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Abstra,ct (x(l’));:=1 into mutually disjoint sets. More precisely, ¢(»)

Two-layer feedforward neural networks implementing as-
sociative memories for classification of binary feature vec-
tors, trained by supervised learning and backpropagation
of error minimizing crossentropy, are analysed by com-
puter experiments. For this the MATLABTM Neural
Networks Toolbox has been used and modified.

We apply adaptation of learning rate to increase the
speed of convergence in training a network for a cluster-
ing example‘due to Gower. In particular, the expansion
and rejection of identification properties of the memory
are of interest and suggest a process of decision directed
learning.

1 Associative Networks and Clus-
tering

An associative memory is a device for storing given
n pairs (').f input and target vectors, denoted by
(x(P),t(P))p=1, respectively, so that when presented with

x(P) as input, the memory recalls () as output,
x®) s Association s t() (1)

for every p, see [19, 20]. The memory is expected to re-
call or retrieve the appropriate output vector even when
presented with a distorted version of a stored input vec-
tor. The storage required for the association is desired
to have been achieved by some self-organizing process.
The memory should also be able to expand its storage.
The datahandling and matrix manipulation commands of
MATLABTM are well suited for expanding the memory
in the sense to be considered in the sequel.

In this paper we describe an associative memory for
classification or clustering of binary vectors. The input
vectors x(?) are thus binary vectors of a given length d
and the output vectors t?) describe a partition of the set

is the centroid of the class [8] to which x(P) is assigned.
The set (x(P), t(l’)):=1 is called the training set. The num-

ber of distinct vectors amongst (t("))::=1 is usually much
smaller than n. As the computational implementation
of the associative memory we use a two layer artificial
neural network.

For the details and the background (identification of
micro-organisms) for the designated way of dealing with
clustering we refer to [10, 11, 12, 13]. A recent general
survey of clustering (classification) and neural nets is [23].
Clustering and identification of binary vectors occurs in
a number of different applications [1, 7, 8].

2 The Computational Architec-
ture for the Associative Net-
work

The association (1) is here implemented by the basic pro-
cessing /storage units of neural networks, neurons, layered
to a parallell computational architecture known as the
feedforward multilayer network [14, 15]. The weights and
biases of the neurons for the layer at depth [ are collected

in
w® = {u(®
{w"’ i=0,...,Ni—1i§=1,...,Me
and the corresponding outputs of the neurons are

u(') (x) = (ll(ll) (x) 3y "5\2 (x)) ’

respectively, where N; is the number of neurons in the
layer at depth I. With the transfer function F, a sig-
moidal memoryless nonlinearity, the neural processing at
depth ! reads in the matrix notation of the manual Neural
Network Toolboz for Use with MATLABTM [5] as

u®(x) = F (W(t) (I'l(,_}) (x))) , @)
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where 1 denotes the constant input that multiplies the
biases w.('(), A network is in view of (2) a composition
of functions, see [2]. The vector u(F) (x) designates the
oulput of the neiwork, the other output vectors are usu-
ally called hidden layer outputs. The initial value for (2)
is by convention u(®) (x) = x. In the computer we have
L = 2 (a two layer network).

In (2) F is for our purposes exclusively the standard
logsigmoid function

1

F(z)= T¥e=’

3)

which is applied componentwise to its vector argument
to give the vector output of a layer just as the command
logsig(x) of the Toolbox is described. Since the target
vectors t(P) are constrained to be binary, the output of
the network, with components between 0 and 1, must be
further rounded off to the nearest binary value. The num-
ber of neurons at the output layer is here, as explained
in the above, N = d(= size(x,1)). Thus the network
implements a mapping from the binary d-hypercube to
itself.

We focus on two layer networks, since any map from
the binary d-hypercube to the binary d-hypercube can be
realized by means of a two layer neural network, as shown
in [3, pp.90 - 95) or in [6]. There seems to be, on the other
hand, no precise infcrmation about the minimum possible
complexity to achieve or to approximate this realization.
For representation of maps in the binary d-hypercube by
three-layer networks there are some recent intriguing re-
sults in [18).

The common neural network architecture for a classi-
fication task has usually an output layer with as many
neurons as there are pre-established classes. The neuron
in the output u(F) (x) with a high level of activity ( = 1)
singles out the class identity [23]. The present application
of neural networks to clustering differs clearly from this
in that the target vectors used do not in general contain
just a single binary 1. Thus the output of the memory
will not approximate the Bayesian classifier based on the
training set in same fashion as shown in [22, 24], albeit
that the analysis in [22, 24] is in certain respects formally
applicable.

As pointed out in the above, the memory may possi-
bly retrieve a vector not equaling any of the stored target
vectors, a default which may occur in Bayesian classifi-
cation only if a rejection threshold is imposed [13]. This
behaviour of the network may conceivably be caused by
too small a training set. However, e.g. in microbial identi-
fication items need to be continuously grouped and iden-
tified [26] in a time scale, which is much longer than the
training times of two-layer neural networks, but which is
on the other hand rauch smaller than the time needed to
accrue large data bases.

3 The Crossentropy Criterion and
Learning

3.1 Definition and Rationale of Crossen-
tropy
Let W = {W(‘)}IL___1 comprise all the weights and biases

in the network. The crossentropy or the Kullback-Leibler
distance is defined ([4]) by

Ca (W) = zn: i C (¢, u" (x)),

p=1i=1

(4)

where, for 0 <t <land 0<u<i,
C(tu)=—[1-1t)log(1l —u) + tlog(u)].

Learning or selforganization means adjusting W so that
the network’s output u(*) (x(P)) as closely as possible re-
sembles, in the sense of C,, (W), the corresponding target
vector I, a binary vector. Since the target vectors are
fixed in advance, this is a case of supervised learning.
The minimization of crossentropy by gradient descent i.e.
backpropagation is mathematically known to converge at
least for single layer networks [15, 29].

There are several different rationales for minimizing
crossentropy as the training criterion. Here we refer
to [10, 11] for an account of the possible biostatistical
reasons and to [25] for the general information theory.
Learning for single layer networks using minimization of
crossentropy corresponds to the maximum likelihood es-
timation of a certain generalized logistic regression, as
shown in [10, 11]. In the single layer case a relation of
learning by crossentropy minimization to the correlation
matrix memories of [20] can also be shown.

The well known pragmatic argument for minimization
of crossentropy is that this has been observed to converge

- faster than backpropagation of mean square network er-

ror, [16, 26]. The MATLAB experiments reported in here
and in [21] confirm this finding.

3.2 Backpropagation of Crossentropy us-
ing MATLAB

The extension of backpropagation to crossentropy as cost
function consists of the evaluation of (6/ 3w§'2) Cn (W)

from (4) by a repeated use of the chain rule of calculus.
The details of the analytic derivation of the back-
propagation rule for the two-layer case using the logsig-
moidal transfer function are given in [21]. Just as the
_analytic formulae are straightforward modifications of
the standard expressions of backpropagation, the MAT-
LAB computations for minimizing crossentropy can be
organized following the flow in the M-file trainbp.m of
MATLABTM Neural Network Toolbox. The training is
thus done by a simultaneous or batch presentation of the
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training set to the two-layer network. The key alteration
required consists of changing both the %BACKPROP-
AGATION PHASE and the % LEARNING PHASE in
tpb2.m containing the coding for the delta rule of back-
propagation as well as the weights and biases update, see
[5, pp- 5-7 - 5-8], cf. [14, 15]. As we are restricting
ourselves here to the logsigmoidal transfer function (3),
the getdelta commands involved in the backpropagation
phase of tpb2.m can be dispensed with. The delta rule
for crossentropy reads then as follows:

deltaw?2 = diff = Al’;
deltab2 = (sum(diff'));

deltawl = ((onesl * sumdiff). * Aldif f) x P’;
deltabl = Aldiff * sumdif f'; .

Here deltaw?2 and deltab2 are the matrix and vector, re-
spectively, of partial derivatives (6/8w§:?) Cn (W) with
respect to the weights and biases,respectively, in the out-
put layer with deltawl and deltabl having the same inter-
pretations in the first (or the hidden) layer. In addition,
dif f is the vector of differences between the target vec-
tors and the net’s outputs, Al is the output of the first
layer, Aldiff = Al. % (1 — Al);, sumdiff is the sum of
the differences diff over the whole training set and P is
the d x n matrix of input vectors (x(P)):=1. Other obvi-
ous alterations in tpb2.m are also called for, but we omit
them here. Actually it is not too time consuming to work
out a complete crossentropy equivalent of the trainbp.m
file in the Toolbox.

In e.g. [16, 26} it has been observed that when us-
ing the logsigmoidal transfer function (3) there is for the
crossentropy backpropagation a small reduction in the
number of computations per iteration available in in the
output layer, if compared to backpropagation of mean
square network error. This can also be seen in the code
above.

For initialization of the backpropagation algorithm the
weights and biases are chosen at random in -1, 1] with
the rands command in the Neural Network Toolbox.
Certain other methods of initialization have been anal-
ysed and used [21], too.

3.3 Adaptation of the Learning Rate

To increase the speed of convergence an adaptation of the
learning rate has also been implemented using the Delta-
Bar-Delta learning rule proposed by Jacobs [17]. Here
the learning rate is changed during the training process.
The pertinent learning rule assigns an individual learning
rate to each weight in the net and this rate varies with
the epoch, in the sense of [5, p. 3-7), during the training
process.

The adaptation is based on the following heuristic con-
siderations. First, if the gradient for the error with re-
spect to a specific weight has had the same sign for some

time, the learning rate for that weight should be in-
creased. This will lead to a faster search for the minimum
of the error surface. Second, if the sign of the gradient
alternates, the learning rate should be decreased.

Let p;;(k) be the learning rate for that weight in the
kth training epoch, here dropping for ease of writing su-
perscripts for the layer depth. The Delta-Bar-Delta learn-
ing rule is

w; i(k +1) = wj (k) — pjs(k + I)M;T(:V),

where pji(k + 1) is computed as follows. We set for each
of the hidden and output units

Next, compute the delta-bar as the output of the follow-
ing AR(1)-filter

Aji(k) = (1~ B)Aji(k) + BA;i(k - 1).

Parameter 8 can be chosen by the user within the range
0 < B < 1. The learning rate at epoch (k + 1) will be:

pj;(k) + kK if §j.’(k - 1) * Aj,'(k) >0,
pii(k+1) = ¢ (L —7pji(k) if Aji(k—1)* Aji(k) <O,
pji(k) otherwise.

The parameters &, ¥ and £ have the following (optional)
values:

x = 0.035,v = 0.333, 8 = 0.7.

This rule has also been coded in MATLAB by adding to
the previous changes in the tpb2.m format.

4 An Experiment: An Associative
Memory for a Clustering Exam-
ple

The example to follow is chosen mainly since it is rather
concisely overviewed but is still found interesting. The ex-
periment is concerned with training by backpropagation
of crossentropy a two layer (L = 2, Ni = 10) network for
the training set X12 from Gower [9] given by

/ (0011111011), a;
(1101111110), a,
(0000000000), a3
(0011101011), a,
(0000001101), a4
(0011110011), a;
(1101111100),a; | ’
(1101101000), a;
(0000000101), a4
(1101110000), a,
(0011111001), @,
\ (1101110100, a3/

Xlz =
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where each row contains a binary vector x(P) with the as 1.45 1
(d =)10 bits enclosed in parentheses and separated by ay 1.59 1
a comma from the corresponding target vector with p = x(13) 0.80 0

1,...,12 running from the top of the array down. In other
words we wish to implement e.g.

We wish to emphasize here that the output is com-
puted by matrix operations (2), not by checking of d¢..
Thus, the net has learned to minimize the crossentropy,
and in doing so it has given as output a vector not among
the centroids stored in the memory.

Next, we augment in two subsequent stages, the train-
ing set with (x(13), az) and (x(4), ay), where

x(® = (0011101011) v+ Association — t* = a,

and for all other p as given above. The target vectors are

|

!

ey = (0011111011)

as = (1101111100)
as = (0000000000)
a4 = (0000000101).

In fact, the targets are the centroids obtained in an
unsupervised clustering of x(1),...,x(1?) by computa-
tionally minimizing 1/12¥,2) mini¢j<s dur (x®,a5),

where dg (x®,a;) = Y12, [+
metric. This amounts also to training of a vector quan-
tizer [8] with the Hamming metric as the distortion mea-
sure. For a further discussion of the techniques for un-
supervised clustering of binary vectors in general and as .
applied to this example we refer to {12, 27] and their ref-
erences.

An associative memory for X1? is- implemented by
backpropagation for minimization of crossentropy and
adaptation of learning rate using batching with the MAT-
LAB routines outlined above on a Sun Spercstation in
the UNIX environment. In the computer runs we also
simultaneously calculated the squared network error.

After 1299 training epochs of running this program the
two layer net reached the crossentropy 0.2526 and squared
network error 0.05. The network thus trained correctly
associates x(P) to the. respective centroids in X12. By
this training the given pairs of input and target vectors
are put in the storage locations of the neurons, i.e. in the
weight matrices W(1) and W(?) for the respective layers. -
More details of the structure obtained are given in [21].
Let us introduce the crossentropy between y and x given
W in a two layer net by -

Iz - a.-jl is the Hamming

d
de. (v, xIW) = Y C, uf?(x)).

i=1
When the trained net was exposed to the vector
x()=(0 00000000 1)

the output became x(13) itself. This can be viewed as
a "bad retrieval” or in our terms rather as a rejection of
identification. To see why this particular retrieval occurs,
we calculate crossentropies and Hamming distances:

vy dc.(uxCIW) dg(x(13),y)
a 58.15 6
as 66.29 8

xM=(1111111111)

and denote the augmentation by X'14. After subsequent
training initialized by the weight matrix W obtained in
the preceding training we obtain a new weight matrix W*
and the crossentropy assumes the value 0.05. The vector

x=(11100001 1 0)

best predicts X1 as a single cluster. For x€ the expanded
memory recalls a; as output, which is the centroid clos-
est to x& w. 1. t. both the Hamming distance and the
crossentropy, as

y dCs (yl x¢ IW.) dH(sz y)
.06 2

a 0.0

as 28.71 4
as 57.26 5
as 56.31 5
x6 9.22 0.

For the binary complement X¢ of x¢ we get the following:

vy dc.(v,x°|W*) du(x,v)

ay 5.73 8
az 32.93 6
asz 9.58 5
aq 5.00 5
x¢ 29.32 0.

The actual output is the binary complement a;. The
crossentropy dc_ (@2, XC|W*) equals 2.87 i. e. the net de-
cided correctly in the sense of crossentropy minimization,
whereas the output is not a centroid. Testing with 1000
binary 10 x 1 vectors randomly chosen the average dis-
tance from the stored centroids in X4 was 4.5 bits.

5 Conclusions

Supervised training of two-layer feedforward neural net-
works using minimization of the crossentropy as learning
criterion has been demonstrated to be a convenient ex-
tension to MATLABTM Neural Network Toolbox. The
addition of adaptive learning rates is also readily done.
The resulting training process converges faster than the
squared network error propagation.

We have experimented with a clustering example by
exposing the fully trained associative memory to d -
dimensional binary vectors x not included in the original
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data set (x(P)):=l. The expectation is that the associa-
tive memory should find, primarily amongst the target
vectors, the best resemblance to a given binary vector
x. When the memory is realized as a two-layer feed-
forward neural network, this would seem to suggest a
fast and easy way of doing matrix computations to check
the nearest neighbor criterion of clustering. It turns out
that the associative memory will sometimes retrieve some
vector different from the stored targets. By our experi-
ments the bad retrievals are, however, nearest vectors in
the sense of crossentropy criterion used in the training of
the underlying neural network. The envisaged, but not
yet automated, cycle with default of identification lead-
ing to a subsequent extension of memory and retraining
with badly retrieved items constitutes in an overall view
a non-supervised learning process related to decision di-
rected learning [30] which is of interest in classification of
micro-organisms.
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