence it suffices to to make ≈ ln(1/ϵ) iterations of GD, whereby one ignores the
effect of the condition number and the initial error.

7 Discussion
Let us note that by Lemma C.14, the norm ∥ β̂

+
∥ is the smallest among all

solutions of the normal equations. Hence, if k is high, β+ should have many
small or zero components, it is a regularizing least squares solution. Hence,
stopped GD (i.e.. the GD iterations are stopped before convergence) has been
investigated for strong connections to ridge regression. For ridge regression see
[12, pp. 322−314]. The question is to find rules of early stopping, where one
does not wait for full convergence.
In practice there are issues of selection of the learning rate, see e.g. [13]. There
are several optimized GD algorithms with names like momentum, adagrad, nes-
terov accelerated gradient, RMSprop.
There are dozens of tutorials, guised in elementary mathematics, for GD and
SGD in the world wide web, see, e.g., the following specialized to linear regres-
sion:
https://machinelearningspace.com/a-comprehensive-guide-to-gradient-descent-algorithm/#multi-regression.
Let us finally quote David Donoho [5, p. 17]:

The k > n case is not anomalous; it is in some sense (nowadays)
the generic case. For many types of event we can think of, we have
the potential of a very large number of measurables quantifying that
event, and a relatively few instances of that event.

• Many genes, relatively few patients with a given genetic disease.
• Many samples of a persons’ speech, relatively few speakers sam-

pled.
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As seen above, GD provides a method that works for k > n.
Textbooks in linear regression analysis are not responding to the current state of
affairs, not even in the recent latest editions, and are harboring the full column
rank case, see for example [12]. An exception is [11], where regression models
are from the start treated by generalized inverses, GD is not taken up in this
text.
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Appendices

A Proof of Proposition 3.1
Proof: of Theorem 3.1 follows. We write

y−Xβ = y−Xβsol + Xβsol −Xβ,

where βsol is any solution to ∇βQ (β) = 0k+1 and by (3.5)

∇βQ (βsol) = 0k+1 ⇔ XT Xβsol = XT y. (A.1)

Let us set for economy of expression U := y − Xβsol and V := X (βsol − β).
Then

Q (β) = 1
2 ∥ y−Xβ ∥2= 1

2 (y−Xβ)T (y−Xβ)

= 1
2
[
(U + V )T (U + V ) = (UT + V T )(U + V )

[
= 1

2
[
UT U + UT V + V T U + V T V

]
.

Set esol := y−Xβsol. Thus

UT U = (y−Xβsol)
T (y−Xβsol) = eT

solesol.

Next

V T V = (Xβsol − β)T
X (βsol − β) = (βsol − β)T

XT X (βsol − β) .

In the above, UT V = V T U , since these are scalar products. Let us expand
UT V .

(y−Xβsol)T X (βsol − β) =
(
XT y−XT Xβsol

)T (βsol − β) .

By (A.1) we have XT Xβsol = XT y and thus the last expression equals zero,
since (

XT y−XT Xβsol
)T (βsol − β) = 0T

k (βsol − β) = 0.

Hence we have established the following decomposition

Q (β) = 1
2 ∥ y−Xβ ∥2= 1

2

[
eT

solesol + (βsol − β)T
XT X (βsol − β)

]
. (A.2)

Next we apply the lemma B.1 to X, which implies that XT X is a positive
semidefinite matrix, and thus

(βsol − β)T
XT X (βsol − β) ≥ 0.

Hence
Q (β) ≥ Q (βsol) = eT

solesol > 0
and the Proposition is proved as asserted. ■
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Corollary A.1: If X has full column rank, then

β̂ = (XT X)−1XT y (A.3)

is the unique minimizer of Q (β).

Proof: β̂ is a solution of the normal equations. But if X has full column rank,
then Lemma B.1 says that XT X is positive definite. Hence the quadratic form
in the right hand side of (A.2)(

β̂ − β
)T

XT X
(

β̂ − β
)

= 0,

if and only if β̂ = β. ■

B Matrix Calculus
B.1 Vector, Scalar product, Norm
x is an n× 1 vector

x =


x1
x2
...

xn

 ∈ Rn xT = (x1, x2, . . . xn) ∈ Rn

xT is a 1× n vector, the transpose of x.

• For x ∈ Rn and y ∈ Rn, the scalar product

xT y :=
n∑

i=1
xiyi =

n∑
i=1

yixi = yT x

0n = the n× 1 vector with all n components = 0

• x ∈ Rn and y ∈ Rn are called orthogonal, if

xT y = 0.

• The norm ∥ x ∥ in Rn is defined by

∥ x ∥=
√

xT x =

√√√√ n∑
i=1

x2
i . (B.1)

It has the following properties

1. ∥ x ∥≥ 0
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2. ∥ x ∥= 0 if and only if x = 0n.
3. ∥ ax ∥= |a| ∥ x ∥, where a is a scalar.
4. ∥ x + y ∥≤∥ x ∥ + ∥ y ∥ triangle inequality.

• Distance between x and y

∥ x− y ∥=

√√√√ n∑
i=1

(xi − yi)2

∥ x− y ∥= 0⇔ x = y

• x and y are two column vectors in Rn. The Cauchy-Schwartz inequal-
ity is

|xT y| ≤∥ x ∥∥ y ∥ . (B.2)
Equality holds in (B.2) if and only if x and y are linearly dependent.

B.2 Matrices and Matrix Rules
B.2.1 Transpose, Inverse

• A and B conformal, (AB)T = BT AT , (AT )T = A. If A and B are
invertible, (AB)−1 = B−1A−1.

• A and B conformal, (A + B)T = AT + BT

• The n× n identity matrix is

In =


1 0 0 . . . 0
0 1 0 . . . 0

0 . . . ... . . . 0
0 0 0 . . . 1

 . (B.3)

• A is n× n and invertible. (
AT
)−1 =

(
A−1)T

. (B.4)

Proof: AT
(
A−1)T =

(
A−1A

)T = IT
n = In and

(
A−1)T

AT =
(
AA−1)T =

IT
n = In. Hence, (

(XT X)−1)T = (XT X)−1 (B.5)
■

• n× n matrix A is positive semidefinite if

xT Ax ≥ 0 for all x

n× n matrix A is positive definite if

xT Ax > 0 for all x ̸= 0n.
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B.2.2 Covariance Matrix

Covariance matrix (also denoted by CX)

C := E
[
(X− µX) (X− µX)T

]
,

where the array in position (i, j) is

cij = E [(Xi − µi) (Xj − µj)]

is the covariance of Xi and Xj . The variances of the components of X are the
elements on the main diagonal, i.e.,

cii = E
[
(Xi − µi)2

]
= Var (Xi) = σ2

i .

X and Y are independent ⇒ Cov(X, Y ) = 0.

B.2.3 Linear Transformations of Covariance Matrices

E [X + Y] = µX + µY (B.6)

If Z = AX + b, then
E [Z] = AµX + b, (B.7)

and
CZ = ACXAT . (B.8)

CX = E
[
XXT

]
− µXµT

X (B.9)

E
[
XT Y

]
= trE

[
XYT

]
. (B.10)

Var
[
aT X

]
= aT CXa (B.11)

B.2.4 Sherman-Morrison-Woodbury Theorem

A is an invertible square n× n matrix and u, v ∈ Rn are column vectors. Then
A + uvT is invertible iff 1 + vTA−1u ̸= 0. In this case,

(
A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u . (B.12)

B.2.5 Trace of a Square Matrix

Let A be a square matrix. The trace trA of A is the sum of the entries in main
diagonal:

tr

a11 · · · a1k

... . . . ...
ak1 · · · akk

 =
∑k

1 ajj

• 1.If A is a k × n-matrix, and B an n× k-matrix, then tr(AB) = tr(BA)
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• 2. In particular, if a is a column-vector, then aT a = tr
(
aaT

)
.

• 3. For any real numbers a and b, tr(aC + bD) = atrC + btrD

• 4. If A is an n× n with the eigenvalues (λi)n
i=1, then trA =

∑n
i=1 λi, [14,

Thm 9.1, p. 280].

Example: A is n × n and positive definite. Its eigenvalue λi corresponds
to the eigenvector ei. Then

0 < eT
i Aei = λieT

i ei = λi,

since eigenvctors are orthonormal. Hence

trA =
n∑

i=1
λi > 0. (B.13)

■

B.2.6 The Range Space (=Column Space) of a Matrix

Let A be any n× p matrix. Then the range space of A is defined by

sp (A) = {x ∈ Rn|there exists a b ∈ Rp such that x = Ab} . (B.14)

B.3 Rayleigh,s Principle
Let us write

∥Ax∥ =
√

(Ax)T
Ax =

√
xT AT Ax =

√
xT Bx and ∥x∥ =

√
xT x,

where B = AT A. Let us consider the ratio

ρ (x) := xT Bx
xT x . (B.15)

By Lemma B.1, B is a symmetric positive semidefinite square matrix, say n×n.
Thus B has n orthonormal eigenvectors ei and corresponding real and non-
negative eigenvalues ordered as λ1 ≤ λ2 ≤ . . . ≤ λn, see [18, pp. 294−296]. An
arbitrary vector x ∈ Rn has the expansion

x =
n∑

i=1
αiei.

Then
Bx =

n∑
i=1

αiBei =
n∑

i=1
αiλiei

and
xT Bx =

n∑
j=1

n∑
i=1

αjαiλieT
j ei, xT x =

n∑
j=1

n∑
i=1

αjαieT
j ei.
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Since ei are orthonormal, i.e., eT
j ei = 0 if i ̸= j and = 1, if i = j, we have

ρ (x) :=
∑n

i=1 α2
i λi∑n

i=1 α2
i

.

Thus

λn − ρ (x) = λn

∑n
i=1 α2

i −
∑n

i=1 α2
i λi∑n

i=1 α2
i

=
∑n

i=1 α2
i (λn − λi)∑n
i=1 α2

i

.

Since λn − λi ≥ 0, we have λn − ρ (x) ≥ 0. Hence for all x ∈ Rn

ρ (x) ≤ λn.

Hence we have also from (B.15)

ρ (en) := eT
n Ben

eT
n en

= λn (B.16)

This is a part of a statement known as Rayleigh,s principle. The proof above
follows [14, p. 407].

B.4 Properties of AT A

Definition B.1: An n × k matrix X has full column rank as soon as the k
columns of X are linearly independent. ■

Lemma B.1: Let A be any n× p matrix. Then

i) AT A is symmetric positive semidefinite.

ii) If A has full column rank, then AT A is symmetric and positive definite.

The positive definiteness ii) follows from the fact that A and AT A have the
same rank [14, Thm. 5.15]. The null space of A is

N (A) = {x ∈ Rp | Ax = 0n}.

The range space of A is

sp(A) = {x ∈ Rn | ∃z ∈ Rp s.t. Az = x}. (B.17)

Lemma B.2:
N (A) = N (AT A)

Proof: Take x ∈ N (A). Then Ax = 0n and AT (Ax) = AT 0n = 0n. Thus
N (A) ⊆ N (AT A).
Take x ∈ N (AT A). Then xT AT Ax = 0. But xT AT Ax =∥ Ax ∥2= 0, i.e.,
Ax = 0n, and N (AT A) ⊆ N (A). ■
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Lemma B.3:
sp(AT ) = sp(AT A)

Proof: For any matrix B the spaces sp(B) and N (BT ) are orthogonal subspaces
[18, p. 138]. This is known as the fundamental theorem of linear algebra [18,
loc.cit.]. Hence sp(AT A) and N (AT A) are orthogonal. By the same token
sp(AT ) and N (A) are orthogonal. Then we note lemma B.2, N (A) = N (AT A),
this implies (details omitted) that sp(AT ) = sp(AT A). ■

B.5 Projector Matrix
We cite a definition from [18, p. 157].
Definition B.2: If H is idempotent, H2 = H · H = H, and symmetric, then
H is called a projection matrix. ■

It follows that I is the only invertible projection matrix, since if H−1 exists,
then

H2 = H ⇔ H−1H2 = H−1H = I⇔ H−1H ·H = I⇔ H = I.

Hence I−H is a projection matrix.
Lemma B.4: It holds that

i)
N (H) = sp(I−H) (B.18)

ii)
sp(H) ∩ sp(I−H) = 0. (B.19)

Proof: We have by definitions of the sets involved:
i) Take x ∈ sp(I −H). Then there is z such that x = (I −H)z = z −Hz.

Thus Hx = Hz − H2z = Hz − Hz = 0, i.e., x ∈ N (H). Next, take
x ∈ N (H). Then x = x−Hx = (I−H)x, i.e., x ∈ sp(I−H).

ii) If x ∈ sp(H)∩ sp(I−H). There is z1 such that x = (I−H)z1 and z2 such
that x = Hz2. Thus Hz2 = (I−H)z1 ⇔ Hz2 = H2z2 = Hz1−H2z1= 0.
I.e., x = Hz2 = 0. ■

Proposition B.5: If a projector matrix H maps onto the vector space S, then
H is unique.

Proof: Let H and L be two projector matrices mapping onto the vector space S.
For any x we have Lx ∈ S. Then, since H maps onto S, H(Lx) = HLx = Lx,
and we have HL = L. In the same way we get LH = H. Now
(H−L)T (H−L) = (H−L)(H−L) = H2−HL−LH +L2 = H−L−H +L = O,

where O =the zero matrix. But if we have a matrix C = (cij) such that
CT C = O, then on the main diagonal of CT C are found the squared norms
of all columns in C,

∑
j c2

ij = 0. Thus all cij = 0, all columns in C are zero
vectors, and C = O. ■
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C Generalized Inverses
C.1 On Linear Systems of Equations & Generalized In-

verses
Consider the general equation with an n× k matrix A

Ax = z,

where we are seeking a k×1 vector x as a solution. There are three possibilities,
see, e.g., [16, Chapter 4]:

• There is no solution ⇔ z /∈ sp(A)= the linear span of the columns in A.

• There is a unique solution ⇔ A is invertible.

• There are many solutions.

We try to find a k × n matrix G, which would behave as much
like A−1 is such that if there are many solutions, then Gz is one
of them, i.e.,

AGz = z

Proposition C.1: A k×n matrix G is called a generalized inverse of an n×k
matrix A if any of the following equivalent conditions hold:

1. Gz is a solution to Ax = z if solutions exist.

2. GA is idempotent and rank GA = rank A ⇔ AG is idempotent and rank
AG= rank A

3. AGA = A

A proof of these equivalences is found in [16, p. 106].
Suppose n = k and that the inverse A−1 exists. We leftmultiply in AGA = A

A−1AGA = A−1A⇔ GA = I.

We obtain AG = I by rightmultiplication in AGA = A. Thus G = A−1.
It can be shown that a generalized inverse always exists,and that it is unique if
and only if A−1 exists. With G 7→ A− the set of all generalized inverses of A is
denoted by .

{A}− = {A−|AA−A = A} (C.1)

Lemma C.2: If A− is a generalized inverse of A, then (A−)T is a generalized
inverse of AT , or (

AT
)− =

(
A−)T (C.2)

Proof:
AT
(
A−)T

AT =
(
A−A

)T
AT =

(
AA−A

)T = AT ,

where the rule 3. in Proposition C.1 was applied. ■
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In order to give a first example of a pseudoinverse we .need an auxiliary matrix
result.

Lemma C.3:
XA = XB ⇔ XT XA = XT XB.

Proof: The statement XA = XB ⇒ XT XA = XT XB is clear. We are to prove
that

XT XA = XT XB ⇒ XA = XB

By assumption (O is a matrix of zeroes)

O = XT X(A−B).

Then
O = (A−B)XT X(A− I) = (X(A−B)T X(A−B).

But then it follows as in the proof of Proposition B.5 that X(A−B) = O, i.e.,
XA=XB. ■

Proposition C.4: X is n× k. A generalized inverse of X is

X− =
(
XT X

)−
XT , (C.3)

where
(
XT X

)− is a generalized inverse of XT X.

Proof: Set G =
(
XT X

)−
XT . We must show that G ∈ {X}−, i.e., by (C.1)

that XGX = X. Here we compute

XT X
(
XT X

)−
XT X = XT X, (C.4)

where the assumption that G ∈
{

XT X
}− was used, i.e., (C.1) was used. Set

now A :=
(
XT X

)−
XT X. Hence we have in (C.4)

XT XA = XT X.

But then we apply Lemma C.3 with B = I, which gives XA = X, or,

X
(
XT X

)−
XT X = X,

which shows that
(
XT X

)−
XT ∈ {X}−, which is the Proposition as asserted.■

Lemma C.5: If G ∈
{

XT X
}−, then GT ∈

{
XT X

}−

Proof: Let G be any generalized inverse of XT X. Then XT XGXT X = XT X,
and hence (XT XGXT X)T = (XT X)T = XT X. And (XT XGXT X)T =
XT XGT XT X, so that

XT XGT XT X = XT X,

which shows that GT ∈
{

XT X
}−. ■
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C.2 Generalized Inverses and the Normal Equations
Lemma C.6: The normal equations.

XT Xβ = XT y (C.5)

have solutions.

Proof: By the preceding there is no solution to Ax = z ⇔ z /∈ sp(A). Thus, if
z ∈ sp(A), there are solutions. Obviously XT y ∈ sp(XT ). Hence lemma B.3
implies that XT y ∈ sp(XT X). ■

Proposition C.7: If G is any generalized inverse of XT X, then

β̂
†

= GXT y

is one solution to the normal equations (C.5).

Proof: By Lemma C.6, there exists at least one βo such that

XT Xβo = XT y. (C.6)

Then
XT Xβ̂

†
= XT XGXT y = XT XGXT Xβo,

where we used (C.6). As G ∈
{

XT X
}− with the notation in (C.1) we have

XT XGXT X = XT X,
= XT Xβo = XT y,

as was to be proved. ■

It must be observed that β̂
†

is not a statistical estimate, but just a solution of
the normal equations, see [16, pp. 34−35], as it depends on the selection of the
generalized inverse.
Let now

(
XT X

)− be any generalized inverse of XT X and let us define a gen-
eralized hat matrix by

H− := XX− = X
(
XT X

)−
XT , (C.7)

where we used (C.3) in Proposition C.4. The following Proposition is from [11,
p. 12].

Proposition C.8: X is n× k The following properties hold:

1. H− is idempotent.

2. H− is the same independently of which
(
XT X

)− is used.

3. The range of H− is sp(X).

4. H− is symmetric.
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Proof: The proof proceeds step by step in the given order.

1. By definition of (X)−, see (C.1), that we have

H−H− = XX−X︸ ︷︷ ︸
=X

X− = XX− = H−.

2. Let G1 ∈
{

XT X
}− and G2 ∈

{
XT X

}−. Hence

XT XG1XT X = XT X, XT XG2XT X = XT X.

Take now A = G1XT X and B = G2XT X and apply Lemma C.3 to obtain

XG1XT X = XG2XT X.

If we transpose this result we get

XT XGT
1 XT = XT XGT

2 XT

When we exploit Lemma C.3 again with A = GT
1 XT and B = GT

2 XT ,
which yields

XGT
1 XT = XGT

2 XT = H−,

as in view of Lemma C.5, GT
1 ∈

(
XT X

)− and GT
2 ∈

(
XT X

)−.

3. By (C.1)

X = XX−X ⇔ X = X
(
XT X

)−
XT X ⇔ X = H−X. (C.8)

Hence we get that H− is a projection matrix with range sp(X).

4. Compute(
H−)T =

(
X−)T

XT =
((

XT X
)−

XT
)T

XT = X
((

XT X
)−)T

XT .

In view of Lemma C.5
((

XT X
)−
)T

∈
{

XT X
}−. Hence by 2. in this

Proposition proved above,

X
((

XT X
)−)T

XT = H−,

and the asserted symmetry has been established. ■

Hence we know that H− is a projection matrix with range sp(X). In Proposition
C.8 one considers G, any generalized inverse of XXT and then defines β̂

†
=

GXT y, a solution of the normal equations. Next the predictor is

ŷ† = Xβ̂
†

= X
(
XXT

)−
XT y = H−y.

By part 2. of Proposition C.8 H− is the same independently of which
(
XT X

)−

is used. Hence ŷ† is also independent of of which
(
XT X

)− is used.
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C.3 Bjerhammar-Moore-Penrose Inverse
C.3.1 Definition and Examples

If a generalized inverse G of A satisfies the four conditions below, then G is
most often called the Moore-Penrose inverse. The name pseudoinverse is also
frequently encountered.
MP1 AGA = A

MP2 GAG = G

MP3 (AG)T = AG

MP4 (GA)T = GA

Moore (1935), Penrose (1955) showed that for a given A there is only one matrix
G that satisfies MP1-MP4. The proof of this is quite long. We set G 7→ A+

to denote the Moore-Penrose inverse of A. Arne Bjerhammar [3] found A+

independently of Moore and Penrose. We shall talk about the Bjerhammar-
Moore-Penrose (BMP) inverse. There are two important special cases of BMP
inverses.
Example: Assume that A has full column rank, rankA = k. Then the BMP
inverse of A is

A+ = (AT A)−1AT

This holds by a direct check of MP1-MP4 hold. Lemma C.3 is needed. A+ is
the left inverse of A, since

A+A = (AT A)−1AT A = Ik.

Hence, if X has full column rank, then

X+ = (XT X)−1XT (C.9)

is the BMP inverse of X.
Example: If A has full row rank, rankA = n, then

A+ = AT (AAT )−1 (C.10)

is the BMP inverse of A. ■

Again, one checks that MP1-MP4 hold. A+ is a right inverse of A, since AA+ =
In, which also checks with MP4. Addional properties of BMP inverses are

1. (cA)+ = 1
c A+,

2. (A+)+ = A,

3. if A is m× r and B is r × n and both matrices have the same rank, then
(AB)+ = B+A+, and

4. there is a counterexample to show that (AB)+ ̸= B+A+ can occur.
These are left as exercises for the reader.
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C.3.2 On the Range of X+ and X+X

The BMP X+ has the following important property.

Proposition C.9: X+ is the BMP inverse of the regressor matrix X. Then

sp
(
X+) = sp

(
XT
)

. (C.11)

Proof: Take any y. By MP2 and MP4 we get

sp
(
X+) ∋ X+y = X+XX+y =

(
X+X

)
X+y =

(
X+X

)T
X+y.

Then the rule for transposes of products of matrices

= XT
(
X+)T

X+y = XT
((

X+)T
X+
)

y = XT u ∈ sp
(
XT
)

,

with u =
(

(X+)T
X+
)

y. Hence every X+y ∈ sp
(
XT
)
. Conversely, take any

u.
sp
(
XT
)
∋ XT u = X+XT X+u

= X+(XT X+)T u = X+(X+)T Xu = X+w ∈ sp
(
X+) ,

where w = (X+)T Xu. This proves the claim. ■

The proof of the next statement is a small modification of [11, Result A.14
p. 251], where it is shown that AA− projects onto sp

(
XT
)
for any generalized

inverse A− of A .

Proposition C.10: X+ is the BMP inverse of the regressor matrix X. Then
X+X projects onto sp

(
XT
)
.

Proof: X+X is idempotent, since X+XX+X = X+X by MP2. XX+ is sym-
metric by MP4. Hence X+X is a projector matrix according to Definition B.2.
The statement "a projection onto" requires to show that

i) X+Xz ∈ sp
(
XT
)

for every z

ii) It holds for every y ∈ sp
(
XT
)

that there is a z such that y = X+Xz.

The proof proceeds in the order above.

i) Take any z. By MP4 and the rule for transposes of products of matrices

X+Xz =
(
X+X

)T z = XT
(
X+)T z = XT u ∈ sp

(
XT
)

,

where u = (X+)T z.
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ii) Take any y ∈ sp
(
XT
)
, that is, there exists a z such that y = XT z. We

have by MP4 and (C.2)

X+X =
(
X+X

)T = XT
(
X+)T = XT

(
XT
)+

.

Hence
X+Xy = XT

(
XT
)+ y = XT

(
XT
)+

XT z

and by MP1
= XT z = y.

Hence the claim about the range of X+X holds as claimed. ■

We need following observation, too.

Lemma C.11: sp
(
XT
)

is a closed linear subspace of Rk.

Proof: We observe first that since XT is k × n, sp
(
XT
)
⊂ Rk by (B.17).

For closedness it is required to prove that if xn ∈ sp
(
XT
)

for every n, and
xn → x, as n→ +∞, then x ∈ sp

(
XT
)
, too. We have xn = XT yn. If xn → x,

then it must be that yn → y. In view of the consistency property (3.9)

∥ XT yn −XT y ∥≤∥ XT ∥∥ yn − y ∥→ 0 as n→ +∞.

Hence xn = XT yn → XT y, as n→ +∞. But limits in Rk with the norm ∥ x ∥
are unique, and thus x = XT y ∈ sp

(
XT
)
.

sp
(
XT
)

is also a linear space, since if xi ∈ sp
(
XT
)

for i = 1, 2, . . . , n, then

n∑
i=1

λixi =
n∑

i=1
λiX

T yi = XT

[
n∑

i=1
λiyi

]
.

i.e.
∑n

i=1 λixi ∈ sp
(
XT
)
, as was to be proved. ■

C.3.3 BMP Inverses and Normal Equations

Next we find the general solution of the normal equations (C.6).

Proposition C.12: Let βo be an arbitrary solution of the normal equations
(C.6). X+ is the BMP inverse of X. Then

βo = X+y +
(
Ik −X+X

)
z. (C.12)

X+y is a particular solution of (C.6) and (Ik −X+X) z ∈ N (XT X).

Proof: Let t be one solution of Xt = 0n, i.e, t ∈ N (X). Then t ∈ N (X+X). It
was observed in the proof of Proposition C.10 that X+X is a projector. Lemma
B.4 or (B.18) entail that

N (X+X) = sp(Ik −X+X)
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Hence there is a z such that t = (Ik−X+X)z. Next we verify that βo in (C.12)
solves (C.6). In this respect we have

XT Xβo = XT XX+y + XT X
(
Ik −X+X

)
z,

Here
XT XX+y = XT

(
XX+)y = XT

(
XX+)T y,

where we used MP3. Rules of transposed product matrices and (C.2) entail

= XT
(
X+)T

XT y = XT
(
XT
)+

XT y = XT y,

where the final step follows by MP1. Next

XT X
(
Ik+1 −X+X

)
z = XT Xz−XT XX+Xz.

In this XX+ = (XX+)T by MP3 and hence XT XX+X = XT (XX+)T
X

= XT (XT )+XT X =(XT (XT )+XT )X = XT X by Lemma C.2. Hence XT Xz−
XT XX+Xz = 0, i.e. (Ik+1 −X+X) z ∈ N (XT X). Then, by MP3

XT Xβo = XT XX+y = XT (XX+)y = XT (XX+)T y

= XT (X+)T XT y = XT y,

where we used MP1 and (C.2). Hence the expression in (C.12) has been veri-
fied. ■

C.3.4 Interpolation Limit

When X has full row rank, rank X = n, then we define by (C.10)

β+ := X+y.

Then
XT Xβ+ = XT XXT (XXT )−1︸ ︷︷ ︸

=In

y = XT y.

Hence β+ is a solution to the normal equations (C.5).

Proposition C.13: X has full row rank n, then the BMP predictor given by
ŷ+ = Xβ+ is an interpolation of the training set.

Proof: We have from (C.10)

ŷ+ = Xβ+ = XX+y

= XXT (XXT )−1y = y,

which is the statement of full interpolation. ■

Here we have the hat matrix H = I, which is a idempotent and symmetric
matrix, and the only invertible idempotent and symmetric matrix.
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C.4 Minimum Norm Least Squares Estimate
C.4.1 The Minimization Problem

This section is based on [16, pp. 114−115] and one of the steps in [10], c.f., [14,
pp. 142−144], too.

Lemma C.14: β̂
+

= X+y is the minimum norm least squares estimate, or,

β̂
+

= min ∥ β ∥

subject to
β minimizes ∥ y−Xβ ∥

Proof: By (C.12) it holds for an arbitrary solution βo of the normal equations
that

∥ βo ∥2=∥ X+y +
(
Ik −X+X

)
z ∥2

=∥ X+y ∥2 + ∥
(
Ik −X+X

)
z ∥2 −2(zT

(
Ik −X+X

)T
X+y.

Here
zT
(
Ik −X+X

)T
X+y = zT

(
Ik −X+X

)
X+y,

since Ik −X+X is symmetric. But(
Ik −X+X

)
X+y = X+y−X+XX+y,

and by MP2
= X+y−X+y = 0.

Hence

∥ βo ∥2=∥ X+y ∥2 + ∥
(
Ik+1 −X+X

)
z ∥2≥∥ X+y ∥2=∥ β+ ∥2,

which completes the proof. ■

C.4.2 Asymptotic Properties of the Minimum Norm LSE

A training set of observed responses y = (y1, y2, . . . , yn)T and the corresponding
n× (k + 1) data matrix X are available from some source with the true model

Y = Xβ∗ + ε. (C.13)

Here ε has the mean vector = 0n and covariance matrix σ2In. We use the
minimum norm least squares solution of the normal equations

β+ = X+y,

where X+ is the BMP inverse of the regressor matrix X. The mean squared
error is

MSE = E ∥ β∗ − β+ ∥2 .
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Here

β∗ − β+ = β∗ −X+Y
= β∗ −X+Xβ∗ −X+ε

=
(
I−X+X

)
β∗ −X+ε. (C.14)

In view of MP4 and MP2(
I−X+X

)T
X+ =

(
I− (X+X)T

)
X+

=
(
I−X+X

)
X+ = X+ −X+XX+ = X+ −X+ = 0.

Hence
MSE =∥

(
I−X+X

)
β∗ ∥2 +E ∥ X+ε ∥2 .

By known rules of covariance matrices, (B.10),

E ∥ X+ε ∥2= E
[
(X+ε)T X+ε

]
= trE

[
(X+ε)(X+ε)T

]
= σ2tr(X+(X+)T ).

From (C.3) we note X+ =
(
XT X

)+
XT . Hence

X+(X+)T =
(
XT X

)+
XT (

(
XT X

)+
XT )T

=
(
XT X

)+
XT X(

(
XT X

)+)T =
(
XT X

)+
XT X(

(
XT X

)T )+ =
(
XT X

)+
XT X

(
XT X

)+

where we used (C.2). Then MP2 gives

σ2tr(X+(X+)T ) = σ2tr((XT X)+).

Hence we have the following formula due to [10].

Proposition C.15:

MSE =∥
(
I−X+X

)
β∗ ∥2 +σ2tr(XT X)+). (C.15)

Here we note
β∗ = X+Xβ∗ +

(
I−X+X

)
β∗ (C.16)

where X+X projects orthogonally to spXT by Proposition C.10 and (I−X+X)
projects oorthogonally to N (X). Hence by (C.13)

Y = Xβ∗ + ε = XX+Xβ∗ + X
(
I−X+X

)
β∗ + ε

= XX+Xβ∗ +
(
X −XX+X

)
β∗ + ε = Xβ∗ + ε.

where we used MP1 twice. Hence we see, as pointed out in [10], that the
first term in (C.15) is the contribution to the MSE due to the part of the
true parameter, which does not influence the training data and thus cannot be
estimated from data. Hence (I−X+X) β∗ is called the unidentifiable part of
the true parameter.
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New data xn+1, yn+1 is received and the training set is augmented. The new
(n + 1)× k regressor matrix Xn+1 is

Xn+1 =



xT
1

xT
2
...

xT
i
...

xT
n

xT
n+1


.

The current regressor matrix X 7→ Xn is found inside the augmented matrix as

Xn+1 =
(

Xn

xT
n+1

)
.

Hence we get

XT
n+1Xn+1 =

(
Xn

xT
n+1

)T (
Xn

xT
n+1

)
(C.17)

=
(
XT xn+1

)( X
xT

n+1

)
= XT

n Xn + xn+1xT
n+1.

We have the next result from [10]. The proof below fills in a few details not
included in loc.cit..
Proposition C.16: If X has full column rank k, n > k, then MSEn =
σ2tr(XT

n Xn)1 and
MSEn+1 < MSEn (C.18)

for all n ≥ 1.

Proof: By (C.9) X+ = (XT X)−1XT and thus(
Ik −X+X

)
=
(
Ik − (XT X)−1XT X

)
= 0k

and thus the unidentifiable part of the true parameter disappears and MSEn =
σ2tr((XT

n Xn)−1).
To establish the inequality (C.18), we apply the Sherman-Morrison-Woodbury
inversion rule (B.12) with A = XT X, uvT = xn+1xT

n+1. We note that XT X is
invertible, since X has full column rank. In addition, 1+xT

n+1
(
XT X

)−1 xn+1 ̸=
0, since xT

n+1
(
XT X

)−1 xn+1 > 0, because
(
XT X

)−1 is positive definite. Thus
we get

(
XT

n+1Xn+1
)−1 =

(
XT

n Xn + xn+1xT
n+1
)−1

=
(
XT

n Xn

)−1 −
(
XT

n Xn

)−1 xn+1xT
n+1

(
XT

n Xn

)−1

1 + xT
n+1 (XT

n Xn)−1 xn+1
.
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By rules of trace, see section (B.2.5), we get

σ2tr
(
XT

n+1Xn+1
)−1 = σ2tr

(
XT

n Xn

)−1

−σ2tr
[(

XT
n Xn

)−1 xn+1xT
n+1

(
XT

n Xn

)−1

1 + xT
n+1 (XT

n Xn)−1 xn+1

]
.

We have by trace rules, see section B.2.5, that

tr
[(

XT
n Xn

)−1 xn+1xT
n+1

(
XT

n Xn

)−1

1 + xT
n+1 (XT

n Xn)−1 xn+1

]
=

tr
[(

XT
n Xn

)−1 xn+1xT
n+1

(
XT

n Xn

)−1
]

1 + xT
n+1 (XT

n Xn)−1 xn+1
.

Here for any x ̸= 0, and since
(
XT

n X=n

)−1 is symmetric in view of (B.5)

xT
(
XT

n Xn

)−1 xn+1xT
n+1

(
XT

n Xn

)−1 x =
(

xT
n+1

(
XT

n Xn

)−1 x
)T

xT
n+1

(
XT

n Xn

)−1 x

=
(

xT
n+1

(
XT

n Xn

)−1 x
)2

> 0,

as the null space of
(
XT

n Xn

)−1 is = {0}. Hence, since the trace of a positive
definite matrix is positive, (B.13), and since σ2/(1+xT

n+1
(
XT

n Xn

)−1 xn+1 > 0),

σ2tr
(
XT

n+1Xn+1
)−1

< σ2tr
(
XT

n Xn

)−1
,

as was to be proved. ■

The following is not found in [10].

Proposition C.17: If λ+(n) := λ+
(
(XT

n Xn)−1) → 0, as n → +∞, where
λ+(n) is the largest eigenvalue of (XT

n Xn)−1, then

MSEn → 0, as n→ +∞.

Proof: Since MSEn = σ2tr
(
(XT

n Xn)−1) > 0, it follows from (C.18) that
MSEn → MSE∗, as n → +∞ in view of Proposition E.1. From section B.2.5
know that

tr
(
XT

n Xn

)−1 =
k∑

i=1
λi

(
(XT

n Xn)−1) ,

where λi

(
(XT

n Xn)−1) are the real positive eigenvalues of (XT
n Xn)−1. Hence

k∑
i=1

λi

(
(XT

n Xn)−1) < kλ+(n).

Hence MSE∗ = 0, as was to be proved. ■
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Proposition C.18: We have the true model

Y = Xβ∗ + ε, (C.19)

where n > k and X has full column rank, E [ε] = 0n, Cε = σ2In, and σ2 is
known and does not depend on X. Assume that

lim
n→+∞

λ+(n) = 0,

where λ+(n) is the largest eigenvalue of (XT X)−1. β̂ is the LSE based on a
training set of n samples of (C.23). Then

lim
n→+∞

E

[(
lT β̂ − lT β∗

)2
]

= 0, (C.20)

Proof: Under the true model (C.23)

β̂ = (XT X)−1XT Xβ∗ + (XT X)−1XT ε = β∗ + (XT X)−1XT ε. (C.21)

Then
E
[
lT β̂

]
= lT E

[
β̂
]

= lT
[
(XT X)−1XT E [Y]

]
= lT (XT X)−1XT Xβ∗ + lT (XT X)−1XT E [ε] = lT β∗.

Hence, by definition of variance,

E

[(
lT β̂ − lT β∗

)2
]

= Var
[
lT β̂

]
= lT C

β̂
l,

where we used (B.11). From (C.21), (B.8), and since Cε = σ2In we have

C
β̂

= σ2(XT X)−1XT
(
(XT X)−1XT

)T = σ2(XT X)−1XT
(
X(XT X)−1) ,

where the symmetry of (XT X)−1 was applied. Thereby

= σ2(XT X)−1(XT X(XT X)−1) = σ2(XT X)−1.

Now,
lT C

β̂
l = σ2lT (XT X)−1l = σ2 | lT (XT X)−1l |,

since (XT X)−1 is positive definite. Thereafter, by Cauchy-Schwartz inequality
(B.2) and consistency property (3.9)

| lT
(
(XT X)−1l

)
|≤∥ lT ∥∥ (XT X)−1l ∥≤∥ (XT X)−1 ∥∥ l ∥2,

since by definition of norm, ∥ lT ∥=
√

(lT )T lT =
√

llT =
√

lT l =∥ l ∥.

= C ∥ (XT X)−1 ∥= Cλ+(n)
as was shown in the proof of Lemma 3.3. When compiling from the above, we
obtain

E

[(
lT β̂ − lT β∗

)2
]
≤ Cλ+(n),

and the assertion in (C.24) follows. ■
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The Proposition C.16 can be extended to other minimum norm least squares
estimators, if there is a suitable Sherman-Morrison-Woodbury generalized in-
version rule, of whose existence this author is not aware. However, Proposition
33 can be extended readily to β+ = X+y, where X+ is the BMP inverse of
X. An additional assumption required is the estimability of lT β∗. By this one
means that there exists a vector a so that

E
[
aT Y

]
= lT β∗. (C.22)

For the notion of estimability, see [11, pp. 38−41] and [16, pp. 37−38, p. 284].

Proposition C.19: We have the true model

Y = Xβ∗ + ε, (C.23)

where n < k. E [ε] = 0n, Cε = σ2In, and σ2 is known and does not depend on
X. Assume that lT ∈ sp(XT ) and that

lim
n→+∞

λ+(n) = 0,

where λ+(n) is the largest eigenvalue of (X+X)2. β+ = X+y is the minimum
norm LSE based on a training set of n samples of (C.23). Then

lim
n→+∞

E

[(
lT β̂ − lT β∗

)2
]

= 0. (C.24)

Proof: From (C.14)

β∗ − β+ =
(
I−X+X

)
β∗ −X+ε.

Let us take lT ∈ sp(XT ). Since (I−X+X) maps to N (XT X) = N (XT ),
lT (I−X+X) β∗ = 0. Hence

E
[
lT β∗ − lT β+] = 0⇔ E

[
lT β+] = lT.β∗,

and hence lT β∗ is estimable, as with respect to (C.22)

aT Y = lT X+Y.

Thus again, as in the proof of Proposition 33,

E

[(
lT β̂ − lT β∗

)2
]

= Var
[
lT β̂

]
= lT Cβ+ l.

By the same rules as in the proof of Proposition 33

Cβ+ = σ2X+(X+)T .

Then we have as in the proof of Proposition 33

E
[
lT β∗ − lT β+] ≤ C ∥ X+(X+)T ∥= Cλ+(n),

and the claimed convergence follows. ■
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D Matrix Differential Calculus
D.1 Matrix Derivatives
Let A be a k × k matrix of constants, a be a k × 1 vector of constants, and y
be a k × 1 vector of variables.

1. If z = a⊤y, then
∂z
∂y = ∂a⊤y

∂y = a.

2. If z = y⊤y, then
∂z
∂y = ∂y⊤y

∂y = 2y.

3. If z = a⊤Ay, then
∂z
∂y = ∂a⊤Ay

∂y = A⊤a.

4. If z = y⊤Ay, then

∂z
∂y = ∂y⊤Ay

∂y = Ay + A⊤y.

If A is symmetric, then
∂y⊤Ay

∂y = 2Ay.

D.2 Gradient and Hessian
x ∈ Rd, f(x) is a smooth function, x 7→ f(x) ∈ R. By smoothness we under-
stand that f(x) has all second order partial derivatives and that these second
derivatives are continuous.

1. The gradient vector ∇f(x) is the d× 1 vector of first order partial deriva-
tives

∇f(x) =
(

∂

∂x1
f(x), ∂

∂x2
f(x), . . .

∂

∂xd
f(x)

)T

(D.1)

2. The Hessian matrix H(x) is the d × d matrix of second order partial
derivatives

H(x) =
[

∂2

∂xi∂xj
f(x)

]d,d

i=1,j=1
=
[

∂2

∂xj∂xi
f(x)

]d,d

j=1,i=1
(D.2)

D.3 Applications of the Chain Rule
x ∈ Rd, f(x) is a smooth function, x 7→ f(x) ∈ R. Set h := (y− x) ∈ Rd and

F (t) := f (x + th) , 0 ≤ t ≤ 1.

Next we find two applications of this function.
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D.3.1 The Gradient Integral

The general chain rule of calculus, see, e.g., [15, p. 69], yields

F
′
(t) = d

dt
F (t) = ∂

∂h1
f (x + th) h1 + ∂

∂h2
f (x + th) h2 + . . .+ ∂

∂hd
f (x + th) hd

(D.3)
= ∇f (x + th)T (y− x) .

Hence
f (y)− f (x) = F (1)− F (0) =

∫ 1

0
F

′
(t)dt

i.e.
f (y)− f (x) =

∫ 1

0
∇f (x + th)T (y− x) dt. (D.4)

D.3.2 The Local Minimum of f (x)

By another application of the chain rule we get from (D.3)

F
′′
(t) = d2

d2t
F (t) =

d∑
i=1

d∑
j=1

∂

∂hi

∂

∂hj
(x + th) hihj = hTH (x + th) h, (D.5)

where H (x + th) is the Hessian of f (x) at x + th. By a series expansion we
have

F (1) = F (0) + F
′
(0) + 1

2F
′′
(η).

i.e.
f (x + h) = f (x) +∇f (x)T h + 1

2hTH (x + ηh) h, (D.6)

where H (x + ηh) the Hessian matrix defined in (D.2).

Proposition D.1: Let a be a critical point of f (x), i.e.,

∇f (a) = 0d.

Then a is a local minimum, as soon as the Hessian matrix H (a) is a positive
definite matrix.

Proof: By (D.6)

f (a + h)− f (a) = ∇f (a)T h︸ ︷︷ ︸
=0

+1
2hTH (a + ηh) h

i.e.
f (a + h)− f (a) = 1

2hTH (a + ηh) h
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By the assumed smoothness of f (x), H (a + ηh) is positive definite for ηh suf-
ficiently close to a, as H (a) is a positive definite matrix. Hence for all such
ηh

f (a + h)− f (a) > 0,

and thus a is a local minimum. ■

The proof above is a part of the proof of [1, Thm. 3, p. 748].
If the Hessian in (D.6) is positive definite or positive semidefinite, we get

f (y) ≥ f (x) +∇f (x)T (y− x). (D.7)

E On Convergence of Sequences and Sums
Definition E.1: A sequence {si}+∞

i=0 of real numbers is called

• monotonically increasing, if si ≤ si+1 for all i = 1, 2, . . .

• monotonically deccreasing, if si ≥ si+1 for all i = 1, 2, . . .. ■

Proposition E.1: A monotonical sequence is convergent if and only if it is
bounded.

For a proof, see, e.g., [17, Thm. 3.14]. Furthermore,

Proposition E.2: If sn =
∑n

i=0 ai converges, as n→ +∞, then

lim
i→+∞

ai → 0.

This is [17, Thm. 3.27].
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