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RANDOM VARIABLES

X is a (discrete) random variable that assumes values in X and Y is a
(discrete) random variable that assumes values in Y .
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Random Variables X and Y are two discrete state spaces, whose generic
elements are called values or instantiations and denoted by xi and yj ,
respectively.

X = {x1, · · · , xL},Y = {y1, · · · , yJ}.

| X | (:= the number of elements in X ) = L ≤ ∞, | Y |= J ≤ ∞. Unless
otherwise stated the alphabets considered here are finite.
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JOINT PROBABILITY DISTRIBUTIONS

A two dimensional joint (simultaneous) probability distribution (simultan
sannolikhetsfrdelning) is a probability defined on the alphabet X × Y

p(xi , yj ) := P(X = xi , Y = yj ). (1)

p(xi , yj) ≥ 0, (2)

L

∑
i=1

J

∑
j=1

p(xi , yj ) = 1. (3)
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MARGINAL DISTRIBUTION

Marginal distribution for X :

p(xi ) =
J

∑
j=1

p(xi , yj). (4)

Marginal distribution for Y :

p(yj ) =
L

∑
i=1

p(xi , yj). (5)
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MARGINAL DISTRIBUTION

These notions can be extended to define the joint (simultaneous)
probability distribution of n random variables and the marginal
distributions of any subset thereof.
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SIMULTANEOUS DISTIRBUTION AS A TABLE

X /Y y1 y2 y3

x1 0.05 0.10 0.05
x2 0.15 0.00 0.25
x3 0.10 0.20 0.10

For example
p (X = x2, Y = y3) = 0.25
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MARGINAL DISTRIBUTION

X /Y y1 y2 y3

x1 0.05 0.10 0.05
x2 0.15 0.00 0.25
x3 0.10 0.20 0.10

p (X = x1) = 0.05 + 0.10 + 0.05 = 0.20

p (X = x2) = 0.15 + 0.00 + 0.25 = 0.40

p (X = x3) = 0.10 + 0.20 + 0.10 = 0.40
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CONDITIONAL PROBABILITY DISTRIBUTIONS

The conditional probability for X = xi given Y = yj is

p(xi | yj ) :=
p(xi , yj )

p(yj )
. (6)

The conditional probability for Y = yj given X = xi is

p(yj | xi ) :=
p(xi , yj )

p(xi )
. (7)

Here we assume p(yj ) > 0 and p(xi ) > 0.
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CONDITIONAL PROBABILITY DISTRIBUTIONS

In other words

p(yj | xi ) =
prob. for the event {X = xi , Y = yj}

prob. for the event {X = xi}
.
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CONDITIONAL PROBABILITY DISTRIBUTIONS

Hence
L

∑
i=1

p(xi | yj ) = 1,
J

∑
j=1

p(yj | xi ) = 1.

for every j and i , respectively.
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CONDITIONAL PROBABILITY DISTRIBUTIONS

In the table above
p (y1 |x1) =

p (x1 , y1 )

p (x1)
=

0.05

0.20
=

5

20

p (y2 |x1) =
p (x1 , y2 )

p (x1 )
=

0.10

0.20
=

1

2

p (y3 |x1) =
p (x1 , y3 )

p (x1)
=

0.05

0.20
=

5

20

5

20
+

1

2
+

5

20
= 1
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PROBABILITY CALCULUS

Next
PX (A) := ∑

xi∈A

p(xi ) (8)

is the probability of the event that X assumes a value in A, a subset of X .
Then one easily establishes the complement rule

PX (Ac) = 1− PX (A), (9)

where Ac is the complement of A, i.e., those outcomes which do not lie in
A.
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RULES OF PROBABILITY

PX (A ∪ B) = PX (A) + PX (B) − PX (A ∩ B), (10)

is immediate. If A ∩ B = ∅, then PX (A ∩ B) = 0.
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CONDITIONAL PROBABILITY GIVEN AN EVENT

The conditional probability for X = xi given X ∈ A is denoted by
PX (xi | A) and given by

PX (xi | A) =

{
PX (xi )
PX (A) if xi ∈ A

0 otherwise.
(11)
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Law of Total Probability

P (X ∈ A) =
J

∑
j=1

P (X ∈ A | Y = yj ) p (Y = yj ) (∗)

P (Y ∈ B) =
L

∑
i=1

P (Y ∈ B | X = xi ) p (X = xi )
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INDEPENDENCE

X and Y are independent random variables if and only if

p(xi , yj ) = p(xi ) · p(yj ) (12)

for all pairs (xi , yj ) in X × Y . In other words all events {X = xi} and
{Y = yj} are to be independent.
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Independence
X /Y y1 y2 y3

x1 0.05 0.10 0.05
x2 0.15 0.00 0.25
x3 0.10 0.20 0.10

p (X = x1) = 0.05 + 0.10 + 0.05 = 0.20

p (Y = y3) = 0.05 + 0.25 + 0.10 = 0.40

p (X = x1) · p (Y = y3) = 0.08 6= 0.05 = p (X = x1, Y = y3)
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INDEPENDENCE

We say that X1, X2, . . . , Xn are independent random variables if and only
if the joint distribution

p(xi1 , xi2 . . . , xin) = P
(
X1 = xi1 , X2 = xi2 , . . . , Xn = xin

)
(13)

equals
= pX1

(xi1) · pX2
(xi2 ) · · · pXn

(xin ) (14)

for every xi1 , xi2 . . . , xin ∈ X n.
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CHAIN RULE

Let Z be a (discrete) random variable that assumes values in Z = {zk}
K
k=1. If

p(zk ) > 0,

p(xi , yj | zk ) =
p(xi , yj , zk )

p(zk )
.

Then we obtain as an identity

p(xi , yj | zk ) =
p(xi , yj , zk )

p(yj , zk )
·
p(yj , zk )

p(zk )
,
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CHAIN RULE

and again by definition of conditional probability

p(xi | yj , zk) · p(yj | zk).
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Chain Rule So,

p(xi , yj | zk) =
p(xi , yj , zk)

p(yj , zk)
·
p(yj , zk)

p(zk)

In other words,

p(xi , yj | zk) = p(xi | yj , zk) · p(yj | zk). (15)
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CHAIN RULE

A generalization

p (X1, . . . , Xn) =
n

∏
i=1

p (Xi | X1, . . . , Xi−1)

p (X1 | X0) = p (X0).
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Conditional Independence (IRRELEVANCE) The random variables X and
Y are called conditionally independent given Z if

p(xi , yj |zk) = p(xi |zk) · p(yj |zk) (16)

for all triples (zk , xi , yj ) ∈ Z × X × Y . We write this as

X ⊥ Y |Z . (17)

Y is irrelevant for X given Z , and X is irrelevant for Y given Z .

Timo Koski () Bayesian Networks 12.04.2010 24 / 55



CONDITIONAL INDEPENDENCE

There are several equivalent ways of expressing conditional independence. We have for instance

X ⊥ Y |Z ⇔ p(xi |yj , zk ) = p(xi |zk ).

To see this equivalence in one direction we write

p(xi |yj , zk ) =
p(xi , yj , zk )

p(yj , zk )

and assume p(zk ) > 0, so

=
p(xi , yj , zk )

p(zk )

p(zk )

p(yj , zk )

=
p(xi , yj | zk )

p(yj | zk )
,

and assuming X ⊥ Y |Z we get

=
p(xi |zk ) · p(yj |zk )

p(yj | zk )
= p(xi |zk ),

as claimed.
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LEARNING AND BAYES’ RULE

p(X | Y ) · p(Y ) = p(Y | X ) · p(X )

we have in a formal way

p(X | Y ) =
p(Y | X ) · p(X )

p(Y )
.

But the marginal distribution p(Y ) is by the law of total probability (see
(∗) above) written as

p(yj ) =
L

∑
i=1

p(yj | xi )p(xi ). (18)
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BAYES’ RULE

p(xi | yj ) =
p(yj | xi ) · p(xi )

∑
L
i=1 p(yj | xi )p(xi )

. (19)
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TERMINOLOGY FOR BAYES’ RULE

p(X ) : A Prior Distribution on X .
p(X | Y ) : A Posterior Distribution on X .
If X and Y are independent, then the prior distribution and posterior
distribution are identical and there is no learning. Bayes’ rule can be seen
as just a formal identity derived from certain premises and definitions.
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Learning and Bayes’ Rule Bayes’ rule gives a fundamental operation for

up-date of probability distributions in response to observed information. The rule

shows how knowledge about the occurrence of the event Y = yj is to be used to

transform probabilities on X . Probability is a degree of rational belief, Bayes’ rule

is a rule for reasoning.
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LEARNING AND BAYES’ RULE

If we learn that the event Y = yj is true, then we change p(X ) to a new
probability distribution p∗ (X ) according to Bayes’ Rule.

p(X ) 7→ p∗(X ) = p(X | Y = yj )

So the posterior becomes the new prior.
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TERMINOLOGY FOR BAYES’ RULE

p(X | Y ) ∝ p(Y | X ) · p(X )

Posterior ∝ likelihood × prior
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JEFFREY’S RULE: KINEMATICS OF PROBABILITY (1)

Suppose you change your probabilities on Y from the distribution p(Y ) to
the distribution p∗(Y ). How should this change be propagated to the
distribution on X . R. Jeffrey thinks that Bayes’ rule is not the only way.
He suggests that p(X ) is updated to p∗(X ) defined by the rule

p∗(xi ) =
J

∑
j=1

p(xi | yj )p
∗(yj ), (20)

where the assumption is that

p(xi | yj ) = p∗(xi | yj ).
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JEFFREY’S RULE: KINEMATICS OF PROBABILITY (2)

p∗(xi ) =
J

∑
j=1

p(xi | yj )p
∗(yj )

The argument is that if the event X = xi is ’not directly affected‘ by the
flow of experience that was involved in p(Y ) 7→ p∗(Y ), then we should
not use Bayes’ rule. What does this mean ?
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JEFFREY’S RULE: KINEMATICS OF PROBABILITY (3)

Let us say that e is the evidence that made us do p(Y ) 7→ p∗(Y ). Then we set

p∗(xi ) = p(xi | e)

and get by Bayes rule and law of total probability

p(xi | e) =
J

∑
j=1

p(xi | yj , e)p(yj | e)

=
J

∑
j=1

p(xi | yj )p
∗(yj ),

if X and e are conditionally independent given Y .
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JEFFREY’S RULE: KINEMATICS OF PROBABILITY (4)

But, are we permitted to write

p∗(xi ) = p(xi | e)

=
p(xi , e)

p(e)
,

as p(xi , e) was not specified, if e was not a part of our knowledge base.
E.g., e may not have been anticipated. Hence Jeffrey’s rule seems more
generally valid than Bayes’ rule.
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JEFFREY’S RULE: KINEMATICS OF PROBABILITY (5)

But even if p(xi , e) was not specified as a numerical quantity, we may still
be permitted to apply conditional independence of X and e given Y by
qualitative judgement.
Lesson: We shall specify conditional independencies instead of numerical
joint distributions.
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BERNOULLI R.V’S

Consider X with values X = {0, 1} and 0 < θ < 1 with the probability table

p x = 1 x = 0
p(x) θ 1 − θ

then we call X a Bernoulli random variable with the probability of success θ. We
write

X ∈ Be(θ).

We refer to θ as the parameter of the Bernoulli distribution p.
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INDEPENDENCE

If X1, X2, . . . , Xn are independent and Xi ∈ Be(θ), then

p(1, 1, 0, 1, 0, 1, 1) =

= θ · θ · (1 − θ) · θ · (1 − θ) · θ · θ

= θ
5 · (1− θ)2.
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A SEQUENCE OF FLIPS OF A THUMBTACK

If we throw a thumbtack in the air, it will come to rest either on its point (0) or
on its head (1). Suppose we flip the thumbtack n times (fixing n in advance),
making sure that the physical properties of the thumbtack and the conditions
under which it is flipped remain stable over time. We let x denote the sequence of
outcomes of the flips

x = xi1xi2 . . . xin , xil
∈ {0, 1}.
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MODELLING TOSSES OF A THUMBTACK

As our model we take the bits in x to be outcomes of Xi ∈ Be(θ)
conditionally independent given Θ = θ.

Xi ⊥ Xj | Θ for all i 6= j

Not only are pairs independent, but all subsets of Xi1 , . . . , Xik . In
subjective probability the parameters of a probability model are regarded
as random variables.
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PROBABILITY OF A SEQUENCE OF TOSSES

Hence

P (x | Θ = θ) =
n

∏
l=1

θ
xil · (1− θ)1−xil =

= θ
∑

n
l=1 xil · (1 − θ)n−∑

n
l=1 xil = θ

k · (1− θ)n−k ,

if ∑
n
l=1 xil = k.
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LEARNING PROBABILITY BY TOSSES OF A THUMBTACK

Find the model that is in some sense best for x. In the thumbtack example
we understand this as follows. We have observed n outcomes of flips of a
thumbtack and wish to determine which of the values θ that best
describes this set of flips.

Timo Koski () Bayesian Networks 12.04.2010 42 / 55



LEARNING ABOUT PROBILITIES: BAYES’ RULE FOR

PARAMETERS

p(Θ | X ) =
p(X | Θ) · p(Θ)

p(X )
.

p(Θ | X ) and p(Θ) are probability densities.
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LEARNING ABOUT PROBILITIES: BAYES’ RULE FOR

PARAMETERS

Θ is given a probability density function fΘ (θ), called the prior density .

fΘ (θ) ≥ 0, 0 ≤ θ ≤ 1

and fΘ (θ) = 0 elsewhere, and

∫ 1

0
fΘ (θ) dθ = 1.

Also P (a < Θ ≤ b) =
∫ b

a
fΘ (θ) dθ.
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POSTERIOR DENSITY

fΘ|x (θ | x) =
P (x | Θ = θ) · fΘ (θ)

∫ 1
0 P (x | Θ = θ) · fΘ (θ) dθ

, 0 ≤ θ ≤ 1 (21)

and zero elsewhere. Due to the standardization fΘ|x (θ | x) is a probability
density for Θ.
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POSTERIOR DENSITY

The posterior fΘ|x (θ | x) expresses our updated belief in the statement
that θ is the probability of success given that we have observed x.
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PRIOR DENSITY

Let us consider the uniform prior given by

fΘ (θ) =

{
1 0 ≤ θ ≤ 1
0 elsewhere.

The uniform prior is often interpreted as a representation of complete
ignorance. This is a special case of a Beta density.
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PRIOR DENSITY

∫ 1

0
P (x | Θ = θ) · fΘ (θ) dθ =

∫ 1

0
θ
k · (1− θ)n−k dθ =

k !(n − k)!

(n + 1)!

by the Beta integral.
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POSTERIOR IS A BETA DENSITY

fΘ|x (θ | x) =

{
(n+1)!

k!(n−k)! · θ
k (1− θ)n−k 0 ≤ θ ≤ 1

0 elsewhere.
(22)
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POSTERIOR DENSITIES FOR θ IN BE(θ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Posterior for     θ

k=18, n= 27

k=5, n=7
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THE MAXIMUM LIKELIHOOD ESTIMATE

The maximum likelihood estimate MLE, θ̂ML of θ, is defined by

θ̂ML = argmax0≤θ≤1P (x | Θ = θ)

= argmax0≤θ≤1θ
k · (1− θ)n−k .
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THE MAXIMUM A POSTERIOR ESTIMATE

The maximum a posterior estimate MAP θ̂MAP of θ is defined by

θ̂MAP = argmax0≤θ≤1fΘ|x (θ | x)
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INTERPRETATION OF MLE

Find the parameter value within the model that gives the (training)
sequence x the highest possible probability. The probability P (x | Θ = θ)
regarded as a function of θ is known as the likelihood function

Lx (θ) = P (x | Θ = θ) .

The likelihood function Lx (θ) thus compares the plausibilities of different
models for given x.
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LOG LIKELIHOOD

− log Lx (θ) = − log P (x | Θ = θ) .

is called the log likelihood function.
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THE MAXIMUM LIKELIHOOD ESTIMATE

Maximization of the likelihood function or the log likelihood function by
calculus gives

θ̂ML =
k

n
. (23)

What is θ̂MAP in this case ?
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