Bayesian Networks \& Statistical Genetics LECTURE 2.

Timo Koski
12.04.2010
X is a (discrete) random variable that assumes values in \mathcal{X} and Y is a (discrete) random variable that assumes values in \mathcal{Y}.

Random Variables \mathcal{X} and \mathcal{Y} are two discrete state spaces, whose generic elements are called values or instantiations and denoted by x_{i} and y_{j}, respectively.

$$
\mathcal{X}=\left\{x_{1}, \cdots, x_{L}\right\}, \mathcal{Y}=\left\{y_{1}, \cdots, y_{J}\right\} .
$$

$|\mathcal{X}|(:=$ the number of elements in $\mathcal{X})=L \leq \infty,|\mathcal{Y}|=J \leq \infty$. Unless otherwise stated the alphabets considered here are finite.

Joint Probability Distributions

A two dimensional joint (simultaneous) probability distribution (simultan sannolikhetsfrdelning) is a probability defined on the alphabet $\mathcal{X} \times \mathcal{Y}$

$$
\begin{gather*}
p\left(x_{i}, y_{j}\right):=P\left(X=x_{i}, Y=y_{j}\right) . \tag{1}\\
p\left(x_{i}, y_{j}\right) \geq 0 \tag{2}\\
\sum_{i=1}^{L} \sum_{j=1}^{J} p\left(x_{i}, y_{j}\right)=1 . \tag{3}
\end{gather*}
$$

MARGINAL DISTRIBUTION

Marginal distribution for X :

$$
\begin{equation*}
p\left(x_{i}\right)=\sum_{j=1}^{J} p\left(x_{i}, y_{j}\right) \tag{4}
\end{equation*}
$$

Marginal distribution for Y :

$$
\begin{equation*}
p\left(y_{j}\right)=\sum_{i=1}^{L} p\left(x_{i}, y_{j}\right) . \tag{5}
\end{equation*}
$$

MARGINAL DISTRIBUTION

These notions can be extended to define the joint (simultaneous) probability distribution of n random variables and the marginal distributions of any subset thereof.

Simultaneous distirbution as a table

$$
\begin{array}{clll}
X / Y & y_{1} & y_{2} & y_{3} \\
x_{1} & 0.05 & 0.10 & 0.05 \\
x_{2} & 0.15 & 0.00 & 0.25 \\
x_{3} & 0.10 & 0.20 & 0.10
\end{array}
$$

For example

$$
p\left(X=x_{2}, Y=y_{3}\right)=0.25
$$

MARGINAL DISTRIBUTION

$$
\begin{array}{cccc}
X / Y & y_{1} & y_{2} & y_{3} \\
x_{1} & 0.05 & 0.10 & 0.05 \\
x_{2} & 0.15 & 0.00 & 0.25 \\
x_{3} & 0.10 & 0.20 & 0.10 \\
p\left(X=x_{1}\right)= & 0.05+0.10+0.05=0.20 \\
p\left(X=x_{2}\right)= & 0.15+0.00+0.25=0.40 \\
p\left(X=x_{3}\right)= & 0.10+0.20+0.10=0.40
\end{array}
$$

Conditional Probability Distributions

The conditional probability for $X=x_{i}$ given $Y=y_{j}$ is

$$
\begin{equation*}
p\left(x_{i} \mid y_{j}\right):=\frac{p\left(x_{i}, y_{j}\right)}{p\left(y_{j}\right)} \tag{6}
\end{equation*}
$$

The conditional probability for $Y=y_{j}$ given $X=x_{i}$ is

$$
\begin{equation*}
p\left(y_{j} \mid x_{i}\right):=\frac{p\left(x_{i}, y_{j}\right)}{p\left(x_{i}\right)} \tag{7}
\end{equation*}
$$

Here we assume $p\left(y_{j}\right)>0$ and $p\left(x_{i}\right)>0$.

COnditional Probability Distributions

In other words

$$
p\left(y_{j} \mid x_{i}\right)=\frac{\text { prob. for the event }\left\{X=x_{i}, Y=y_{j}\right\}}{\text { prob. for the event }\left\{X=x_{i}\right\}} .
$$

Conditional Probability Distributions

Hence

$$
\sum_{i=1}^{L} p\left(x_{i} \mid y_{j}\right)=1, \sum_{j=1}^{J} p\left(y_{j} \mid x_{i}\right)=1
$$

for every j and i, respectively.

COnditional Probability Distributions

In the table above

$$
\begin{gathered}
p\left(y_{1} \mid x_{1}\right)=\frac{p\left(x_{1}, y_{1}\right)}{p\left(x_{1}\right)}=\frac{0.05}{0.20}=\frac{5}{20} \\
p\left(y_{2} \mid x_{1}\right)=\frac{p\left(x_{1}, y_{2}\right)}{p\left(x_{1}\right)}=\frac{0.10}{0.20}=\frac{1}{2} \\
p\left(y_{3} \mid x_{1}\right)=\frac{p\left(x_{1}, y_{3}\right)}{p\left(x_{1}\right)}=\frac{0.05}{0.20}=\frac{5}{20} \\
\frac{5}{20}+\frac{1}{2}+\frac{5}{20}=1
\end{gathered}
$$

Probability Calculus

Next

$$
\begin{equation*}
P_{X}(A):=\sum_{x_{i} \in A} p\left(x_{i}\right) \tag{8}
\end{equation*}
$$

is the probability of the event that X assumes a value in A, a subset of \mathcal{X}. Then one easily establishes the complement rule

$$
\begin{equation*}
P_{X}\left(A^{\mathrm{c}}\right)=1-P_{X}(A), \tag{9}
\end{equation*}
$$

where A^{c} is the complement of A, i.e., those outcomes which do not lie in A.

Rules of Probability

$$
\begin{equation*}
P_{X}(A \cup B)=P_{X}(A)+P_{X}(B)-P_{X}(A \cap B), \tag{10}
\end{equation*}
$$

is immediate. If $A \cap B=\varnothing$, then $P_{X}(A \cap B)=0$.

Conditional Probability Given an Event

The conditional probability for $X=x_{i}$ given $X \in A$ is denoted by $P_{X}\left(x_{i} \mid A\right)$ and given by

$$
P_{X}\left(x_{i} \mid A\right)= \begin{cases}\frac{P_{X}\left(x_{i}\right)}{P_{X}(A)} & \text { if } x_{i} \in A \tag{11}\\ 0 & \text { otherwise }\end{cases}
$$

Law of Total Probability

$$
\begin{gathered}
P(X \in A)=\sum_{j=1}^{J} P\left(X \in A \mid Y=y_{j}\right) p\left(Y=y_{j}\right) \\
P(Y \in B)=\sum_{i=1}^{L} P\left(Y \in B \mid X=x_{i}\right) p\left(X=x_{i}\right)
\end{gathered}
$$

INDEPENDENCE

X and Y are independent random variables if and only if

$$
\begin{equation*}
p\left(x_{i}, y_{j}\right)=p\left(x_{i}\right) \cdot p\left(y_{j}\right) \tag{12}
\end{equation*}
$$

for all pairs $\left(x_{i}, y_{j}\right)$ in $\mathcal{X} \times \mathcal{Y}$. In other words all events $\left\{X=x_{i}\right\}$ and $\left\{Y=y_{j}\right\}$ are to be independent.

Independence

$$
\begin{aligned}
& X / Y \quad y_{1} \quad y_{2} \quad y_{3} \\
& \begin{array}{llll}
x_{1} & 0.05 & 0.10 & 0.05
\end{array} \\
& \begin{array}{llll}
x_{2} & 0.15 & 0.00 & 0.25
\end{array} \\
& \begin{array}{llll}
x_{3} & 0.10 & 0.20 & 0.10
\end{array} \\
& p\left(X=x_{1}\right)=0.05+0.10+0.05=0.20 \\
& p\left(Y=y_{3}\right)=0.05+0.25+0.10=0.40 \\
& p\left(X=x_{1}\right) \cdot p\left(Y=y_{3}\right)=0.08 \neq 0.05=p\left(X=x_{1}, Y=y_{3}\right)
\end{aligned}
$$

INDEPENDENCE

We say that $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables if and only if the joint distribution

$$
\begin{equation*}
p\left(x_{i_{1}}, x_{i_{2}} \ldots, x_{i_{n}}\right)=P\left(X_{1}=x_{i_{1}}, x_{2}=x_{i_{2}}, \ldots, X_{n}=x_{i_{n}}\right) \tag{13}
\end{equation*}
$$

equals

$$
\begin{equation*}
=p_{X_{1}}\left(x_{i_{1}}\right) \cdot p_{X_{2}}\left(x_{i_{2}}\right) \cdots p_{X_{n}}\left(x_{i_{n}}\right) \tag{14}
\end{equation*}
$$

for every $x_{i_{1}}, x_{i_{2}} \ldots, x_{i_{n}} \in \mathcal{X}^{n}$.

Chain Rule

Let Z be a (discrete) random variable that assumes values in $\mathcal{Z}=\left\{z_{k}\right\}_{k=1}^{K}$. If $p\left(z_{k}\right)>0$,

$$
p\left(x_{i}, y_{j} \mid z_{k}\right)=\frac{p\left(x_{i}, y_{j}, z_{k}\right)}{p\left(z_{k}\right)} .
$$

Then we obtain as an identity

$$
p\left(x_{i}, y_{j} \mid z_{k}\right)=\frac{p\left(x_{i}, y_{j}, z_{k}\right)}{p\left(y_{j}, z_{k}\right)} \cdot \frac{p\left(y_{j}, z_{k}\right)}{p\left(z_{k}\right)},
$$

Chain Rule

and again by definition of conditional probability

$$
p\left(x_{i} \mid y_{j}, z_{k}\right) \cdot p\left(y_{j} \mid z_{k}\right)
$$

Chain Rule So,

$$
p\left(x_{i}, y_{j} \mid z_{k}\right)=\frac{p\left(x_{i}, y_{j}, z_{k}\right)}{p\left(y_{j}, z_{k}\right)} \cdot \frac{p\left(y_{j}, z_{k}\right)}{p\left(z_{k}\right)}
$$

In other words,

$$
\begin{equation*}
p\left(x_{i}, y_{j} \mid z_{k}\right)=p\left(x_{i} \mid y_{j}, z_{k}\right) \cdot p\left(y_{j} \mid z_{k}\right) \tag{15}
\end{equation*}
$$

Chain Rule

A generalization

$$
p\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} p\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

$p\left(X_{1} \mid X_{0}\right)=p\left(X_{0}\right)$.

Conditional Independence (IRRELEVANCE) The random variables X and Y are called conditionally independent given Z if

$$
\begin{equation*}
p\left(x_{i}, y_{j} \mid z_{k}\right)=p\left(x_{i} \mid z_{k}\right) \cdot p\left(y_{j} \mid z_{k}\right) \tag{16}
\end{equation*}
$$

for all triples $\left(z_{k}, x_{i}, y_{j}\right) \in \mathcal{Z} \times \mathcal{X} \times \mathcal{Y}$. We write this as

$$
\begin{equation*}
X \perp Y \mid Z \tag{17}
\end{equation*}
$$

Y is irrelevant for X given Z, and X is irrelevant for Y given Z.

CONDITIONAL INDEPENDENCE

There are several equivalent ways of expressing conditional independence. We have for instance

$$
X \perp Y \mid Z \Leftrightarrow p\left(x_{i} \mid y_{j}, z_{k}\right)=p\left(x_{i} \mid z_{k}\right)
$$

To see this equivalence in one direction we write

$$
p\left(x_{i} \mid y_{j}, z_{k}\right)=\frac{p\left(x_{i}, y_{j}, z_{k}\right)}{p\left(y_{j}, z_{k}\right)}
$$

and assume $p\left(z_{k}\right)>0$, so

$$
\begin{gathered}
=\frac{p\left(x_{i}, y_{j}, z_{k}\right)}{p\left(z_{k}\right)} \frac{p\left(z_{k}\right)}{p\left(y_{j}, z_{k}\right)} \\
=\frac{p\left(x_{i}, y_{j} \mid z_{k}\right)}{p\left(y_{j} \mid z_{k}\right)}
\end{gathered}
$$

and assuming $X \perp Y \mid Z$ we get

$$
=\frac{p\left(x_{i} \mid z_{k}\right) \cdot p\left(y_{j} \mid z_{k}\right)}{p\left(y_{j} \mid z_{k}\right)}=p\left(x_{i} \mid z_{k}\right)
$$

as claimed.

Learning and Bayes' Rule

$$
p(X \mid Y) \cdot p(Y)=p(Y \mid X) \cdot p(X)
$$

we have in a formal way

$$
p(X \mid Y)=\frac{p(Y \mid X) \cdot p(X)}{p(Y)}
$$

But the marginal distribution $p(Y)$ is by the law of total probability (see (*) above) written as

$$
\begin{equation*}
p\left(y_{j}\right)=\sum_{i=1}^{L} p\left(y_{j} \mid x_{i}\right) p\left(x_{i}\right) \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
p\left(x_{i} \mid y_{j}\right)=\frac{p\left(y_{j} \mid x_{i}\right) \cdot p\left(x_{i}\right)}{\sum_{i=1}^{L} p\left(y_{j} \mid x_{i}\right) p\left(x_{i}\right)} . \tag{19}
\end{equation*}
$$

Terminology for Bayes' Rule

$p(X)$: A Prior Distribution on \mathcal{X}.
$p(X \mid Y)$: A Posterior Distribution on \mathcal{X}.
If X and Y are independent, then the prior distribution and posterior distribution are identical and there is no learning. Bayes' rule can be seen as just a formal identity derived from certain premises and definitions.

Learning and Bayes' Rule Bayes' rule gives a fundamental operation for up-date of probability distributions in response to observed information. The rule shows how knowledge about the occurrence of the event $Y=y_{j}$ is to be used to transform probabilities on \mathcal{X}. Probability is a degree of rational belief, Bayes' rule is a rule for reasoning.

LEARNING AND BAYES' RULE

If we learn that the event $Y=y_{j}$ is true, then we change $p(X)$ to a new probability distribution $p^{*}(X)$ according to Bayes' Rule.

$$
p(X) \mapsto p^{*}(X)=p\left(X \mid Y=y_{j}\right)
$$

So the posterior becomes the new prior.

Terminology for Bayes' Rule

$$
\begin{gathered}
p(X \mid Y) \propto p(Y \mid X) \cdot p(X) \\
\text { Posterior } \propto \text { likelihood } \times \text { prior }
\end{gathered}
$$

JEFFREY's RULE: KINEMATICS OF PROBABILITY (1)

Suppose you change your probabilities on \mathcal{Y} from the distribution $p(Y)$ to the distribution $p^{*}(Y)$. How should this change be propagated to the distribution on \mathcal{X}. R. Jeffrey thinks that Bayes' rule is not the only way. He suggests that $p(X)$ is updated to $p^{*}(X)$ defined by the rule

$$
\begin{equation*}
p^{*}\left(x_{i}\right)=\sum_{j=1}^{J} p\left(x_{i} \mid y_{j}\right) p^{*}\left(y_{j}\right) \tag{20}
\end{equation*}
$$

where the assumption is that

$$
p\left(x_{i} \mid y_{j}\right)=p^{*}\left(x_{i} \mid y_{j}\right)
$$

JEFFREY's RULE: KINEMATICS OF PROBABILITY (2)

$$
p^{*}\left(x_{i}\right)=\sum_{j=1}^{J} p\left(x_{i} \mid y_{j}\right) p^{*}\left(y_{j}\right)
$$

The argument is that if the event $X=x_{i}$ is 'not directly affected' by the flow of experience that was involved in $p(Y) \mapsto p^{*}(Y)$, then we should not use Bayes' rule. What does this mean ?

Jeffrey's Rule: kinematics of probability (3)

Let us say that e is the evidence that made us do $p(Y) \mapsto p^{*}(Y)$. Then we set

$$
p^{*}\left(x_{i}\right)=p\left(x_{i} \mid e\right)
$$

and get by Bayes rule and law of total probability

$$
\begin{gathered}
p\left(x_{i} \mid e\right)=\sum_{j=1}^{J} p\left(x_{i} \mid y_{j}, e\right) p\left(y_{j} \mid e\right) \\
=\sum_{j=1}^{J} p\left(x_{i} \mid y_{j}\right) p^{*}\left(y_{j}\right)
\end{gathered}
$$

if X and e are conditionally independent given Y.

JEFFREY'S RULE: KINEMATICS OF PROBABILITY (4)

But, are we permitted to write

$$
\begin{gathered}
p^{*}\left(x_{i}\right)=p\left(x_{i} \mid e\right) \\
=\frac{p\left(x_{i}, e\right)}{p(e)}
\end{gathered}
$$

as $p\left(x_{i}, e\right)$ was not specified, if e was not a part of our knowledge base. E.g., e may not have been anticipated. Hence Jeffrey's rule seems more generally valid than Bayes' rule.

JEFFREY's RULE: KINEMATICS OF PROBABILITY (5)

But even if $p\left(x_{i}, e\right)$ was not specified as a numerical quantity, we may still be permitted to apply conditional independence of X and e given Y by qualitative judgement.
Lesson: We shall specify conditional independencies instead of numerical joint distributions.

Bernoulli R.V's

Consider X with values $\mathcal{X}=\{0,1\}$ and $0<\theta<1$ with the probability table

$$
\begin{array}{cll}
p & x=1 & x=0 \\
p(x) & \theta & 1-\theta
\end{array}
$$

then we call X a Bernoulli random variable with the probability of success θ. We write

$$
X \in \operatorname{Be}(\theta) .
$$

We refer to θ as the parameter of the Bernoulli distribution p.

INDEPENDENCE

If $X_{1}, X_{2}, \ldots, X_{n}$ are independent and $X_{i} \in \operatorname{Be}(\theta)$, then

$$
\begin{gathered}
p(1,1,0,1,0,1,1)= \\
=\theta \cdot \theta \cdot(1-\theta) \cdot \theta \cdot(1-\theta) \cdot \theta \cdot \theta \\
=\theta^{5} \cdot(1-\theta)^{2} .
\end{gathered}
$$

A SEQUENCE OF FLIPS OF A THUMBTACK

If we throw a thumbtack in the air, it will come to rest either on its point (0) or on its head (1). Suppose we flip the thumbtack n times (fixing n in advance), making sure that the physical properties of the thumbtack and the conditions under which it is flipped remain stable over time. We let \mathbf{x} denote the sequence of outcomes of the flips

$$
\mathbf{x}=x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}, x_{i_{l}} \in\{0,1\} .
$$

Modelling tosses of a thumbtack

As our model we take the bits in \mathbf{x} to be outcomes of $X_{i} \in \operatorname{Be}(\theta)$ conditionally independent given $\Theta=\theta$.

$$
X_{i} \perp X_{j} \mid \Theta \quad \text { for all } i \neq j
$$

Not only are pairs independent, but all subsets of $X_{i_{1}}, \ldots, X_{i_{k}}$. In subjective probability the parameters of a probability model are regarded as random variables.

PROBABILITY OF A SEQUENCE OF TOSSES

Hence

$$
\begin{gathered}
P(\mathbf{x} \mid \Theta=\theta)=\prod_{l=1}^{n} \theta^{x_{i_{l}}} \cdot(1-\theta)^{1-x_{i_{l}}}= \\
=\theta^{\sum_{l=1}^{n} x_{i_{l}}} \cdot(1-\theta)^{n-\sum_{l=1}^{n} x_{i_{l}}}=\theta^{k} \cdot(1-\theta)^{n-k},
\end{gathered}
$$

if $\sum_{l=1}^{n} x_{i l}=k$.

LEARNING PROBABILITY BY TOSSES OF A THUMBTACK

Find the model that is in some sense best for \mathbf{x}. In the thumbtack example we understand this as follows. We have observed n outcomes of flips of a thumbtack and wish to determine which of the values θ that best describes this set of flips.

Learning about probilities: Bayes' Rule for PARAMETERS

$$
p(\Theta \mid X)=\frac{p(X \mid \Theta) \cdot p(\Theta)}{p(X)}
$$

$p(\Theta \mid X)$ and $p(\Theta)$ are probability densities.

Learning about probilities: Bayes' Rule for PARAMETERS

Θ is given a probability density function $f_{\Theta}(\theta)$, called the prior density .

$$
f_{\Theta}(\theta) \geq 0,0 \leq \theta \leq 1
$$

and $f_{\Theta}(\theta)=0$ elsewhere, and

$$
\int_{0}^{1} f_{\Theta}(\theta) d \theta=1
$$

Also $P(a<\Theta \leq b)=\int_{a}^{b} f_{\Theta}(\theta) d \theta$.

POSTERIOR DENSITY

$$
\begin{equation*}
f_{\Theta \mid \mathbf{x}}(\theta \mid \mathbf{x})=\frac{P(\mathbf{x} \mid \Theta=\theta) \cdot f_{\Theta}(\theta)}{\int_{0}^{1} P(\mathbf{x} \mid \Theta=\theta) \cdot f_{\Theta}(\theta) d \theta}, 0 \leq \theta \leq 1 \tag{21}
\end{equation*}
$$

and zero elsewhere. Due to the standardization $f_{\Theta \mid \mathbf{x}}(\theta \mid \mathbf{x})$ is a probability density for Θ.

Posterior density

The posterior $f_{\Theta \mid \mathbf{x}}(\theta \mid \mathbf{x})$ expresses our updated belief in the statement that θ is the probability of success given that we have observed \mathbf{x}.

PRIOR DENSITY

Let us consider the uniform prior given by

$$
f_{\Theta}(\theta)= \begin{cases}1 & 0 \leq \theta \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

The uniform prior is often interpreted as a representation of complete ignorance. This is a special case of a Beta density.

PRIOR DENSITY

$$
\int_{0}^{1} P(\mathbf{x} \mid \Theta=\theta) \cdot f_{\Theta}(\theta) d \theta=\int_{0}^{1} \theta^{k} \cdot(1-\theta)^{n-k} d \theta=\frac{k!(n-k)!}{(n+1)!}
$$

by the Beta integral.

Posterior is a Beta density

$$
f_{\Theta \mid \mathbf{x}}(\theta \mid \mathbf{x})= \begin{cases}\frac{(n+1)!}{k!(n-k)!} \cdot \theta^{k}(1-\theta)^{n-k} & 0 \leq \theta \leq 1 \tag{22}\\ 0 & \text { elsewhere }\end{cases}
$$

Posterior Densities for θ in $\operatorname{Be}(\theta)$

The Maximum Likelihood Estimate

The maximum likelihood estimate MLE, $\widehat{\theta}_{\mathrm{ML}}$ of θ, is defined by

$$
\begin{gathered}
\widehat{\theta}_{\mathrm{ML}}=\operatorname{argmax}_{0 \leq \theta \leq 1} P(\mathbf{x} \mid \Theta=\theta) \\
=\operatorname{argmax}_{0 \leq \theta \leq 1} \theta^{k} \cdot(1-\theta)^{n-k}
\end{gathered}
$$

The Maximum A Posterior Estimate

The maximum a posterior estimate MAP $\widehat{\theta}_{\text {MAP }}$ of θ is defined by

$$
\widehat{\theta}_{\mathrm{MAP}}=\operatorname{argmax}_{0 \leq \theta \leq 1} f_{\Theta \mid \mathbf{x}}(\theta \mid \mathbf{x})
$$

Interpretation of MLE

Find the parameter value within the model that gives the (training) sequence \mathbf{x} the highest possible probability. The probability $P(\mathbf{x} \mid \Theta=\theta)$ regarded as a function of θ is known as the likelihood function

$$
L_{\mathbf{x}}(\theta)=P(\mathbf{x} \mid \Theta=\theta) .
$$

The likelihood function $L_{x}(\theta)$ thus compares the plausibilities of different models for given \mathbf{x}.

LOG LIKELIHOOD

$$
-\log L_{\mathbf{x}}(\theta)=-\log P(\mathbf{x} \mid \Theta=\theta)
$$

is called the log likelihood function.

The Maximum Likelihood Estimate

Maximization of the likelihood function or the log likelihood function by calculus gives

$$
\begin{equation*}
\widehat{\theta}_{\mathrm{ML}}=\frac{k}{n} . \tag{23}
\end{equation*}
$$

What is $\widehat{\theta}_{\text {MAP }}$ in this case ?

