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tWorst 
ase average performan
e analysis is 
onsidered inthis paper. The disturban
e in the system is assumed tobelong to a \
lass of inputs signals". A 
lass of signalsis here de�ned to be a set of families of signals, whereea
h family satis�es an average spe
tral 
onstraint. Exa
t
hara
terizations in terms of integral quadrati
 
onstraints(IQC) are given for a 
lass of white signals and a 
lass ofsignals that are generated by autonomous linear systems.The IQCs are de�ned in terms of multipliers and impor-tant issues in numeri
al optimization of the multipliers aredis
ussed in the paper.1 Introdu
tionIn order to redu
e 
onservatism in robust performan
eanalysis we need to exploit information on the distur-ban
e signals. This is not always straightforward. Forexample, if the disturban
e is of white noise type then itis natural to use a sto
hasti
 signal model for the perfor-man
e 
riterion while it is more 
onvenient to 
onsiderdeterministi
 signals for the stability robustness. Thisproblem has re
eived mu
h attention in 
onne
tion tothe robust H2 performan
e problem, see, for example,[Meg92, ZGBD94, Fer97, Pag99, Pag96b℄, and [Pag96a℄.We 
onsider performan
e analysis in a standard frame-work of Integral Quadrati
 Constraints (IQC), see [MR97℄.This means that we work with square integrable fun
tions.Many signals of pra
ti
al importan
e are not dire
tly rep-resentable as su
h fun
tions. We introdu
e the 
on
ept of\signal 
lasses" to 
ope with this problem. A 
lass of sig-nals is de�ned to be a set of families of signals, where thesignals in ea
h family satis�es some average spe
tral prop-erty. In this way we 
an de�ne the 
lass of white signals tobe su
h that ea
h family has an average spe
trum whi
h�Resear
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is 
at over some bandwidth and zero outside this band-width. The performan
e analysis must now be 
onsideredas the worst 
ase average over the 
lass of signals.We show that the 
lass of white signals and a 
lass of ex-ponentially de
aying signals are uniquely de�ned in termsof IQCs. The latter signal 
lass 
an, for example, be usedto a

ount for un
ertain initial 
onditions in the linearpart of the system.We will dis
uss how our result on white signals are re-lated to robust H2 analysis. In fa
t, the resulting robust-ness 
ondition is similar to Paganinis in [Pag99℄. Paganini
onsider sets of almost white signals and then let the a
-
ura
y tend to zero. SuÆ
ient, and for some spe
ial 
asesalso ne
essary, 
onditions for robust H2 performan
e isthen obtained in [Pag99℄ by letting the bandwidth tendto in�nity. Making the bandwidth tend to in�nity thusgives strong results but it also makes veri�
ation of therobustness 
onstraint harder.Our analysis results 
an be applied to a large 
lass ofnonlinear and un
ertain systems. The performan
e 
ondi-tions are easily implemented in terms of 
onvex optimiza-tion problems. Suitable parametrizations of the multipli-ers that de�ne the IQCs are dis
ussed in detail.NotationWe let Lm2 [0;1) denote the ve
tor spa
e of square inte-grable Rm valued fun
tions. The norm on Lm2 [0;1) isde�ned as kfk = Z 10 f(t)T f(t)dt:The bi-in�nite spa
e Lm2 (�1;1) is de�ned similarly. Wewill use the notation L2 to mean either of these two ve
torspa
es. A 
ausal operator � : L2 ! Lm2 [0;1) is boundedif there exists 
 > 0 su
h that k�(v)k � 
kvk, for allv 2 Lm2 . The following standard notation is used:RLm�m1 The ve
tor spa
e of proper real rational transferfun
tions with no poles on the imaginary axis.RHm�m1 The subspa
e of RLm�m1 
onsisting of fun
tionswith no poles in the 
losed right half plane.



z wv yG�Figure 1: System for performan
e analysis.RHm�m2 Consists of the stri
tly proper transfer fun
tionsin RHm�m1 .Sm�m1 The subset fH 2 RLm�m1 : H = H�g, wherethe adjoint is de�ned as H�(s) = H(�s)T .The H2-norm of H 2 RH2 is de�ned by kHk22 =12� R1�1 tr(G(j!)�G(j!))d!, where tr(�) is the tra
e of amatrix. We de�ne the Fourier transform of w 2 Ln2 asbw(j!) = Z 1�1 e�j!tw(t)dt:2 Average Performan
e AnalysisWe will here dis
uss worst 
ase average performan
e anal-ysis using IQCs. Consider the system, see also Figure 1,�zv� = G �wy� = �G11 G12G21 G22��wy� ;y = �(v); (1)where it is assumed that � is bounded and 
ausal on Lm2and G is a bounded and 
ausal operator with transferfun
tion in RH(n+m)�(n+m)1 . We assume for simpli
itythat the feedba
k loop is stable, i.e., the map from w toz is bounded on Ln2 . We want to 
ompute the worst 
aseaverage performan
e of this system over a 
lass of inputsignals. A 
lass of signals is de�ned as follows.De�nition 1. A signal 
lass is a set of families of signalsW = fw : w = fw1; : : : ; wNg; wi 2 Ln2g, where ea
h familysatis�es an average spe
tral 
onstraint1N NXi=1 bwi(j!) bwi(j!)� � Swhere S � Sn�n1 .Let �p be a time-invariant quadrati
 form that de�nesthe performan
e 
onstraint. For example, if�p(z; w) = kzk2 � 
2kwk2;then the average IQC 
onstraint1N NXi=1 �p(zi; wi) � 0 (2)

for all w = fw1; : : : ; wNg 2 W and 
orresponding outputszi, implies that the worst 
ase average L2-gain of system(1) over the 
lass W is 
.We will use IQCs to derive suÆ
ient 
onditions for ro-bust average performan
e. The perturbation � is said tosatisfy the IQC de�ned by �� (� 2 IQC(��)) if��(v;�(v) � 0; v 2 Lm2 [0;1):We will 
onsider quadrati
 forms on the form��(v;�(v)) = Z 1�1 � bvd�(v)���(j!) � bvd�(v)� d!; (3)where � 2 S2m�2m1 .Similarly, the signal 
lass W is said to satisfy the IQCde�ned by �W (W 2 IQC(�W )) if1N NXi=1 �W(wi) � 0 (4)for all w = fw1; : : : ; wNg 2 W . We 
onsider IQCs on theform �W(w) = Z 1�1 bw�	(j!) bwd!; (5)where 	 2 Sn�n1 . The next proposition gives a suÆ
ient
ondition for robust average performan
e.Proposition 1. Assume that the system in (1) is stableand that the input w belongs to the signal 
lass W. If� 2 IQC(��) and W 2 IQC(�W) then the performan
e
riterion in (2) is satis�ed if�(Gu; u) = �p(G1u;w) + ��(G2u; y) + �W (w) � 0; (6)for all u = (wT ; yT )T 2 Ln+m2 . Here G1 = �G11 G12�and G2 = �G21 G22�.Proof. Assume w = fw1; : : : ; wNg 2 W and let the result-ing signals in the 
losed loop system be denoted zi, vi,yi, and �nally let ui = (wTi ; yTi ). Sin
e G2ui = vi andyi = �(vi) we have1N NXi=1 ��(G2ui; yi)) = 1N NXi=1 ��(vi;�(vi)) � 0;and sin
e w 2 W 1N Xi=1 �W (wi) � 0:Hen
e, (6) implies that (2) is satis�ed sin
e �p(G1ui; wi) =�p(zi; wi). This proves the proposition.Remark 1. Solving (6) with stri
t inequality (i.e.,�(Gw;w) � �"kwk2, for some " > 0) is often advanta-geous from a 
omputational point of view. Another ad-vantage with using stri
t inequality is that it ensures bothrobust performan
e and robust stability of the system (1)under some weak 
onditions.



Remark 2. If �� is de�ned by � and �W is de�ned by 	then (6) 
an be formulated as�GI �� 26664 I 0 0 00 �11 0 �120 0 �
2I +	 00 ��12 0 �22 37775�GI � (j!) � 0; (7)for all ! 2 [0;1℄.Remark 3. In general, we have many IQCs and the ro-bustness 
onditions in (6) (or equivalently (7)) shouldbe stated as a 
onvex feasibility problems over the setof IQCs. To do this we assume that we have �niteparametrizations PN1i=1 �i	i and PN2i=1 �i�i, where theparameter ve
tors satisfy � 2 �, and � 2 K, for appro-priate 
onvex 
ones � and K. The robustness 
ondition
an be formulated as the feasibility test: Find � 2 � and� 2 K su
h that�p(G1w;w1) + N1Xi=1 �i�i�(G2w;w2) + N2Xi=1 �i�iW(w1) � 0;where �i� is de�ned as in (3) with � repla
ed by �i andwhere �iW is de�ned as in in (5) with 	 repla
ed by 	i.This feasibility test 
an be formulated as a parameter de-pendent LMI on the same form as in (7). A software pa
k-age for solving the stri
t version of this LMI is available,see [MKJR97℄.3 A Class of White SignalsWe will here dis
uss how deterministi
 white noise signals
an be represented as L2-signals with 
at spe
trum over asuitably large frequen
y range. For the s
alar 
ase we saythat a signal w 2 L2(�1;1) is white over the frequen
yrange �b � ! � b ifj bw(j!)j2 = ( �b kwk2; ! 2 [�b; b℄0; j!j > b (8)The situation is less trivial in higher dimensions. Wewould like to say that w 2 Ln2 (�1;1) is white over thefrequen
y range �b � ! � b ifbw(j!) bw(j!)� = ( �bnkwk2I; ! 2 [�b; b℄0; j!j > b :This is, however, impossible sin
e the left hand side is arank one matrix. To over
ome this problem we de�ne thefollowing 
lass of white signals.De�nition 2. In the 
lass Wwhite = fw : w =fw1; : : : ; wNg; wi 2 Ln2 (�1;1)g, ea
h family satis�es1N NXi=1 bwi(j!) bwi(j!)� = (
I; j!j � b;0; j!j > b: (9)where 
 = �=(bnN)PNi=1 kwik2.

This means that ea
h family in the 
lass has an averagespe
trum whi
h is 
at over the bandwidth [�b; b℄. Thatis, the energy is 
on
entrated to the interval [�b; b℄ withequal distribution between the 
omponents of the signalsand there is no 
ross 
orrelation between the 
omponents.Note that it is possible to �nd n signals w1; : : : ; wn su
hthat the average satis�es the property (9). We just needto let wi = wei, where ei is the ith unit ve
tor and w is as
alar signal satisfying (8).The next proposition gives an exa
t 
hara
terization ofthe 
lass Wwhite.Proposition 2. The IQCs de�ned by the multipliers	white = (	 2 Sn�n1 : Z b�b tr(	(j!))d! � 0) : (10)give an exa
t 
hara
terization of Wwhite.Proof. We need to prove two things(i) For every 	 2 	white we have1N NXi=1 Z 1�1 bw�i	 bwid! � 0; (11)for any family w = fw1; : : : ; wNg 2 Wwhite.(ii) If w1; : : : ; wN 2 Ln2 (�1;1) violates (9), then thereexists 	 2 	white su
h that1N NXi=1 Z 1�1 bw�i	 bwid! < 0; (12)To prove (i) we just note that1N NXi=1 Z 1�1 bw�i	 bwid! = Z 1�1 tr 	( 1N NXi=1 bwi bw�i )! d!= �bn( 1N NXi=1 kwik2) Z b�b tr(	)d! � 0:For the proof of (ii) we de�ne the fun
tionZ0(!) =8><>:bI; ! > b;!I; j!j � b;�bI; ! < �b: (13)This is a fun
tion of bounded variation and it belongs tothe dual spa
e of Sn�n1 . It de�nes a linear fun
tional onSn�n1 in terms of the Stieltjes integralh	; Z0i = Z 1�1 tr(	(j!)dZ0(!)):We note thath	; Z0i = Z b�b tr(	(j!))d! � 0;



whi
h shows that 	white is the half spa
e	white = �	 2 Sn�n1 : h	; Z0i � 0	 :Now let w1; : : : ; wN 2 Ln2 (�1;1) be a set of signals thatdoes not satisfy (9) and de�neZ(!) = 1N NXi=1 Z !0 bwi bw�i d� (14)This is a fun
tion of bounded variation that is di�erentfrom Z0, and it thus de�nes another half spa
e. It followsthat there exists 	 2 	white su
h that h	; Zi < 0.4 Robust H2-performan
eAverage analysis with our 
lass of white signals gives arobustness 
ondition that is analogous to Paganinis resultin [Pag99℄. To see this and the 
orresponding 
onne
tionto robust H2 analysis we 
onsider the 
ase when the un-
ertainty � 2 RHm�m1 satis�es the quadrati
 
onstraint� I�(j!)���(j!) � I�(j!)� � 0; 8!:If we let Y = 
2=(n2b)I �	 then we haveZ b�b tr(Y (j!))d! � 
2;and our 
ondition for the average L2-gain to be less than
=p2nb be
omes�G(j!)I �� 26664 I 0 0 00 �11 0 �120 0 �Y (j!) 00 ��12 0 �22 37775�G(j!)I � � 0; 8!:(15)Let Q = �(I � G22�)�1G21 and multiply the above in-equality with V � = �I Q�� on the left, V on the rightand then integrate the tra
e from �b to b. This givesZ b�b tr(G�(j!)�G�(j!))d! � Z b�b tr(Y (j!))d! � 
2;where G� is the linear fra
tional transformation that rep-resents the 
losed loop systemG� = G11 +G12�(I �G22�)�1G21:Hen
e, as b ! 1 we get kG�kH2 � 
. The 
rite-rion in (15) is thus 
losely related to the one obtainedin in [Pag99℄, where suÆ
ient and for some 
ases evenne
essary 
onditions for robust H2 performan
e are de-rived. The pri
e paid to obtain su
h strong 
on
lusions isthat Y needs to integrable over the imaginary axis withR1�1 tr(Y (j!))d! � 
2. This will in general 
ompli
atethe veri�
ation of (15) sin
e Y will be stri
tly proper.Average analysis with signals that are white only over a�nite bandwidth is generally mu
h simpler.

�x ej�(!) wFigure 2: Generation of output signals from an au-tonomous system. We assume that � 2 RHm�n2 , x 2 Rn,and that � : R ! R is odd and measurable. This meansthat ej�(!) gives a frequen
y varying phase adjustmentof the signal. It is assumed that � is 
hosen su
h thatw 2 Lm2 [0;1). We assume that x and � 
an vary fromexperiment to experiment.5 IQCs for Autonomous SystemsWe will in this se
tion derive an exa
t 
hara
terizationof a 
lass of signals that 
an be viewed as outputs of theautonomous systems in Figure 2. By doing average anal-ysis along the lines of Proposition 1, we get an estimateof what 
an be expe
ted when the autonomous systemgenerates inputs to the system in (1).De�nition 3. Assume � 2 RHm�n2 and de�ne the 
lassW� = fw : w = fw1; : : : ; wNg; wi 2 Lm2 [0;1)g, whereany family w = fw1; : : : ; wNg satis�es the following aver-age spe
tral 
ondition1N NXi=1 bwi bw�i 2 
o(S�): (16)Here 
o denotes the 
losed 
onvex hull and S� =f�xxT�� : x 2 Rng.These signals are exponentially de
aying in the follow-ing senseLemma 1. There is a positive 
onstant � su
h thate�twi 2 Lm2 [0;1), for every member of the familiesw = fw1; : : : ; wNg 2 W�.Proof. It follows from De�nition 3 that we 
an assume1N NXi=1 bwi bw�i = nXi=1 �xixTi ��for some xi 2 Rn. Let � be su
h that �(s��) 2 RHm�n2 .Then w�i = e�twi 2 Lm2 [0;1), i = 1; : : : ; N , sin
e2�N NXi=1 kw�ik2 = Z 1�1 1N NXi=1 tr( bw�i bw��i)d!)= nXi=1 xTi Z 1�1��(j! � �)�(j! � �)d!xi <1:This proves the lemma.Remark 4. Note that it is impossible to prove exponen-tial de
ay of the form jw(t)j � 
e��t for some positive




onstants 
 and �. The reason is that we allow an arbi-trary time delay in the signal. To see this, 
onsider sig-nals with Fourier transforms bw1 and bw2 = e�j!T bw1(j!).We have bw1 bw�1 = bw2 bw�2 , and the 
on
lusion follows sin
ew2(t) = w1(t� T ), and T 
an be arbitrarily large.The IQCs for the signals in De�nition 3 should be de-�ned in the the average sense (4). We have the followinguni
ity resultProposition 3. Let � 2 RHm�n2 be given. The signalsin W� are uniquely de�ned in terms of the multipliers	� = �	 2 Sm�m1 : Z 1�1��	�d! � 0� :Proof. We will �rst give an alternative 
hara
terization ofthe multipliers in 	�. We noti
e that 	 2 	� if and onlyif xT �Z 1�1��	�d!�x= Z 1�1 tr �	(�xxT��)� d! = h	; Zi � 0; 8x 2 Rn;(17)where Z(!) = R !0 �(i�)xxT�(i�)�d� belongs to the dualspa
e of Sn�n1 and the linear fun
tional h�; �i is de�ned interms of the Stieltjes integralh	; Zi = Z 1�1 tr(	(j!)dZ(!)):It follows from (17) that	� = \Z2Z� �	 2 Sm�m1 : h	; Zi � 0	= \Z2
o(Z�) �	 2 Sm�m1 : h	; Zi � 0	 ; (18)where Z� is de�ned asZ� = �Z(!) = Z !0 �xxT��d� : x 2 Rn� :We are now ready to prove the 
laim of the proposition.Assume that w = fw1; : : : ; wNg 2 W� and 	 2 	�. Then1N NXi=1 Z 1�1 bw�i	 bwid! = h	; Zwi ; (19)where Zw(!) = 1N NXi=1 Z !0 bwi bw�i d�: (20)It follows by the de�nition of W� that Zw 2 
o(Z�).Hen
e, it follows from (18) that (19) is positive.For the other dire
tion assume that w1; : : : ; wN doesnot satisfy (16). If we de�ne Zw as in (20) with these withen Zw 62 
o(Z�). We will show that there exists 	 2 	�su
h that h	; Zwi < 0.

To do this we �rst note that1\
o(Z�[Zw)f	 : h	; Zi � 0g � 	�where the in
lusion is proper. The properness of the in-
lusion follows sin
e the 
onvex 
one 	� is the interse
-tion of the half spa
es HZ = f	 2 Sm�m1 : h	; Zi � 0g,Z 2 
o(Z�), and the �rst 
onvex 
one is obtained by in-terse
ting 	� with the halfspa
e Hw = f	 2 Sm�m1 :h	; Zwi � 0g, whi
h is di�erent from the HZ 's sin
e byassumption Zw 62 
o(Z�). Hen
e, there exists nonzeroe	 2 	� n \
o(Z�[Zw) f	 : h	; Zi � 0g :We obviously have De	; ZwE < 0.6 Numeri
al IssuesWe want to parametrize a �nite-dimensional subset of	white. One su
h parametrization is 	 = Y + Y �, whereY (s) = X0 + NXi=1 12 � Zis+ ai + Zis+ ai�where the ai are distin
t with Re ai > 0 and Zi = Xi+iYi,Xi; Yi 2 Rn�n. We note that12 � Zis+ ai + Zis+ ai�= 8<: Xis+ai ; ai 2 R;sXi +Re(ai)Xi + Im(ai)Yis2 + 2Re(ai)s+ jaij2 ; otherwise:This means that Y 2 RHn�n1 and in fa
t, this is the mostgeneral way to 
onstru
t an n� n transfer fun
tion withdistin
t poles.The values of Zi must be 
onstrained su
h thatR b�b tr(	)d! � 0. We 
an obtain an eÆ
ient 
hara
ter-ization for this 
onstraint. Let us �rst 
onsider the 
asewhen ai 2 R. We haveZ b�b 1j! + ai d! = 2 Z b0 ai!2 + a2i d! = 2ar
tan(b=ai): (21)The left hand side of (21) is an analyti
 fun
tion of ai inthe region Re ai > 0. It follows by analyti
 
ontinuationthat (21) holds for all Re ai > 0. Hen
e,Z b�b tr(Y (j!) + Y (j!)�)d! = 2 Z b�b tr(Y (j!))d!= 4btr(X0) + 4 NXi=1 Re(tr(Zi) � ar
tan(b=ai)):1Note that both sets are nontrivial 
onvex 
ones. To see this letP = f	 2 Sm�m1 : 	(j!) � 0; 8!g. Then it is easy to verify thatP � \
o(Z�[Zw)f	 : h	; Zi � 0g � \
o(Z�)f	 : h	; Zig � 0g



Hen
e, the matri
es Xi; Yi must satisfytr(bX0 + NXi=1(Re(ar
tan(b=ai))Xi�Im(ar
tan(b=ai)Yi))) � 0We will next dis
uss how we 
an �nd suitable �nite di-mensional parametrizations of multipliers from the set 	�.It is of parti
ular interest to �nd a 
omputationally inex-pensive method to impose the 
onstraint R1�1��	�d! �0. This 
onstraint 
an for general �nite dimensionalparametrizations be transformed into an equivalent 
on-straint that involves a Lyapunov equation (or Lyapunovinequality) and an LMI 
onstraint on the Lyapunov ma-trix, see for example [J�on96℄. The number of de
ision vari-ables will, however, grow fast with the number of statesof ��	�. We will here show how this 
an be over
ome bypre
omputing the Lyapunov equations for a basis of themultipliers.We will only dis
uss the 
ase when 	 has a �nite numberof distin
t stable real poles. Complex poles 
an be treatedin exa
tly the same way. Let	 = NXk=1 Xs+ ak + XT�s+ ak = NXk=1	�kMk	k;where ak > 0,	k(s) = 24 I1s+ ak I35 ; Mk = � 0 XkXTk 0 � ;and Xk 2 Rm�m is the variable. We 
an represent theMk as linear 
ombinationsMk = mXq=1 mXr=1 xkqr � 0 EqrETqr 0 � ;where Eqr = eqeTr , i.e., all elements are zero ex
ept for the1 at the qrth position. We 
an now represent the ve
torsin our �nite dimensional subset of 	� as	 = NXk=1Xq;r xkqr	�kMqr	k;where xkqr 2 R are the de
ision variables. The 
onstraintsR1�1��	�d! � 0 
an now be represented asNXk=1Xqr xkqrfMkqr � 0;where fMkqr = R1�1 ��	�kMqqr	k�d! 
an be pre
om-puted as follows. Let 	k(s)�(s) = Ck(sI � Ak)�1Bk,where Ak is stable sin
e 	k and � are assumed to be sta-ble. Then fMkqr = BTk PkqrBk, whereATk Pkqr + PkqrAk + CTk MkqrCk = 0:

7 Example�5 1s2+s+1 ey
s=tf([1 0℄,1)G=1/(s*s+s+1)K=-5b=50abst_init_iq
;e=iq
_white(1,b,[0.5+2.4*i℄);w=signal;v=K*(e+G*w);w==iq
_slope(v,3,1,0,1);g=iq
_gain_tbx(e,w);Poles Energy gain� 11:76650:5� 2:4i 6:9243several 6.58 Con
luding RemarksThe suggested approa
h of average performan
e analysis overa 
lass of input signals is a 
ombination of deterministi
 andsto
hasti
 ideas. In fa
t, De�nition 1 means that ea
h memberof the family w = fw1; : : : ; wNg is equally likely.Referen
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hnology,Lund, Sweden, 1996.[Meg92℄ A. Megretski. S-pro
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hni
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hnol-ogy, Sto
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 Control, 42(6):819{830, June 1997.[Pag96a℄ F. Paganini. A set-based approa
h for white noisemodeling. IEEE Transa
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