

Avd. Matematisk statistik
KTH Matematik

BAYESIAN NETWORKS and STATISTICAL GENETICS :

Vt 2010
EXERCISE SET 2: due to 29th of April (in case there is a meeting)
1.

$$
U=(X, Y, Z), p(U)=p(X \mid Z) p(Y \mid Z) p(Z)
$$

X, Y, Z are binary.
We have data, four complete and independent observations $U^{(i)}, i=$ $1,2,3,4$:

	X	Y	Z
$U^{(1)}$	0	1	0
$U^{(2)}$	1	1	0
$U^{(3)}$	0	0	1
$U^{(4)}$	0	1	0

By the word 'complete' we mean that there are no missing values in any of $U^{(i)}$.

$$
\begin{gathered}
p\left(U^{(1)}\right) \cdot p\left(U^{(2)}\right) \cdot p\left(U^{(3)}\right) \cdot p\left(U^{(4)}\right) \\
p\left(U^{(i)}\right)=p\left(X^{(i)} \mid Z^{(i)}\right) p\left(Y^{(i)} \mid Z^{(i)}\right) p\left(Z^{(i)}\right)
\end{gathered}
$$

We introduce the probabilities of success (conditioned on the state of the parent)

$$
\theta_{x \mid z=0}=P(X=1 \mid Z=0), \theta_{x \mid z=1}=P(X=1 \mid Z=1)
$$

and analogously

$$
\theta_{y \mid z=0}=P(Y=1 \mid Z=0), \theta_{y \mid z=1}=P(Y=1 \mid Z=1)
$$

$$
\theta_{z}=P(Z=1)
$$

Find the maximum likelihood estimates of $\theta_{x \mid z=0}, \theta_{x \mid z=1}, \theta_{y \mid z=0}, \theta_{y \mid z=1}$, and θ_{z}.
2. C, E, M are binary (or here: yes- no). The simultaneous distribution is

$$
p(C, E, M)=p(C \mid E, M) p(E) p(M)
$$

We need three probability tables for this model.

$$
P(E=\text { yes })=0.1, P(M=\text { yes })=0.2
$$

E and M are independent.
$P(C=$ yes $\mid M=$ yes, $E=$ yes $)=1, P(C=$ yes $\mid M=$ no, $E=$ yes $)=1$,
$P(C=$ yes $\mid M=$ yes, $E=$ no $)=0.5, P(C=$ yes $\mid M=$ no, $E=$ no $)=0$.
Suppose we know that the event $C=$ yes has occurred (or is instantiated).
Compute the posterior distribution for the two random variables M and E given $C=$ yes using Bayes' rule.

