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1 Introduction

By learning from data one often means the process of inferring a general law
or principle from the observations of particular instances. The general law is
a piece of knowledge about the mechanism of nature that generates the data.
The learning can be done by use of ’MODELS’, which serve as the language
in which the constraints predicated on the data can be described. In this
course the language is that of directed acyclic graphs (involving a language
for causality) and the joint distributions recursively factorized along them.
These notes give a more formal treatment of some parts of chapter 3 in
(Jensen 2001). The presentation here is in many essential parts based on
(Heckerman 1996, 1997).

2 Probabilistic Models with Conditional In-

dependence

There is one type of learning that we will be concerned with: this is inferring,
analysing and using a family of models indexed by parameters.

The first family of models to be studied is conditional independence. We
shall consider two examples of this to start with.
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2.1 Modeling and Learning for Tosses of a Thumbtack

2.1.1 The Model Family

The mathematics involved here is found in greater detail in (v. Mises and
Geiringer 1964) but goes in fact back to P.S. Laplace.

We consider a sequence of flips of a thumbtack (Heckerman 1996, 1997). If
we throw a thumbtack in the air, it will come to rest either on its point (0) or
on its head (1). Suppose we flip the thumbtack n times (fixing n in advance),
making sure that that the physical properties of the thumbtack and the
conditions under which it is flipped remain stable over time. We let x denote
the sequence of outcomes of the flips, x = xi1xi2 . . . xin , xil ∈ {0, 1}. Let now
Θ be a random variable (quantity), whose values are numbers, denoted by θ,
between zero and one, 0 ≤ θ ≤ 1. These values θ correspond to the possible
values of the chance of obtaining heads in tossing thumbtack .

MODEL FAMILY:

CONDITIONED ON Θ = θ, THE SYMBOLS IN x ARE INDEPENDENT.

Or more completely: the symbols in x are outcomes of independent Bernoulli
random variables with the parameter θ. Hence a model in the family is given
by the probability assignment

P (x | Θ = θ) =

n∏

l=1

θxil · (1 − θ)1−xil =

θ
Pn

l=1 xil · (1 − θ)n−
Pn

l=1 xil = θk · (1 − θ)n−k ,

if
∑n

l=1 xil = k.
One problem of inference is to find the model (within a preestablished

family) that is best in some sense given some observed data. In the thumbtack
example we understand this as follows. We have observed n outcomes of flips
of a thumbtack x and wish to determine which of the models in the family
that best describes this set of flips.

2.1.2 The Posterior Density

To progress with this we express our uncertainty about Θ using a probability
density function fΘ (θ), which is called the prior. Formally this means

fΘ (θ) ≥ 0, 0 ≤ θ ≤ 1
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and fΘ (θ) = 0 elsewhere, and

∫ 1

0

fΘ (θ) dθ = 1.

Also P (a < Θ ≤ b) =
∫ b

a
fΘ (θ) dθ.

By an extension of Bayes’ rule to continuous random variables we get the
posterior

fΘ|x (θ | x) =
P (x | Θ = θ) · fΘ (θ)

∫ 1

0
P (x | Θ = θ) · fΘ (θ) dθ

, 0 ≤ θ ≤ 1 (2.1)

and zero elsewhere. Due to the standardization fΘ|x (θ | x) is another proba-
bility density for Θ.

The posterior fΘ|x (θ | x) expresses our updated belief in the statement
that θ is the true chance of obtaining heads given that we have observed x.

One way to get further from here is to use an explicit form for fΘ (θ).
There could be several choices, but some are at least analytically more ad-
vantageous. Let us consider the uniform prior given by

fΘ (θ) =

{
1 0 ≤ θ ≤ 1
0 elsewhere.

The uniform prior is often interpreted as a representation of complete igno-
rance (v. Mises and Geiringer 1964).

By an insertion we can calculate

∫ 1

0

P (x | Θ = θ) · fΘ (θ) dθ =

∫ 1

0

θk · (1 − θ)n−k dθ =
k!(n − k)!

(n + 1)!

by the Beta integral found in many handbooks on integral calculus or as a
special case of the Dirichlet integral, see (A.10), recapitulated in the Appen-
dix. Then we have

fΘ|x (θ | x) =

{
(n+1)!

k!(n−k)!
· θk (1 − θ)n−k 0 ≤ θ ≤ 1

0 elsewhere.
(2.2)

This is a Beta density, see appendix 5.3.
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2.1.3 The Maximum Likelihood Estimate

To understand better the alluded properties of fΘ|x (θ | x) we introduce the

maximum likelihood estimate θ̂ML of θ defined by

θ̂ML = argmax0≤θ≤1P (x | Θ = θ) = argmax0≤θ≤1θ
k · (1 − θ)n−k .

The rationale for this is that we try to find the model within the family that
gives the (training) sequence x the highest possible probability. The proba-
bility P (x | Θ = θ) regarded as a function of θ is known as the likelihood
function

L (θ) = P (x | Θ = θ) .

The likelihood function L (θ) thus compares the plausibilities of different
models for given x.

A straightforward maximization of the likelihood function gives

θ̂ML =
k

n
. (2.3)

By a Taylor expansion of log P (x | Θ = θ) around θ̂ML and by using the
definition of the Fisher information J (θ), or for any probability distribution
f(x; θ) with L values

J(θ) =
L∑

i=1

f(xi; θ)

(
∂

∂θ
log f(xi; θ)

)2

, (2.4)

we can show

fΘ|x (θ | x) ≈ e−
1
2
nJ(bθML)·(θ−bθML)

2

= e
− 1

2
n

bθML·(1−bθML)
·(θ−bθML)

2

. (2.5)

We can empirically, say for x drawn from a pseudo random number generator,
plot the posterior density (2.2) as a function of θ and observe the property
(2.5), when the length of a string x increases. In fact this holds independently
of the prior density. This behaviour is clearly present in a typical simulation.

2.1.4 The Personal Probability for the Outcome of the Next Toss

In the thumbtack model we may be concerned with

P (Xn+1 = head|x) ,
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if Xn+1 is a random variable modeling the next toss, given n flips of the
thumbtack as recorded in x. The evaluation of this probability is left as an
exercise. The computation of P (Xn+1 = head|x) has also been discussed from
the pedagogical point of view as a potential item in high school curriculum of
statistics in (Lindley 1970). Lindley sees here a natural transition from rules
of probability to the rules of inference that should be easier at a high school
level than the frequentist approach. Personal probability for expert systems
is discussed in (Lindley 1987).

2.2 More on Modeling and Learning

2.2.1 The Model Family

Let X1, X2, . . . , Xn be independent random variables assuming values in

X = {x1, · · · , xL}

with the common distribution

θl = P (Xi = xl) , l = 1, 2, . . . , L.

Hence θ1 + θ2 + . . . + θL = 1. Let x = xi1xi2 . . . xin be a string of symbols
from X and let for l = 1, 2, . . . , L

nl = the number of times the symbol xl is found in xi1xi2 . . . xin .

We set
θ = (θ1, θ2, . . . , θL)

and consider Θ as a random variable (element) that assumes values in the
simplex

SL = {θ | θ1 + θ2 + . . . + θL = 1, θl ≥ 0, l = 1, . . . , L}.

THE MODEL FAMILY:

CONDITIONED ON Θ = θ, THE SYMBOLS IN x ARE INDEPENDENT.

Thus, as shown before,

P (x | θ) = θi1 · θi2 · · · θin = θn1
1 · θn2

2 · · · θnL

L .
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Again we find a prior φΘ (θ) for Θ. Let us consider the Dirichlet prior given
by

φΘ (θ) =

{
Γ(α)

Γ(
QL

j=1 αqj)

∏L

j=1 θ
αqj−1
j θ ∈ SL

0 elsewhere,

where the hyperparameters are α > 0, qj ≥ 0,
∑L

j=1 qj = 1, Γ (z) is Euler’s
gamma function as given in the appendix. The prior φΘ is in (A.7) in the
appendix given the symbol

Dir (αq1, . . . , αqL) .

By extension of Bayes’ rule we get the posterior

φΘ|x (θ|x; α) =
P (x | Θ = θ) · φΘ (θ)∫

SL
P (x | Θ = θ) · φΘ (θ) dθ

, θ ∈ SL (2.6)

and zero elsewhere. Using the Dirichlet integral expounded in the appendix
we get

Proposition 2.1 The posterior density φΘ|x (θ|x; α) is a Dirichlet density

Dir (n1 + αq1, . . . , nL + αqL)

or

φΘ|x (θ|x; α) =
Γ (n + α)

∏L

i=1 Γ (αqi + ni)

L∏

i=1

θni+αqi−1
i . (2.7)

This property says that the posterior density is in the same family of densities
as the prior. Hence the prior is called closed under sampling or a conjugate
prior.

2.2.2 Mean Posterior Estimate

One useful property of the Dirichlet density is that we can compute explicitly
the expectation of any θi with respect to the posterior density. In fact this
expectation is by (A.9) and (2.7)

θ̂i =

∫

SL

θiφ (θ1, . . . , θL|x; α) dθ1 . . . dθL =
ni + αqi

n + α
. (2.8)
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This result can be seen as a regularization adding pseudocounts αqi to the
vector of observed counts n and then normalising so that

∑L

i=1 θ̂i = 1. If we
have n = 0, the estimate is simply qi.

The probabilty in (2.8) is known as a rule of succession. Wilson (1927)
suggests for the thumbtack model a different rule of ssuccession

θ̂W =
k + α2/2

n + α2
, (2.9)

and says that the value of α depends on ‘our readiness to to gamble on the
typicalness of our experience’.

2.2.3 Maximum Likelihood

The maximum likelihood estimate of θ (a finite table of probabilities) is by
a familiar principle given by

θ̂ML = argmaxθ∈SL
P (x | θ) = argmaxθ∈SL

θn1
1 · θn2

2 · · · θnL

L .

The presence of SL imposes a constrained problem of maximization. We take
the natural logarithm of P (x | θ), which gives us the loglikelihood function

l (θ1, θ2, . . . , θL) = log P (x | θ)

We may equivalently seek the maximum of l (θ1, θ2, . . . , θL). Since the constraint
θ1 + θ2 + . . . + θL = 1 must be met, we consider the new auxiliary function
in L − 1 free variables

l̃ (θ1, θ2, . . . , θL−1) = l (θ1, θ2, . . . , 1 − (θ1 + θ2 + . . . + θL−1)) .

This gives

l̃ (θ1, θ2, . . . , θL−1) = n1·log θ1+n2·log θ2+. . .+nL·log (1 − (θ1 + θ2 + . . . + θL−1)) .

Vi differentiate partially l̃ (θ1, θ2, . . . , θL−1) with respect to θ1, θ2, . . . , θL−1

and set the partial derivatives equal to zero. This gives us the system of
equations

∂

∂θ1

l̃ (θ1, θ2, . . . , θL−1) =
n1

θ1

− nL

1 − (θ1 + θ2 + . . . + θL−1)
= 0,
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...

∂

∂θL−1

l̃ (θ1, θ2, . . . , θL−1) =
nL−1

θL−1

− nL

1 − (θ1 + θ2 + . . . + θL−1)
= 0.

This leads to the equalities

n1

θ1
=

n2

θ2
= . . . =

nL

1 − (θ1 + θ2 + . . . + θL−1)
.

Let us denote the common value of these ratios as λ so that

θ1 =
n1

λ
, θ2 =

n2

λ
, . . . , θL =

nL

λ
.

We determine λ from the constraint θ1 + θ2 + . . . + θL = 1, which gives

1 = θ1 + θ2 + . . . + θL =
n1

λ
+

n2

λ
+ . . . +

nL

λ

or
λ = n1 + n2 + . . . + nL = n.

Hence we have obtained the solution to ∇l̃ (θ1, θ2, . . . , θL−1) = 0 written in a
componentwise form as

θ̂i =
ni

n
, i = 1, . . . , L.

Strictly taken we have yet to prove that this yields a maximum. For this we
could check the matrix of second order partial derivatives of l̃, (Khuri 1993 p.
283). There is a more instructive way to prove that the estimate found above
actually gives the maximum. In fact the proof of the next proposition shows
that it is not even necessary to differentiate to prove that we have found the
maximum likelihood estimate.

Proposition 2.2 The maximum likelihood estimate θ̂ML of θ is

θ̂ML =
(n1

n
,
n2

n
, . . . ,

nL

n

)
.

Proof: Clearly the candidate solution θ̂ML belongs to SL and is thus admissib-
le. Since P (x | θ) =

∏L

i=1 θni

i , the following identity is evident

H
(
θ̂ML

)
= −1

n
log P

(
x | θ̂ML

)
, (2.10)
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where

H
(
θ̂ML

)
= −

L∑

i=1

θ̂i log θ̂i (2.11)

is the (empirical) Shannon’s entropy in nats.
Next we take an arbitrary θ in SL. Then we have in view of (2.11) for an

arbitrary θ in SL another evident identity

P (x | θ) =

L∏

i=1

θni

i = e−n(D(bθML|θ)+H(bθML)). (2.12)

Here we have used the Kullback distance between two discrete probability
distributions defined as

D (f |g) =
∑

x∈X

f(x) log
f(x)

g(x)
.

Thus from (2.10) and (2.12)

P
(
x | θ̂ML

)

P (x | θ)
= e−nH(bθML) · en(D(bθML|θ)+nH(bθML)) =

= enD(bθML|θ) ≥ 1,

where the last inequality follows due to the fact that D
(
θ̂ML|θ

)
is the Kull-

back distance, which is known to be nonnegative. Equality holds if and only
if θ̂ML = θ. Thus

P
(
x | θ̂ML

)
≥ P (x | θ)

for every θ in SL and the assertion is proved.
Here we may note that another way of referring to α in (2.8) is to talk about
the flattening constant (Bender 1996, pp. 554 - 555). The flattening constant
determines a linear interpolation between the maximum likelihood estimate
ni

n
and the prior estimate qi. Hence α has the interpretation as the degree of

confidence we distribute between the data and the prior.
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2.3 General Summary

A formal Bayesian modeling articulates the information in a (training) se-
quence with evidence other than that of the (training) sequence. It is thought
that there is always such evidence or that there is no such thing as the ’right
analysis’ if there is none. The evidence is assessed by judgement and is ex-
pressed in probability theory terms:

(1) a probability distribution specifies the probability of any sequence con-
ditional on certain parameters;

(2) a prior expresses uncertainty about the parameters.

When (1) is combined with the training sequence we get the likelihood func-
tion of the sequence. The likelihood function is combined with (2) via Bayes’
rule to produce a posterior distribution for the parameters of the model and
this is the output of the formal Bayesian analysis.

3 Learning of Bayesian Networks from Com-

plete Data

3.1 Notations

Let G = (V, E) be a directed acyclic graph with the set of nodes V =
{1, . . . , d} and the edges E. Each edge (j, i) in E is a statement telling that
Xj is influencing or is a direct cause of Xi. The absence of an edge indicates
lack of direct influence. For each node there is a discrete random variable Xj

the instantiations of which are designated by

xi
j ∈ Xj = {x1

j , . . . , x
kj

j }.

Since the graph is acyclic and directed, the structure of the graph G is
determined by the parent sets

(Π[1], Π[2], . . . , Π[d]) ,

where Π[j] is the set of parents of the node j. This is the same notation as
pa(j).
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Let πl
j denote a parent configuration. The parent configuration is the set

of instantiations assumed by the variables in the parent nodes so that

πl
j ∈ XΠ[j] = ×t∈Π[j]Xt,

and XΠ[j] is the notation for the set of all possible parent configurations at
node j. The number of possible parent configurations at node j is

qj =
∏

l∈Π[j]

kl,

where kl is the number of symbols in Xl.
The joint distribution of (X1, . . . , Xd) is recursively factorized along G in

the sense that

P
(
X1 = xi1

1 , . . . , Xd = xid
d

)
=

d∏

j=1

P
(
Xj = x

ij
j |π

lj
j

)
, (3.1)

We write now the table of conditional probabilities P
(
Xj = xi

j |πl
j

)
using

a special system of notations.
We set for xi

j ∈ Xj , i = 1, . . . , kj, πl
j ∈ XΠ[j], l = 1, . . . , qj and j = 1, . . . , d

θjil = P
(
Xj = xi

j|πl
j

)
, (3.2)

and
θj,l = (θjil; i = 1, . . . , kj) , (3.3)

and
Θ =

(
θj,l; j = 1, . . . , d, l = 1, . . . , qj

)

denotes the overall parameter consisting of the local child-parent parameters.
For convenience of expression we shall in the sequel write the joint distri-

butions
P
(
X1 = xi1

1 , . . . , Xd = xid
d

)

and other distributions by omitting notationally the random variables but
including the graph and parameters by setting

x =
(
xi1

1 , . . . , xid
d

)
,

and
PΘ (x | G) = P

(
X1 = xi1

1 , . . . , Xd = xid
d

)
. (3.4)
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3.2 Parameter estimation

Suppose we are given a sample of cases X = {x(1), . . . ,x(n)} and we wish
to find a Bayesian network on basis of this data. Note that each sample is
multivariate,

x(k) =
(
xi1

1,k, . . . , x
id
d,k

)

corresponding to a configuration of states of the d variables in the graph. We
assume that no value xi1

j,k is missing, i.e., that the data is complete.
There are two aspects of a BN that in general need be learned:

(1) the structure of G;

(2) the parameters Θ, given the graph structure G.

We shall first discuss the latter problem, that of learning of the parameters
given the structure of the graph.

Let now nk(x
i
j |πl

j) be equal to one (1) if we see the case (xi
j , π

l
j) (a family

configuration) in the sample xk and zero (0) otherwise. The joint probability
of a case x(k) can now be written invoking (3.1), (3.2) and (3.4) as

PΘ

(
x(k) | G

)
=

d∏

j=1

qj∏

l=1

kj∏

i=1

[θjil]
nk(xi

j |π
l
j) (3.5)

If the cases in X = {x(1), . . . ,x(n)} are modeled as independent outcomes
of the graph (variables), then we have

n∏

k=1

PΘ

(
x(k) | G

)
=

d∏

j=1

qj∏

l=1

kj∏

i=1

n∏

k=1

[θjil]
nk(xi

j |π
l
j)

=

d∏

j=1

qj∏

l=1

kj∏

i=1

[θjil]
Pn

k=1 nk(xi
j |π

l
j) (3.6)

Let us set

n(xi
j |πl

j) =

n∑

k=1

nk(x
i
j|πl

j),

which is the number of times we see the family configuration (xi
j, π

l
j) in

X = {x(1), . . . ,x(n)}.
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3.2.1 Maximum Likelihood

Thus we have

L (Θ) =

n∏

k=1

PΘ (xk | G) =

d∏

j=1

qj∏

l=1

kj∏

i=1

[θjil]
n(xi

j |π
l
j) . (3.7)

For any node j and any parent configuration πl
j there is the constraint

kj∑

i=1

θjil = 1. (3.8)

Thus, the likelihood L (Θ) in (3.7) is seen to factorize into local parent-child
factors and additionally to d × qj separate maximum likelihood estimations
all of the basic form treated in proposition 2.2. Hence we have that

θ̂j,l
ML =

(
n(xi

j |πl
j)

n(πl
j)

; i = 1, . . . , kj

)
,

where

n(πl
j) =

kj∑

i=1

nk(x
i
j |πl

j) (3.9)

is the frequency of the parent configuration πl
j in X. The maximum likelihood

estimate of θjil is thus

θ̂jil =
frequency of the family configuration

frequency of the parent configuration
.

3.2.2 Bayesian Learning

The factorization properties of
∏n

k=1 PΘ (xk | G) can now be taken advan-
tage in Bayesian learning. We assume that the parameters θj,l in (3.3) are
independent random variables and have the Dirichlet density

Dir
(
α1,j,l, . . . , αkj ,j,l

)
.

Then we obtain from proposition 2.1 that the posterior density φΘ|X

(
θj,l|x; αj,l

)

is the Dirichlet density

Dir
(
n(x1

j |πl
j) + α1,j,l, . . . , n(x

kj

j |πl
j) + αkj ,j,l

)
.
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In addition the mean posterior estimate must in view of (2.8) be given by

θ̂j,l =

∫

Sj,l

θjilφΘ|X

(
θj,l|x; αj,l

)
dθj,l =

n(xi
j |πl

j) + αi,j,l

n(πl
j) +

∑kj

i=1 αi,j,l

, (3.10)

where Sj,l is the manifold of values of θj,l given in (3.3).

4 Cooper-Herskovitz Likelihood for the Graph

Structure

Suppose now that the structure of a Bayesian network is to learned from data.
Assume that the samples are complete, that the indiviudal cases are indepen-
dent conditioned on Θ and that the prior distributions are Dir

(
α1,j,l, . . . , αkj ,j,l

)

for all nodes and parent configurations. Then we define

p (X | G) =

∫

×j,lSj,l

n∏

k=1

PΘ (xk | G)
d∏

j=1

qj∏

l=1

dφ
(
θj1l, . . . , θjkj l, αj,l

)
, (4.1)

where φ
(
θj1l, . . . , θjdl, αj.l

)
is another more complete way of writing the Di-

richlet density Dir
(
α1,j,l, . . . , αkj ,j,l

)
.

Then it follows by a straightforward computation using the properties of
the Dirichlet integral and the factorization in (3.7) that

p (X | G) =
d∏

j=1

qj∏

l=1

Γ
(∑kj

i=1 αi,j,l

)

Γ
(
n(πl

j) +
∑kj

i=1 αi,j,l

)
kj∏

i=1

Γ
(
n(xi

j |πl
j) + αi,j,l

)

Γ (αi,j,l)
, (4.2)

where n(πl
j) is given by (3.9). This is the Cooper-Herskovitz likelihood for the

graph structure (Cooper and Herskovitz 1992). There is only a finite number
of different DAG:s Gr with d nodes. Some expertise on domain knowledge,
may, of course, reduce the number of graph structures to be considered in a
special situation.

The Bayesian rule of selection of the structure of the Bayesian network
using the cases in X is to use the graph that maximizes the posterior proba-
bility p (Gr | X) or

argmaxrp (Gr | X) =
p (X | Gr) p (Gr)

p (X)
,
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where p (X) =
∑N

r=1 p (X | Gr) p (Gr) and p (Gr), r = 1, . . . , N is a prior
distribution on the graphs. The task is known to be NP-hard, see (Chickering
1996). There do not seem to be many well known suggestions on the prior
distribution (?), there are some references and points of view in (Buntine
1996).
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5 Appendix: Some Formulas for Dirichlet Den-

sities

5.1 Euler’s gamma function

The gamma function Γ(z) is defined for complex numbers z, whose real part
is positive, by the definite integral

Γ(z) =

∫ ∞

0

xz−1e−xdx. (A.1)

A special case, obtained by the substitution x = u2/2 is

Γ

(
1

2

)
=

√
π.

The recursion formula is

Γ(z) = (z − 1)Γ(z − 1). (A.2)

Hence, if z = n, where n is a positive integer, we have the factorial

Γ(n) = (n − 1)!. (A.3)

5.2 The Dirichlet density

Let SL ⊂ Rk be the simplex

SL =

{
(θ1, . . . , θL) |θi ≥ 0, i = 1, . . . , L,

L∑

i=1

θi = 1

}
. (A.4)

Let for αi > 0

φ (θ1, . . . , θL) =

{ QL
i=1 θ

αi−1
i

Z
, if θ1, . . . , θL ∈ SL

0 otherwise.
(A.5)

Here

1

Z
=

Γ
(∑L

i=1 αi

)

∏L

i=1 Γ (αi)
. (A.6)
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The density φ (θ1, . . . , θL) is called a Dirichlet density. We designate it sym-
bolically by

Dir (α1, . . . , αL) . (A.7)

If α1 = α2 = . . . = αL = κ, then we talk about a symmetric Dirichlet density.
For the proof of the fact that

∫

SL

φ (θ1, . . . , θL) dθ1 . . . dθL = 1 (A.8)

we refer to (Wilks 1962). This means also that

∫

SL

L∏

i=1

θαi−1
i dθ1 . . . dθL =

∏L

i=1 Γ (αi)

Γ
(∑L

i=1 αi

) . (A.9)

(Gupta and Richards 1987) is a concise compendium of knowledge about the
Dirichlet distributions.

5.3 Beta density

As a special case for L = 2 we obtain in (A.9) the Beta integral

∫ 1

0

θα1−1(1 − θ)α2−1dθ =
Γ (α1) · Γ (α2)

Γ (α1 + α2)
. (A.10)

Thus

f (θ) =

{
Γ(α1+α2)

Γ(α1)·Γ(α2)
θα1−1 (1 − θ)α2−1 0 ≤ θ ≤ 1

0 elsewhere.
(A.11)

is a probability density called the Beta density and denoted by

Be (θ; α1, α2) .

Note the difference in the heuristic notation between Beta and Bernoulli
Be(p). If θ = (θ1, . . . , θL) is a random variable that assumes values in SL in
(A.4) and has the symmetric Dir (α, . . . , α) distribution, then the marginal
density of any θi is given by

θi ∈ Be (θ; α, (L − 1)α) . (A.12)
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On predictive distributions and Bayesian networks. Statistics and Computing,
10, pp. 39−54.

• D.V. Lindley (1987): The Probability Approach to the Treatment of Uncer-
tainty in Artificial Intelligence and Expert Systems. Statistical Science, 2, pp.
17−24.

• D.V. Lindley (1970): A non-frequentist view of probability and statistics. The

Teaching of Probability & Statistics, L. R̊ade editor, Almqvist & Wicksell,
Uppsala, pp. 209−222.

• J. Rissanen (1997): Stochastic complexity and learning. Journal of Computer

and System Sciences , 55, pp. 89−95.

• H.V. Roberts (1965): Probabilistic Prediction. Journal of the American Sta-

tistical Association, 60, pp. 50−62.

• E.B. Wilson (1927): Probable inference, the law of succession, and statistical
inference. Journal of the American Statistical Association, 22, pp. 209−212.

18



2 Books:

• E.A. Bender (1996): Mathematical Methods in Artificial Intelligence. IEEE
Computer Society Press, Los Alamitos, California.

• J.M. Bernardo and A.F.M. Smith (1994): Bayesian Theory. John Wiley and
Sons, Chichester, New York, Brisbane, Toronto and Singapore.

• A.I. Khuri (1993): Advanced Calculus with Applications in Statistics. John
Wiley and Sons, Inc. New York.

• R. v. Mises with H. Geiringer (1964): Mathematical Theory of Probability and

Statistics. Academic Press, New York and London.

• F.V. Jensen (2001): Bayesian Networks and Decision Graphs. Springer Verlag.

• S.S. Wilks (1962): Mathematical Statistics, John Wiley and Sons, New York
and London.

19


