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RANDOM VARIABLES

X is a (discrete) random variable that assumes values in X and Y is a
(discrete) random variable that assumes values in ).
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Random Variables X and ) are two discrete state spaces, whose generic
elements are called values or instantiations and denoted by x; and y;,

respectively.

X = {Xlr' t ,XL},.)} - {YL' T /yJ}'
| X | (:= the number of elements in X') = L < o0, | Y |= J < oo. Unless
otherwise stated the alphabets considered here are finite.

Timo Koski () Bayesian Networks 12.04.2010 3 /55



JOINT PROBABILITY DISTRIBUTIONS

A two dimensional joint (simultaneous) probability distribution (simultan
sannolikhetsfrdelning) is a probability defined on the alphabet X' x )

p(xi,yj) == P(X =xi, Y =yj). (1)
p(xi,yj) =0, (2)
L J
Z ZP(X:/}/J) =1 (3)
i=1j=1
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MARGINAL DISTRIBUTION

Marginal distribution for X:
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MARGINAL DISTRIBUTION

These notions can be extended to define the joint (simultaneous)
probability distribution of n random variables and the marginal
distributions of any subset thereof.
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SIMULTANEOUS DISTIRBUTION AS A TABLE

X/Y yn Y2 y3
X1 0.05 0.10 0.05
X 0.15 0.00 0.25
X3 0.10 0.20 0.10

For example
p(X=x2,Y =y3) =025

Timo Koski () Bayesian Networks 12.04.2010 7 /55



MARGINAL DISTRIBUTION

X/Y yn Y2y
X1 0.05 0.10 0.05
X2 0.15 0.00 0.25
X3 0.10 0.20 0.10

) = 0.05 + 0.10 4 0.05 = 0.20
(X:x2)2015+000+025—040
) = 0.10 4 0.20 + 0.10 = 0.40
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CONDITIONAL PROBABILITY DISTRIBUTIONS

The conditional probability for X = x; given Y = y; is

p(xi, y;)
oly) (©)

p(xi | yj) ==

The conditional probability for Y = y; given X = x; is

p(Xi’yj) (7)

POTI) =ty

Here we assume p(y;) > 0 and p(x;) > 0.
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CONDITIONAL PROBABILITY DISTRIBUTIONS

In other words

prob. for the event {X = x;, Y = y;}
prob. for the event {X = x;}

plyj | xi) =
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CONDITIONAL PROBABILITY DISTRIBUTIONS

Hence
L

J
Z (xi | y) = Z (yj | xi) = 1.

i=1

for every j and i, respectively.
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CONDITIONAL PROBABILITY DISTRIBUTIONS

In the table above
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PROBABILITY CALCULUS

Next

Px(A) := Y _ p(xi) (8)

X;i€A

is the probability of the event that X assumes a value in A, a subset of X.
Then one easily establishes the complement rule

Px (A%) = 1= Px(A), (9)

where A® is the complement of A, i.e., those outcomes which do not lie in
A.
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RULES OF PROBABILITY

Px (AUB) = Px(A)+ Px(B) — Px(AN B), (10)
is immediate. If AN B =@, then Px(ANB) =0.
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CONDITIONAL PROBABILITY GIVEN AN EVENT

The conditional probability for X = x; given X € A is denoted by
Px (xi | A) and given by

Px(xi) .
Pr(xi| A)={ Pty T €A (11)
0 otherwise.
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Law of Total Probability

J
PXeA)=) PXEA[Y=y)p(Y=y) ()
j=1

P(YeB):ZL:P(YEB|X=Xi)P(X=Xi)
i=1
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INDEPENDENCE

X and Y are independent random variables if and only if
p(xi,y;) = p(xi) - p(y;) (12)

for all pairs (xj,y;) in X x Y. In other words all events {X = x;} and
{Y = y;} are to be independent.
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Independence

XY wn Y2 ¥3
X1 0.05 0.10 0.05
X 0.15 0.00 0.25
X3 0.10 0.20 0.10

p(X = x1) = 0.05+0.10 + 0.05 = 0.20
p(Y =y;3) =0.05+0.25+0.10 = 0.40
p(X=x1)-p(Y=y3) =0.08#005=p(X=x,Y =y3)
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INDEPENDENCE

We say that Xi, X3, ..., X, are independent random variables if and only
if the joint distribution

p(Xi1’Xi2 ...,X,'n) =P (X]_ = Xi1/X2 = Xi2,...,Xn = X,'n) (13)

equals
= px, (Xi) - Px, (X3,) - - - Px,, (i) (14)

n
for every x;, x;, ..., x; € X"
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CHAIN RULE

Let Z be a (discrete) random variable that assumes values in Z = {zk}le. If

p(zx) >0,
p(Xierr Zk)

p Xis .y( Zk
( 1 | ) p(z )
I hen we Obtaln as an |dent|ty

p(xi, yj | zx) = P(xi Yjr 2k) P 2K)
B p(yj, zk) p(zx)
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CHAIN RULE

and again by definition of conditional probability

p(xi | yi zi) - p(y; | zk).
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Chain Rule So,

p(xi,¥j, zk)  P(Yj, 2k)
p(xi, yj | zk) = :
Cinyj 120 = =00 2 e

In other words,

p(xi, i | z«) = p(xi | ¥, z«) - P(yj | zk). (15)
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CHAIN RULE

A generalization
p(Xy,.. ., Xo) =T ]p(Xi | X1,..., Xio1)

p (X1 | Xo) = p(Xo)-
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Conditional Independence (IRRELEVANCE) The random variables X and
Y are called conditionally independent given Z if

p(xi, yjlzx) = p(xilz) - p(yjlzk) (16)
for all triples (zx, x;, yj) € Z2 x X x ). We write this as
X LY|Z (17)

Y is irrelevant for X given Z, and X is irrelevant for Y given Z.
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CONDITIONAL INDEPENDENCE

There are several equivalent ways of expressing conditional independence. We have for instance
X LY|Z < p(xilyj zi) = p(xilzk)-

To see this equivalence in one direction we write

p(xilyi,2e) = p(xi,yj,2k)
e P(yj 2k)
and assume p(zx) >0, so
_ Py z) p(zi)
p(zk) Py 2k)
_ Py | 2e)
p(yj | 2«)
and assuming X L Y|Z we get
_ pxilzi) - plyjlzk) — p(xi|2e)
p(yj | zk) e

as claimed.
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LEARNING AND BAYES” RULE

p(X | Y)-p(Y) = p(Y | X)-p(X)

we have in a formal way

_p(Y [ X)-p(X)
pX | v) = PP,

But the marginal distribution p(Y') is by the law of total probability (see
(x) above) written as

L

Y p(yj | xi)p(xi). (18)

i=1

T
—
=
~—

I

Timo Koski ()

Bayesian Networks 12.04.2010 26 / 55



BAYES” RULE

Py [ Xi) - p(xi)
Y1 p(yj | xi)p(x)

p(xi | yj) = (19)
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TERMINOLOGY FOR BAYES” RULE

p(X) : A Prior Distribution on X.

p(X | Y) : A Posterior Distribution on X

If X and Y are independent, then the prior distribution and posterior
distribution are identical and there is no learning. Bayes' rule can be seen
as just a formal identity derived from certain premises and definitions.
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Learning and Bayes' Rule Bayes' rule gives a fundamental operation for

up-date of probability distributions in response to observed information. The rule
shows how knowledge about the occurrence of the event Y = y; is to be used to
transform probabilities on X’. Probability is a degree of rational belief, Bayes' rule

is a rule for reasoning.
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LEARNING AND BAYES” RULE

If we learn that the event Y = y; is true, then we change p(X) to a new
probability distribution p* (X) according to Bayes' Rule.

p(X) = p*(X) = p(X | Y = ;)

So the posterior becomes the new prior.
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TERMINOLOGY FOR BAYES” RULE

p(X | Y) e p(Y | X)- p(X)

Posterior « likelihood x prior
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JEFFREY’S RULE: KINEMATICS OF PROBABILITY (1)

Suppose you change your probabilities on ) from the distribution p(Y') to
the distribution p*(Y'). How should this change be propagated to the
distribution on X'. R. Jeffrey thinks that Bayes' rule is not the only way.
He suggests that p(X) is updated to p*(X) defined by the rule

J

Z (xi | v))p* (), (20)

_/:

where the assumption is that

p(xi | yi) = p"(xi | yj)-
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JEFFREY’S RULE: KINEMATICS OF PROBABILITY (2)

J
p(xi) =Y, p(xi | y)p* (%)
j=1
The argument is that if the event X = x; is 'not directly affected’ by the
flow of experience that was involved in p(Y) — p*(Y), then we should
not use Bayes' rule. What does this mean 7
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JEFFREY’S RULE: KINEMATICS OF PROBABILITY (3)

Let us say that e is the evidence that made us do p(Y) — p*(Y). Then we set

p*(x) = p(x | e)

and get by Bayes rule and law of total probability

J

p(xi | e) =Y p(xi |y, e)plyj|e)
j=1

e

1P(Xi [ v))p* (vj),

J

if X and e are conditionally independent given Y.
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JEFFREY’S RULE: KINEMATICS OF PROBABILITY (4)

But, are we permitted to write
p*(xi) = p(xi | e)
_ plxise)
p(e)
as p(x;, e) was not specified, if e was not a part of our knowledge base.

E.g., e may not have been anticipated. Hence Jeffrey’s rule seems more
generally valid than Bayes' rule.

4
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JEFFREY’S RULE: KINEMATICS OF PROBABILITY (5)

But even if p(x;, e) was not specified as a numerical quantity, we may still
be permitted to apply conditional independence of X and e given Y by

qualitative judgement.
Lesson: We shall specify conditional independencies instead of numerical

joint distributions.
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BERNOULLI R.V’s

Consider X with values X = {0,1} and 0 < 6 < 1 with the probability table

p x=1 x=0
p(x) 6 1-6

then we call X a Bernoulli random variable with the probability of success 6. We

write
X € Be(9).

We refer to 6 as the parameter of the Bernoulli distribution p.
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INDEPENDENCE

If X1, Xa,..., X, are independent and X; € Be(6), then
p(1,1,0,1,0,1,1) =

—0-0-(1-60)-6-(1-0)-0-6
=65 (1-0)2
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A SEQUENCE OF FLIPS OF A THUMBTACK

If we throw a thumbtack in the air, it will come to rest either on its point (0) or
on its head (1). Suppose we flip the thumbtack n times (fixing n in advance),
making sure that the physical properties of the thumbtack and the conditions
under which it is flipped remain stable over time. We let x denote the sequence of
outcomes of the flips

X = Xjy Xjy o« Xjp, Xj, € {0, ].}
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MODELLING TOSSES OF A THUMBTACK

As our model we take the bits in x to be outcomes of X; € Be(6)
conditionally independent given ® = 0.

Xi LX;|© foralli#j

Not only are pairs independent, but all subsets of Xj,..., X . In
subjective probability the parameters of a probability model are regarded
as random variables.
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PROBABILITY OF A SEQUENCE OF TOSSES

Hence

P(x|©®=280) HGX'/- — 1X"/:

— L% (1— e)n—zlzlx;, — gk. (1— Q)n_k,
if Ly X, = k.
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LEARNING PROBABILITY BY TOSSES OF A THUMBTACK

Find the model that is in some sense best for x. In the thumbtack example
we understand this as follows. We have observed n outcomes of flips of a
thumbtack and wish to determine which of the values 6 that best

describes this set of flips.
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LEARNING ABOUT PROBILITIES: BAYES” RULE FOR

PARAMETERS

p(X |©) p(©)
p(X)
p(® | X) and p(@®) are probability densities.

PO | X) =
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LEARNING ABOUT PROBILITIES: BAYES” RULE FOR

PARAMETERS

@ is given a probability density function fg (0), called the prior density .
fo () 20,0<0<1

and fg (6) = 0 elsewhere, and

/1f@(9)d9:1.
0

Also P (a < © < b) = [? fo () d6.
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POSTERIOR DENSITY

_ P(x|©=0)fo(0)
JeP(x|©=0)-fo(0)do’

and zero elsewhere. Due to the standardization fg, (6 | x) is a probability
density for ©.

foix (6| x) 0<6<1 (21)
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POSTERIOR DENSITY

The posterior fg|x (6 | x) expresses our updated belief in the statement
that 6 is the probability of success given that we have observed x.
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PRIOR DENSITY

Let us consider the uniform prior given by

1 0<6<L1
0 elsewhere.

fo (6) :{

The uniform prior is often interpreted as a representation of complete
ignorance. This is a special case of a Beta density.
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PRIOR DENSITY

Ki(n— k)!

1 0 0) do lek 0)"k dp
| Pxio=0-p@a= [ o a0 T

by the Beta integral.
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POSTERIOR IS A BETA DENSITY

(n+1)! ok (1 g\n—k
for (0| x) = { (l)(!(n_—k)_! 6% (1—0) 0<6<1 (22)

elsewhere.
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POSTERIOR DENSITIES FOR 6 IN BE(6)

**I"  Posterior for 6 1

k=18, n= 27

k=5, n=7
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THE MAXIMUM LIKELIHOOD ESTIMATE

The maximum likelihood estimate MLE, §ML of 6, is defined by
Ot = argmax,_g, P (x| ® = 0)

= argmaxOSQSIGk S(1—0)"F.
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THE MAXIMUM A POSTERIOR ESTIMATE

The maximum a posterior estimate MAP §MAP of 6 is defined by

Bpvap = argmaxg_g;foix (0 | x)
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INTERPRETATION OF MLE

Find the parameter value within the model that gives the (training)
sequence x the highest possible probability. The probability P (x | @ = 0)
regarded as a function of 0 is known as the likelihood function

L(0) =P(x|©=0).

The likelihood function Ly (0) thus compares the plausibilities of different
models for given x.
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LOG LIKELIHOOD

—log Ly () = —logP (x| ® =16).

is called the log likelihood function.
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THE MAXIMUM LIKELIHOOD ESTIMATE

Maximization of the likelihood function or the log likelihood function by
calculus gives

. k
O = . (23)

What is @MAP in this case 7
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