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Abstract

We consider robust stability analysis of a class of large scale interconnected systems. The individual subsystems may be
different but they will be assumed to share a property that characterizes the interconnection matrix. The main contribution
of the paper is to show that, for the case where the network interconnection matrix is normal, (robust) stability verification
can be simplified to a low complexity problem of checking that the frequency response of the individual dynamics and the
eigenvalues of the interconnection matrix can be mutually separated using a class of quadratic forms. Most interestingly, we
show that this criterion provides a necessary and sufficient characterization of robust stability.
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1 Introduction

In this paper, robust stability analysis of a class of spa-
tially interconnected systems is considered. Our main
aim is to significantly reduce the computational com-
plexity associated with robust stability analysis of such
systems by exploiting the network structure. This goal
is in line with the recent development of this field of
research. The interconnection structures and decompo-
sition techniques considered here are related to recent
development on synchronization problems [17,12], con-
sensus problems [13], vehicle formations [4], and other
network problems with symmetry [2,5]. In these works,
various techniques such as Nyquist criteria, Lyapunov
theory, passivity, and dissipation theory are used for the
analysis.

The class of interconnected systems considered in the pa-
per consists of heterogeneous linear time invariant (LTI)
and single-input-single-output (SISO) components in-
terconnected over a communication network with a cer-
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tain symmetry property. The network connection is pri-
marily modelled by an interconnection matrix of com-
plex value; however, the results presented in this paper
can be generalized to encompass the case where dynam-
ics of the link is taken into account.

Standard stability analysis of such interconnected sys-
tems will be computationally expensive, or even in-
tractable, if the number of the components in the
network is very big. This has motivated researchers to
develop so-called scalable stability criteria. An early
contribution was obtained by Vinnicombe in [16] where
it is shown how structure can be explored to reduce
the stability test to a separating hyperplane condition
on the individual dynamics of the network. This result
have been subsequently generalized [8,9] and applied to
problems in congestion control for the Internet [10,15].

In [?] we showed that by making the hyperplane condi-
tion in [8] frequency dependent, it is possible to derive
a necessary and sufficient stability characterization for
heterogeneous LTI SISO systems interconnected over a
symmetric network. In this paper we show that when
the interconnection matrix is allowed to have a more
general eigen-structure, it is still possible obtain a nec-
essary and sufficient characterization for robust stabil-
ity of the interconnected system. The new stability cri-
terion has an appealing graphical interpretation which



essentially says that a generalized Nyquist plot of the
interconnected system should stay outside a polyhedron
induced by the location where the eigenvalues of the in-
terconnection matrix reside.

Notations

We let A denote the class of transfer functions obtained
as the Laplace transform of the impulse response func-
tions

h(t) = h0(t) +

N∑

k=1

hkδ(t − tk)

where h0 ∈ L1[0,∞), hk ∈ R, tk ≥ 0 and δ(·) is the
Dirac function.

A linear system ∆ ∈ A is bounded and causal
on L2[0,∞) and in particular we have ‖∆v‖ ≤
supω∈R |∆(jω)|‖v‖, ∀v ∈ L2[0,∞), where ‖v‖2 =∫∞

0
|v(t)|2dt.

The direct matrix sum is defined as

⊕n
k=1∆k = diag(∆1, . . . ,∆n).

For the case where ∆k ∈ A is a system, the later defini-
tion should be interpreted as

(⊕n
k=1∆k)(v) :=





∆1(v1)
...

∆n(vn)





where v =
[
v1 · · · vn

]T
∈ Ln

2 [0,∞).

2 Problem Formulation and Preliminaries

We consider the class of systems in the following form

v = Γw, w = ∆(v) + e (1)

where ∆ = ⊕n
k=1∆k and each ∆k ∈ A. The disturbance

e ∈ Ln
2 [0,∞) models the initial condition and the in-

terconnection Γ may generally be modeled as a transfer
function in An×n in order to include time delays and
bandwidth constraints. To keep the discussion as sim-
ple as possible, we will assume Γ ∈ Cn×n. However, the
results presented in this paper can be easily generalized
to cover the case where Γ ∈ An×n. The system (1) is
assumed to be well-posed in the sense that there always
exists a solution in extended L2-space, see [3].

The system in (1) may be viewed as a set of heteroge-
neous plants interconnected over a network defined by

Γ. We will consider the case where Γ is unitarily diago-
nalizable, i.e., it can be expressed as UDU∗ where U is
a unitary matrix and Λ is a diagonal matrix whose di-
agonal entries consisting of the eigenvalues of Γ. Inter-
connected systems where the interconnection matrices
are normal do appear in some engineering applications.
For example, such systems arise in modelling vehicle pla-
toons, Internet congestion control, and feedback control
of biochemical pathways. In Section 4, we will use the
vehicle platoon as an example to illustrate the analysis
methodology proposed in this paper. The necessary and
sufficient condition for unitary diagonalizability is nor-
mality: a matrix Γ can be unitarily diagonalized if and
only if it is a normal matrix, i.e. it satisfies ΓΓ∗ = Γ∗Γ.

We are interested in deriving computationally tractable
conditions for (standard) finite-gain input-output sta-
bility of networked systems in the form of (1). With
this we mean that there exists a scalar c > 0 such
that ‖w‖ + ‖v‖ ≤ c‖e‖, for all input disturbances e ∈
Ln

2 [0,∞).

Computational tractability is obtained by exploiting the
unitary diagonalization of Γ to decompose the stabil-
ity criterion into a scalar criterion that each individual
dynamics must satisfy. This not only implies a signifi-
cant reduction of computational complexity in numeri-
cal tests of stability but it also has an associated graph-
ical test by which the stability condition can be easily
visualized. The price paid for these benefits is that the
stability test may be conservative in general; however, as
we will show in our main results, the test provides a nec-
essary and sufficient characterization of robust stability
for a set of network interconnections.

We will use quadratic inequalities to characterize the
eigenvalue location of Γ. To this end, consider a subset
of C

Λ := {λ : |λ|2 + 2π1Re λ − 2π2Im λ ≤ 0,

∀π1 ∈ [γ
1
, γ̄1], π2 ∈ [γ

2
, γ̄2]}

(2)

and a set of normal matrices

G = {Γ : Γ ∈ Cn×n; ΓΓ∗ = Γ∗Γ and all λi ∈ eig(Γ)

satisfy λi ∈ Λ}.

The eigenvalue locations defined by Λ is the intersection
of all circles in the complex plane which have centers
−(π1 + iπ2) and radius

√
π2

1 + π2
2 , see Fig 1 for an illus-

tration. Note that the origin is on the boundary of Λ.
It is a standing assumption that the convex set created
by the intersection of all these circles contains non-zero
elements.

Before proceeding to the main result, we give some ex-
amples where the form of interconnection matrices, their

2



−1

2i

Im

Im

Re

Re

Re

1

1

1

1

2

2

2

π1

π1

π1

π2

π2

π2

Λ

Λ

Λ

Λ

−2

−2

−2

γ̄1

γ̄1
γ

1

γ̄2

γ̄2

γ
2

Fig. 1. Illustration of Λ. Λ is characterized by the ranges of π1

and π2. In the first example, the rectangular area in π1 − π2

space produces the shaded region in the complex plane. In
the next two examples only one of the two parameters is
varied.

eigenvalue locations, and how to characterize these lo-
cations using (2) are shown. The first example outlines
a number of cases of practical interest. The next two ex-
amples show that loop transformations sometimes must
be used to obtain the eigenvalue distribution in (2).

(i) Consider system (1) where the feedback is gener-
ated by

vk = − 1

dk

∑

l 6=k

akl(wk − wl)

where dk =
∑

l 6=k akl. Then the interconnection

matrix Γ is equal to −I + D−1A where matrix D
is equal to diag(d1, · · · , dn) and matrix A has the
form [Ak,l] = akl. Note that akl is zero if nodes k
and l are not connected.

It can be shown using the Geršhgorin’s theorem
that all eigenvalues of Γ lie in a disk of radius 1
centered at the point −1 + 0j. Hence, Λ can be
characterized as

Λ := {λ : |λ|2 + 2Re λ ≤ 0}

Additional conditions on the coefficients akl are
needed to ensure that Γ is normal. Three cases of
interest are

(a) akl = c(l−k+1)mod n in which case Γ is a circulant
matrix. Here c1, . . . , cn are real numbers. They
determine the eigenvalues via the discrete Fourier
transform

λl =
n∑

k=1

ckej2πl(k−1)/n.

(b) alk = ākl in which case Γ is Hermitian and the
eigenvalues are located in the interval [−2, 0]. This
corresponds to the characterization in (2) with
γ̄1 = γ

1
= 1, γ̄2 = ∞ and γ

2
= −∞.

(c) alk = −ākl in which case Γ is skew-Hermitian and
the eigenvalues are located in the interval [−2j, 0]
on the imaginary axis. This corresponds to the
characterization in (2) with γ̄2 = γ

2
= 1, γ̄1 = ∞

and γ
1

= −∞.

(ii) bidirectional circular graph with weighted links: in
this case, the interconnection matrix has the form

Γ =
1

2





0 1 0 0 . . . . . . 1

1 0 1 0 . . . . . . 0

0 1 0 1 . . . . . . 0

. . .
. . .

. . .

0 . . . . . . 0 1 0 1

1 . . . . . . 0 0 1 0





It can be shown that all eigenvalues of this Γ are
real and lie in [−1, 1]. By an loop transformation
where one replaces Γ by Γ − I and ∆k by ∆k

1−∆k

,
one arrives an equivalent system where the new in-
terconnection matrix has all its eigenvalues lying in
[−2, 0]. This interval can be characterized as Λ :=
{λ : |λ|2 + 2Re λ− 2π2Im λ ≤ 0, ∀π2 ∈ (−∞,∞)}.

(iii) bidirectional circular graph with weighted links and
negative feedback: in this case, the interconnection
matrix has the form

Γ =
1

2





0 1 0 0 . . . . . . −1

−1 0 1 0 . . . . . . 0

0 −1 0 1 . . . . . . 0

. . .
. . .

. . .

0 . . . . . . 0 −1 0 1

1 . . . . . . 0 0 −1 0




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All eigenvalues of this Γ are purely imaginary and
lie in the interval [−j, j]. Similarly, by an loop trans-
formation where one replaces Γ by Γ− j · I and ∆k

by ∆k

j−∆k

, one arrives an equivalent system where

the new interconnection matrix has all its eigenval-
ues lying in [−2j, 0]. This interval can be character-
ized as Λ := {λ : |λ|2 +2π1Re λ−2Im λ ≤ 0, ∀π1 ∈
(−∞,∞)}

3 A Scalable Stability Criterion

The next results provides a low complexity stability test
for (1) when Γ belongs to G.

Proposition 1 Consider the interconnected system (1),
where each ∆k ∈ A and the interconnection matrix Γ ∈
G. Then the system is stable if there exist scalar functions
π1(ω) and π2(ω), where π1(ω) ∈ [γ

1
, γ̄1] and π2(ω) ∈

[γ
2
, γ̄2], such that for k = 1, ..., n,

1 + 2π1(ω)Re∆k(jω) + 2π2(ω)Im∆k(jω) > 0, (3)

for all ω ∈ [0,∞].

PROOF. We will use integral quadratic constraints
(IQC) along the lines of [11] to prove the result. We de-
fine the multiplier

Π(ω) =

[
In π12(ω)In

π̄12(ω)In 0n

]
.

where π12(ω) = π1(ω) + iπ2(ω) and π̄12(ω) = π1(ω) −
iπ2(ω). We notice that Π11 ≥ 0 and Π22 ≤ 0 so stability
follows if we verify that Γ and ∆ satisfies two comple-
mentary IQCs whereof one must be strict. Since the op-
erators are time-invariant, the IQCs reduce to frequency
wise quadratic inequalities:

[
Γ

I

]∗
Π(ω)

[
Γ

I

]
≤ 0, ∀ ω ∈ [0,∞]

[
I

∆(ω)

]∗
Π(ω)

[
I

∆(ω)

]
> 0, ∀ ω ∈ [0,∞]

Given the assumption that Γ is normal, we have

[
Γ

I

]∗
Π(ω)

[
Γ

I

]
=U∗

(
|D|2 + D̄π̄12(ω) + Dπ12(ω)

)
U

which is non-positive since each diagonal entry in the
middle matrix evaluates to

|λi|2 + 2π1(ω)Re λi − 2π2(ω)Im λi ≤ 0 (4)

which is non-positive since Γ ∈ G. Finally

[
I

∆(ω)

]∗
Π(ω)

[
I

∆(ω)

]

= diag(1 + 2π1(ω)Re ∆k(ω) + 2π2(ω)Im ∆k(ω))

which is strictly positive by (3).

The significance of condition (3) lies in the modest com-
putational complexity required for verifying the inequal-
ity numerically. The corresponding non-decomposed sta-
bility criterion involves a transfer function inequality of
dimension n × n, which should be compared with the
n scalar valued inequalities in (3). Hence the compu-
tational complexity of verifying condition (3) grows lin-
early in n (after finding all eigenvalues of Γ, which has
complexity O(n3)), while the complexity of verifying the
non-decomposed condition in general grows as O(nβ),
where β is between 4.5 to 6.5, see [?].

By exploring that all ∆k are LTI and SISO, we are able
to develop a simple graphical test for verifying robust
stability of system (1). The rest of this section is devoted
to this development.

3.1 A Graphical Test for Robust Stability

Note that in (3), the same function πi(ω), i = 1, 2, ap-
pears in all n inequalities. Suppose that one has already
verified all eigenvalues of Γ obey (4). Then checking sta-
bility of the system boils down to

Find π1(ω) ∈ [γ
1
, γ̄1] and π2(ω) ∈ [γ

2
, γ̄2], such

that inequality (3) holds for all ω ∈ [0,∞].
(5)

Problem (5) has no solution if and only if there ex-
ists some ω0 ∈ [0, ∞] such that no real numbers π1 ∈
[γ

1
, γ̄1] and π2 ∈ [γ

2
, γ̄2] makes 1 + 2π1Re ∆k(jω0) +

2π2Im ∆k(jω0) strictly positive for all k = 1, . . . , n. This
is equivalent to that the following two convex sets

C1 = {x ∈ Rn : xk = 1 + 2π1Re∆k(jω0)+

2π2Im ∆k(jω0); πi ∈ [γ
i
, γ̄i], i = 1, 2}

C2 = {x ∈ Rn : xk > 0}

are disjoint. Hence, by the separating hyperplane the-
orem, one has an equivalent condition: there exists a
nonzero z ∈ Rn such that zk ≥ 0 and zT x ≤ 0 for all
x ∈ C1. In other words,

n∑

k=1

zk(1 + 2π1Re∆k(jω0) + 2π2Im∆k(jω0)) ≤ 0 (6)

4



for all πi ∈ [γ
i
, γ̄i], i = 1, 2. Note that it is no restriction

to assume that
∑n

k=1 zk = 1. Hence, condition (6) is
equivalent to

π1

n∑

k=1

zkRe∆k(jω0) + π2

n∑

k=1

zkIm ∆k(jω0) ≤ −0.5

(7)

for all πi ∈ [γ
i
, γ̄i], i = 1, 2. Condition (7) has a geomet-

rical interpretation: consider an ω-parameterized set

S(ω) = {(Re ∆k(jω), Im ∆k(jω)) : k = 1, · · · , n}.

That condition (7) holds means the convex hull of set
S(ω0) (denoted as co(S(ω0))) intersects the polyhedron

P =
⋂

πi∈[γ
i
,γ̄i],i=1,2

{(x1, x2) | π1 · x1 + π2 · x2 ≤ −0.5}

(8)

This in turn implies that problem (5) can be solved if and
only if co(S(ω)) does not intersect the polyhedron P for
all ω. On the other hand, the condition Γ ∈ G requires
all eigenvalues of Γ to be in the set Λ. This condition
implies that the set

L := {(Re (1/λk), Im (1/λk)) | λk ∈ eig(Γ), λk 6= 0},

induced by the non-zero eigenvalues of Γ, must be inside
P.

This gives a graphical test for stability of the intercon-
nected system (1) where the connection matrix Γ is uni-
tarily diagonalizable and ∆k are stable, single-input-
single-output, linear time invariant operators: such a sys-
tem is stable if the set L induced by the non-zero eigen-
values of the connection matrix Γ belongs to the poly-
hedron P, and the convex hull co(S(ω)) does not inter-
sect P for all ω. If one views the path of co(S(ω)) as a
generalized Nyquist plot of the interconnected system,
then the condition basically says that, for the intercon-
nected system to be stable, the Nyquist plot must stay
outside the polytope which contains L, see Fig 2 for an
illustration.

4 Example: Heterogeneous Vehicle Platoon

We consider a heterogeneous vehicle platoon with a bi-
directional control scheme

uk = Ck(ek − ek+1), k = 1, . . . , n − 1

un = Cnen

ek = yk−1 − yk − δ

where δ is the desired relative spacing between the vehi-
cles. The first vehicle with index 0 merely serves as the
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Fig. 2. Illustration of the graphical test for stability. The
system is stable if the convex hull co(S(ω)) does not intersect
the polyhedron P for all ω. The three cases corresponds to
the three cases in Fig. 4.

y0

yk−1

yk

. . .

Fig. 3. Heterogeneous vehicle platoon.

leader and is not using information from the others, see
Figure 3.

The dynamics of each vehicle is assumed to be of the
form Hk(s) = 1

s2 Gk(s), where Gk is a stable transfer
function with Gk(0) 6= 0. Normally the vehicles in the
platoon are assumed to have the same dynamics [14,1]
while some recent works have considered the extension
to the heterogeneous case [6,7]. We here illustrate how
our framework can be applied to this situation.

We assume each vehicle is initialized at rest (in particular
zero velocity) with an initial position yk(0). This means
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that each vehicle position evolves according to

yk(t) = (Hkuk)(t) + yk(0), t ≥ 0.

The complete feedback system has the equation

y = HC(Γy + x) + y(0)θ (9)

where θ(t) is the unit step function and

H = diag(H1, . . . ,Hn)

C = 2diag(C1, . . . , Cn)

Γ =
1

2





−2 1 0 0 . . . . . . 0

1 −2 1 0 . . . . . . 0

0 1 −2 1 . . . . . . 0

. . .
. . .

. . .

. . .
. . .

. . .

0 . . . . . . 0 1 −2 1

0 . . . . . . 0 0 1 −1





x(t) = y0(t)e1 − δenθ(t)

and where

y(t) =
[
y1(t) . . . yn(t)

]T
, y(0) =

[
y1(0) . . . yn(0)

]T

e1 =
[
1 0 . . . 0

]T
, en =

[
0 . . . 0 1

]T

The matrix Γ is symmetric but the HkCk are not
bounded operators due to the poles at the origin. How-
ever, we will be able to transform the system such
that Proposition 1 can be applied. To this end, we first
note that the eigenvalues of Γ can be bounded as 4

(λ1 ≤ λ2 ≤ . . . ≤ λn)

−2 ≤ λ1(Γ) ≤ −2 sin(π(n − 1)/(2n))

−2 sin(π/(2n))2 ≤ λn(Γ) ≤ − 1

n + n2/2
.

Since Γ is negative definite, we can thus make a loop
transformation and turn (9) into an equivalent system

y = ∆(Γ̃y + x − µy(0)θ) + y(0)θ

where

Γ̂ = Γ + µI, µ = −λn(Γ)

∆ =diag(∆1, . . . ,∆n), ∆k =
2HkCk

1 + 2µHkCk
.

4 These bounds can be derived as in [1].

We assume each ∆k is stable. This is a reasonable as-
sumption if, for example, appropriately tuned PD con-
trollers Ck(s) = k1 +k2s are used and if the dynamics of
the Gk are “modest” perturbations of the identity. Note

that eig Γ̂ ∈ [−2, 0]; this interval can be characterized by

|λ|2 + 2Re λ − 2π2Im λ ≤ 0

for all π2 ∈ (−∞,∞). Then the stability criterion in
Proposition 1 becomes: there exists a real valued func-
tion π2(ω) such that

1 + 2Re ∆k(jω) + 2π2(ω)Im ∆k(jω) > 0, ∀ω ∈ [0,∞]

for k = 1, . . . , n. A graphical illustration of this condition
is obtained by letting γ

2
= −γ̄2 = −γ in the second part

of Fig 2 and let γ → ∞, i.e. co(S(ω)) must avoid the
interval (−∞,−0.5] on the real axis.

5 Necessity of the Graphical Test for Stability

For a given interconnection matrix Γ and a given set of
transfer functions ∆k, k = 1, . . . , N , the stability cri-
terion stated in Proposition 1 and the corresponding
graphical test will generally be conservative. Indeed, by
scaling the multiplier (i.e., Π(ω)), we would generally
obtain a less conservative stability criterion. However, in
this case the verification of the stability criterion would
be computationally expensive, because scaling the mul-
tiplier would result in combination of components in
Π(ω) which turns condition (4) into one big operator
inequality. Interestingly, however, it turns out that our
low complexity graphical test provides a necessary char-
acterization (in the sense which we will clarify shortly)
of robust stability. To facilitate the development, let us
consider the following set

D = {∆ : ∆ = ⊕n
k=1∆k; each ∆k is stable, LTI, and

satisfies (3), where πi(ω) ∈ [γ
i
, γ̄i], i=1,2.}.

Theorem 1 We have the following two necessary and
sufficient conditions for stability of the interconnected
system (1)

(i) Let the connection matrix Γ be a given normal ma-
trix. The interconnected system (1) is input-output
stable for any ∆ ∈ D if and only if Γ ∈ G.

(ii) Let ∆ = ⊕n
k=1∆k where ∆k are given stable LTI

operators. The interconnected system (1) is input-
output stable for any Γ ∈ G if and only if ∆ ∈ D.

Remark 1 In practice, a complex-valued entry of the
network connection matrix may be viewed as a dynamical
link (a communication channel with time-delay or limited
bandwidth) transmitting signals of a particular frequency.
We remark that all proofs in the paper hold even when
the connection matrix Γ is frequency dependent, as long
as Γ(ω) can be unitarily diagonalized for all ω.
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The sufficiency of statements (i) and (ii) of Theorem 1
follows from Proposition 1. The main idea behind the
proof of necessity of the two statements is to explicitly
construct examples which show that instability of the
interconnected system could occur if the conditions are
violated.

5.1 Proof of Necessity in Theorem 1

Proof of necessity for statement (i): Suppose Γ 6∈ G.
Then at least one of the eigenvalues of Γ, denoted as λ0,
satisfies

|λ0|2 + 2π1Re λ0 − 2π2Imλ0 > 0, (10)

for some π1 ∈ [γ
1
, γ̄1] and π2 ∈ [γ

2
, γ̄2]. Note that if

λ0 satisfies (10), then λ0 6= 0. Furthermore, it can be
verified that λ−1

0 satisfies

1 + 2π1Re λ−1
0 + 2π2Imλ−1

0 > 0.

Indeed, by noticing that Reλ−1
0 = Re λ0/|λ0|2, and

Im λ−1
0 = −Im λ0/|λ0|2, the above inequality can be

easily verified. This implies that, among those stable
LTI operators which satisfy condition (3), it is possible
to find one operator ∆0(jω) which takes value λ−1

0 at
certain frequency, say ω0.

Let ∆ ∈ An×n := det(∆0, · · · ,∆0). Clearly, ∆ ∈ D and
∆(jω0) = λ−1

0 · In. Let v0 be the eigenvector of Γ cor-
responding to the eigenvalue λ0. Then Γ∆(jω0)v0 = v0

so the Nyquist locus of Γ∆ crosses the critical point
s = 1 and the system is at best neutrally stable and not
input-output stable.

Proof of necessity for statement (ii): Note that (6) holds
if and only if the following linear program (LP) can be
solved and the optimal objective value is non-positive:

min 1 + 2(γ̄1 · zn+1 − γ
1
· zn+2 + γ̄2 · zn+3 − γ

2
· zn+4)

subject to






n∑

k=1

zkRe∆k(jω0) = zn+1 − zn+2

n∑

k=1

zkIm∆k(jω0) = zn+3 − zn+4

n∑

k=1

zk = 1

zk ≥ 0, k = 1, · · ·n + 4

The linear program is of the standard form. It is well
known that for such a linear program, either there exists
an optimal solution with at most three nonzero variables
or the problem is infeasible. Hence, if ∆ 6∈ D, then there

exists ω0 ∈ [0,∞] such that the LP is feasible, the opti-
mal objective of the LP is less than or equal to zero. We
then have the following possible scenarios for the opti-
mal solution zop:

(A) Only one zop
k is nonzero, where it could be that

(1) zop
k is from Z1 := {zop

1 , · · · , zop
n }, or

(2) zop
k is from Z2 := {zop

n+1, · · · , zop
n+4}.

(B) Two zk are nonzero, where it could be that
(1) one zop

k is from Z1 and one zop
k is from Z2, or

(2) both zop
k are from Z1, or

(3) both zop
k are from Z2.

(C) Three zop
k are nonzero, where it could be that

(1) one zop
k is from Z1 and two zop

k are from Z2, or
(2) two zop

k are from Z1 and one zop
k is from Z2, or

(3) all three zop
k are from Z1, or

(4) all three zop
k are from Z2.

The condition
∑n

k=1 zop
k = 1 implies that at least one el-

ement from Z1 must be non-zero. Hence scenarios (A2),
(B3), and (C4) are invalid. Furthermore, scenarios (A1),
(B2), and (C3) are also invalid, because in these cases,
the optimal objective of the LP is 1, which is not less
than or equal to 0.

Without loss of generality, let zop
1 to be nonzero in the

cases (B1) and (C1), let zop
1 and zop

2 to be nonzero in
the case (C2). Following the setup of the linear program
and in particular zk ≥ 0, one can verify that 5

(I) For the cases (B1) and (C1), we have

1 + 2π1Re∆1 + 2π2Im ∆1 ≤ 0 (11)

for all πi ∈ [γ
i
, γ̄i], i = 1, 2.

(II) For the case (C2), either we have

zop
1 Im ∆1 + zop

2 Im ∆2 = 0,

1 + 2π1(z
op
1 Re ∆1 + zop

2 Re∆2) ≤ 0
(12)

for all π1 ∈ [γ
1
, γ̄1], or we have

zop
1 Re∆1 + zop

2 Re ∆2 = 0,

1 + 2π2(z
op
1 Im ∆1 + zop

2 Im∆2) ≤ 0
(13)

for all π2 ∈ [γ
2
, γ̄2].

Figure 4 illustrates scenarios (11), (12), and (13). In
the following, we discuss separately for each case how a
connection matrix which destabilizes the interconnected
system can be constructed.

5 In the following, we will slightly abuse the notation by
writing ∆i for ∆i(jω0), for the sake of saving space.
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ImIm Im

ReReRe

(10) (11) (12)

PPP

co(S(ω))

co(S(ω))

co(S(ω))

Fig. 4. Illustration of the cone condition. The polytope P corresponds to the first case in Fig. 2 when γ̄1 = γ̄2 = ∞. Left: a
vertex of co(S(jω0)) is inside polyhedron P but none of the edges of co(S(jω0)) intersects the real or imaginary axes. This
illustrates scenario (11). Middle: an edge of co(S(jω0)) intersects the real axis. This illustrates scenario (12). Right: an edge
of co(S(jω0)) intersects the imaginary axis. This illustrates scenario (13).

For case (I)

We find ∆1 satisfying inequality (11). Note this implies
that ∆1 6= 0. Let us consider the connection matrix
Γ = δ · In, where δ = ∆−1

1 . Note that

|δ|2 + 2π1Re δ − 2π2Im δ

=
1 + 2π1Re∆1 + 2π2Im ∆1

|∆1|2
.

Hence, δ satisfies |δ|2+2π1Re δ−2π2Im δ ≤ 0 for all πi ∈
[γ

i
, γ̄i], i = 1, 2. Thus Γ ∈ G. Now, Γ∆(jω0) obviously

has an eigenvalue at 1 which implies that the system is
at best neutrally stable and not input-output stable.

For case (II)

There are two possible scenarios (12) and (13). We first
show how to construct de-stabilizing interconnection
matrix when (12) holds. Construction of de-stabilizing
interconnection matrix when (13) holds is very similar
to that of (12). We will not pursue the full detail of the
proof for scenario (13) but only comment on the differ-
ence from the case where (12) holds. Note that (12) holds
implies that zero cannot belong to the interval where π1

resides; therefore, either 0 < γ
1
≤ γ̄1 or γ

1
≤ γ̄1 < 0.

Suppose (12) holds. Let Γ = diag(Γ̃, 0, . . . , 0), where Γ̃
is a 2 × 2 symmetric matrix whose elements are of the
forms

γ̃11 = −µβzop
1 , γ̃22 = −µβzop

2 , γ̃12 =
√

γ̃11γ̃22. (14)

where 0 ≤ µ ≤ 1 and β is equal to 2γ
1

if 0 < γ
1
≤ γ̄1, or

equal to 2γ̄1 if γ
1
≤ γ̄1 < 0. Note that the eigenvalues of

Γ are {0,−µβ}. The zero eigenvalues obviously belong

to Λ. To see −µβ also satisfies

|λ|2 + 2π1Re λ − 2π2Im λ ≤ 0

for all πi ∈ [γ
i
, γ̄i], i = 1, 2, note that −µβ is real and

(µβ)2 + 2π1(−µβ) =

{
2µγ

1
(γ

1
− π1) if 0 < γ

1
≤ γ̄1

2µγ̄1(γ̄1 − π1) if γ
1
≤ γ̄1 < 0

Hence (µβ)2 + 2π1(−µβ) ≤ 0 for all γ
1
≤ π1 ≤ γ̄1, and

we conclude that Γ ∈ G for all µ ∈ [0, 1]. We will now
show that det(I − Γ∆) = 0 for some µ ∈ (0, 1].

Given the structure of matrix Γ, we observe that

det(I − Γ∆) = det
(
I − Γ̃ · diag(∆1,∆2)

)

= det

([
1 − γ̃11∆1 −γ̃12∆2

−γ̃12∆1 1 − γ̃22∆2

])
= 1 − γ̃11∆1 − γ̃22∆2

= 1 + µβ(zop
1 ∆1 + zop

2 ∆2)

The second and the last equalities follow γ̃12 =
√

γ̃11γ̃22

and the expression of γ̃11 and γ̃22.

Since ∆1 and ∆2 satisfy (12), we see that

det(I − Γ∆) = 1 + µβ(zop
1 Re ∆1 + zop

2 Re∆2)

=

{
1 + µ · 2γ

1
(zop

1 Re ∆1 + zop
2 Re∆2) if 0 < γ

1
≤ γ̄1

1 + µ · 2γ̄1(z
op
1 Re∆1 + zop

2 Re ∆2) if γ
1
≤ γ̄1 < 0

Therefore, the determinant of I −Γ∆ is equal to 1 when
µ = 0, and is less than or equal to 0 when µ = 1. Hence,
the determinate of I −Γ∆, as a function of µ, has a zero
crossing in the interval (0, 1], which in turn implies that
det(I−Γ∆(jω0)) must take 0 value for a µ ∈ (0, 1]. Since
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the network is at best neutrally stable at the zero cross-
ing, we have constructed a connection matrix Γ which
leads to a network that is not strictly stable. This con-
cludes the proof for scenario (12).

For the case where (13) holds, the de-stabilizing in-

terconnection matrix has the form diag(j · Γ̃, 0, . . . , 0),

where elements of Γ̃ are of the form (14). Parameter
µ is again a real number ranging between 0 and 1,
whilst β is equal to 2γ

2
if 0 < γ

2
≤ γ̄2, or equal to

2γ̄2 if γ
2
≤ γ̄2 < 0. The arguments for showing that

the interconnection is not strictly stable are completely
analogous to those of scenario (12).

6 Concluding Remarks

Robust stability analysis of a class of interconnected sys-
tems is considered. It is assumed that all subsystems of
such interconnected systems are linear-time-invariant,
single-input-single-output, bounded, and causal opera-
tors on the space L2e[0,∞). Under the assumption that
the network connection matrix is normal, a scalable ro-
bust stability criterion is proposed, where the complexity
of verifying conditions for robust stability grows only lin-
early in the number of subsystems. This robust stability
criterion can be characterized graphically as a polytope
separation criterion on the point-wise convex hull of the
Nyquist curves. Finally, we also show that such charac-
terization is necessary in the sense that, if the stability
criterion is violated, then there exists an interconnected
configuration which leads to an unstable system.
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