
IQC CHARACTERIZATIONS OF SIGNAL CLASSESUlf J�onsson� and Alexandre MegretskiyLaboratory for Information and Deision SystemsMassahusetts Institute of Tehnology77 Massahusetts Ave, room 35-410Cambridge, MA 02139-4307Fax : (617) 258-5779 e-mail : ulfj�mit.edu and ameg�mit.eduKeywords : performane analysis, IQCAbstratWorst ase average performane analysis is onsidered inthis paper. The disturbane in the system is assumed tobelong to a \lass of inputs signals". A lass of signalsis here de�ned to be a set of families of signals, whereeah family satis�es an average spetral onstraint. Exatharaterizations in terms of integral quadrati onstraints(IQC) are given for a lass of white signals and a lass ofsignals that are generated by autonomous linear systems.The IQCs are de�ned in terms of multipliers and impor-tant issues in numerial optimization of the multipliers aredisussed in the paper.1 IntrodutionIn order to redue onservatism in robust performaneanalysis we need to exploit information on the distur-bane signals. This is not always straightforward. Forexample, if the disturbane is of white noise type then itis natural to use a stohasti signal model for the perfor-mane riterion while it is more onvenient to onsiderdeterministi signals for the stability robustness. Thisproblem has reeived muh attention in onnetion tothe robust H2 performane problem, see, for example,[Meg92, ZGBD94, Fer97, Pag99, Pag96b℄, and [Pag96a℄.We onsider performane analysis in a standard frame-work of Integral Quadrati Constraints (IQC), see [MR97℄.This means that we work with square integrable funtions.Many signals of pratial importane are not diretly rep-resentable as suh funtions. We introdue the onept of\signal lasses" to ope with this problem. A lass of sig-nals is de�ned to be a set of families of signals, where thesignals in eah family satis�es some average spetral prop-erty. In this way we an de�ne the lass of white signals tobe suh that eah family has an average spetrum whih�Researh supported by Swedish Researh Counil for the Engi-neering SienesySupported by AFOSR grant F49620-96-1-0123

is at over some bandwidth and zero outside this band-width. The performane analysis must now be onsideredas the worst ase average over the lass of signals.We show that the lass of white signals and a lass of ex-ponentially deaying signals are uniquely de�ned in termsof IQCs. The latter signal lass an, for example, be usedto aount for unertain initial onditions in the linearpart of the system.We will disuss how our result on white signals are re-lated to robust H2 analysis. In fat, the resulting robust-ness ondition is similar to Paganinis in [Pag99℄. Paganinionsider sets of almost white signals and then let the a-uray tend to zero. SuÆient, and for some speial asesalso neessary, onditions for robust H2 performane isthen obtained in [Pag99℄ by letting the bandwidth tendto in�nity. Making the bandwidth tend to in�nity thusgives strong results but it also makes veri�ation of therobustness onstraint harder.Our analysis results an be applied to a large lass ofnonlinear and unertain systems. The performane ondi-tions are easily implemented in terms of onvex optimiza-tion problems. Suitable parametrizations of the multipli-ers that de�ne the IQCs are disussed in detail.NotationWe let Lm2 [0;1) denote the vetor spae of square inte-grable Rm valued funtions. The norm on Lm2 [0;1) isde�ned as kfk = Z 10 f(t)T f(t)dt:The bi-in�nite spae Lm2 (�1;1) is de�ned similarly. Wewill use the notation L2 to mean either of these two vetorspaes. A ausal operator � : L2 ! Lm2 [0;1) is boundedif there exists  > 0 suh that k�(v)k � kvk, for allv 2 Lm2 . The following standard notation is used:RLm�m1 The vetor spae of proper real rational transferfuntions with no poles on the imaginary axis.RHm�m1 The subspae of RLm�m1 onsisting of funtionswith no poles in the losed right half plane.



z wv yG�Figure 1: System for performane analysis.RHm�m2 Consists of the stritly proper transfer funtionsin RHm�m1 .Sm�m1 The subset fH 2 RLm�m1 : H = H�g, wherethe adjoint is de�ned as H�(s) = H(�s)T .The H2-norm of H 2 RH2 is de�ned by kHk22 =12� R1�1 tr(G(j!)�G(j!))d!, where tr(�) is the trae of amatrix. We de�ne the Fourier transform of w 2 Ln2 asbw(j!) = Z 1�1 e�j!tw(t)dt:2 Average Performane AnalysisWe will here disuss worst ase average performane anal-ysis using IQCs. Consider the system, see also Figure 1,�zv� = G �wy� = �G11 G12G21 G22��wy� ;y = �(v); (1)where it is assumed that � is bounded and ausal on Lm2and G is a bounded and ausal operator with transferfuntion in RH(n+m)�(n+m)1 . We assume for simpliitythat the feedbak loop is stable, i.e., the map from w toz is bounded on Ln2 . We want to ompute the worst aseaverage performane of this system over a lass of inputsignals. A lass of signals is de�ned as follows.De�nition 1. A signal lass is a set of families of signalsW = fw : w = fw1; : : : ; wNg; wi 2 Ln2g, where eah familysatis�es an average spetral onstraint1N NXi=1 bwi(j!) bwi(j!)� � Swhere S � Sn�n1 .Let �p be a time-invariant quadrati form that de�nesthe performane onstraint. For example, if�p(z; w) = kzk2 � 2kwk2;then the average IQC onstraint1N NXi=1 �p(zi; wi) � 0 (2)

for all w = fw1; : : : ; wNg 2 W and orresponding outputszi, implies that the worst ase average L2-gain of system(1) over the lass W is .We will use IQCs to derive suÆient onditions for ro-bust average performane. The perturbation � is said tosatisfy the IQC de�ned by �� (� 2 IQC(��)) if��(v;�(v) � 0; v 2 Lm2 [0;1):We will onsider quadrati forms on the form��(v;�(v)) = Z 1�1 � bvd�(v)���(j!) � bvd�(v)� d!; (3)where � 2 S2m�2m1 .Similarly, the signal lass W is said to satisfy the IQCde�ned by �W (W 2 IQC(�W )) if1N NXi=1 �W(wi) � 0 (4)for all w = fw1; : : : ; wNg 2 W . We onsider IQCs on theform �W(w) = Z 1�1 bw�	(j!) bwd!; (5)where 	 2 Sn�n1 . The next proposition gives a suÆientondition for robust average performane.Proposition 1. Assume that the system in (1) is stableand that the input w belongs to the signal lass W. If� 2 IQC(��) and W 2 IQC(�W) then the performaneriterion in (2) is satis�ed if�(Gu; u) = �p(G1u;w) + ��(G2u; y) + �W (w) � 0; (6)for all u = (wT ; yT )T 2 Ln+m2 . Here G1 = �G11 G12�and G2 = �G21 G22�.Proof. Assume w = fw1; : : : ; wNg 2 W and let the result-ing signals in the losed loop system be denoted zi, vi,yi, and �nally let ui = (wTi ; yTi ). Sine G2ui = vi andyi = �(vi) we have1N NXi=1 ��(G2ui; yi)) = 1N NXi=1 ��(vi;�(vi)) � 0;and sine w 2 W 1N Xi=1 �W (wi) � 0:Hene, (6) implies that (2) is satis�ed sine �p(G1ui; wi) =�p(zi; wi). This proves the proposition.Remark 1. Solving (6) with strit inequality (i.e.,�(Gw;w) � �"kwk2, for some " > 0) is often advanta-geous from a omputational point of view. Another ad-vantage with using strit inequality is that it ensures bothrobust performane and robust stability of the system (1)under some weak onditions.



Remark 2. If �� is de�ned by � and �W is de�ned by 	then (6) an be formulated as�GI �� 26664 I 0 0 00 �11 0 �120 0 �2I +	 00 ��12 0 �22 37775�GI � (j!) � 0; (7)for all ! 2 [0;1℄.Remark 3. In general, we have many IQCs and the ro-bustness onditions in (6) (or equivalently (7)) shouldbe stated as a onvex feasibility problems over the setof IQCs. To do this we assume that we have �niteparametrizations PN1i=1 �i	i and PN2i=1 �i�i, where theparameter vetors satisfy � 2 �, and � 2 K, for appro-priate onvex ones � and K. The robustness onditionan be formulated as the feasibility test: Find � 2 � and� 2 K suh that�p(G1w;w1) + N1Xi=1 �i�i�(G2w;w2) + N2Xi=1 �i�iW(w1) � 0;where �i� is de�ned as in (3) with � replaed by �i andwhere �iW is de�ned as in in (5) with 	 replaed by 	i.This feasibility test an be formulated as a parameter de-pendent LMI on the same form as in (7). A software pak-age for solving the strit version of this LMI is available,see [MKJR97℄.3 A Class of White SignalsWe will here disuss how deterministi white noise signalsan be represented as L2-signals with at spetrum over asuitably large frequeny range. For the salar ase we saythat a signal w 2 L2(�1;1) is white over the frequenyrange �b � ! � b ifj bw(j!)j2 = ( �b kwk2; ! 2 [�b; b℄0; j!j > b (8)The situation is less trivial in higher dimensions. Wewould like to say that w 2 Ln2 (�1;1) is white over thefrequeny range �b � ! � b ifbw(j!) bw(j!)� = ( �bnkwk2I; ! 2 [�b; b℄0; j!j > b :This is, however, impossible sine the left hand side is arank one matrix. To overome this problem we de�ne thefollowing lass of white signals.De�nition 2. In the lass Wwhite = fw : w =fw1; : : : ; wNg; wi 2 Ln2 (�1;1)g, eah family satis�es1N NXi=1 bwi(j!) bwi(j!)� = (I; j!j � b;0; j!j > b: (9)where  = �=(bnN)PNi=1 kwik2.

This means that eah family in the lass has an averagespetrum whih is at over the bandwidth [�b; b℄. Thatis, the energy is onentrated to the interval [�b; b℄ withequal distribution between the omponents of the signalsand there is no ross orrelation between the omponents.Note that it is possible to �nd n signals w1; : : : ; wn suhthat the average satis�es the property (9). We just needto let wi = wei, where ei is the ith unit vetor and w is asalar signal satisfying (8).The next proposition gives an exat haraterization ofthe lass Wwhite.Proposition 2. The IQCs de�ned by the multipliers	white = (	 2 Sn�n1 : Z b�b tr(	(j!))d! � 0) : (10)give an exat haraterization of Wwhite.Proof. We need to prove two things(i) For every 	 2 	white we have1N NXi=1 Z 1�1 bw�i	 bwid! � 0; (11)for any family w = fw1; : : : ; wNg 2 Wwhite.(ii) If w1; : : : ; wN 2 Ln2 (�1;1) violates (9), then thereexists 	 2 	white suh that1N NXi=1 Z 1�1 bw�i	 bwid! < 0; (12)To prove (i) we just note that1N NXi=1 Z 1�1 bw�i	 bwid! = Z 1�1 tr 	( 1N NXi=1 bwi bw�i )! d!= �bn( 1N NXi=1 kwik2) Z b�b tr(	)d! � 0:For the proof of (ii) we de�ne the funtionZ0(!) =8><>:bI; ! > b;!I; j!j � b;�bI; ! < �b: (13)This is a funtion of bounded variation and it belongs tothe dual spae of Sn�n1 . It de�nes a linear funtional onSn�n1 in terms of the Stieltjes integralh	; Z0i = Z 1�1 tr(	(j!)dZ0(!)):We note thath	; Z0i = Z b�b tr(	(j!))d! � 0;



whih shows that 	white is the half spae	white = �	 2 Sn�n1 : h	; Z0i � 0	 :Now let w1; : : : ; wN 2 Ln2 (�1;1) be a set of signals thatdoes not satisfy (9) and de�neZ(!) = 1N NXi=1 Z !0 bwi bw�i d� (14)This is a funtion of bounded variation that is di�erentfrom Z0, and it thus de�nes another half spae. It followsthat there exists 	 2 	white suh that h	; Zi < 0.4 Robust H2-performaneAverage analysis with our lass of white signals gives arobustness ondition that is analogous to Paganinis resultin [Pag99℄. To see this and the orresponding onnetionto robust H2 analysis we onsider the ase when the un-ertainty � 2 RHm�m1 satis�es the quadrati onstraint� I�(j!)���(j!) � I�(j!)� � 0; 8!:If we let Y = 2=(n2b)I �	 then we haveZ b�b tr(Y (j!))d! � 2;and our ondition for the average L2-gain to be less than=p2nb beomes�G(j!)I �� 26664 I 0 0 00 �11 0 �120 0 �Y (j!) 00 ��12 0 �22 37775�G(j!)I � � 0; 8!:(15)Let Q = �(I � G22�)�1G21 and multiply the above in-equality with V � = �I Q�� on the left, V on the rightand then integrate the trae from �b to b. This givesZ b�b tr(G�(j!)�G�(j!))d! � Z b�b tr(Y (j!))d! � 2;where G� is the linear frational transformation that rep-resents the losed loop systemG� = G11 +G12�(I �G22�)�1G21:Hene, as b ! 1 we get kG�kH2 � . The rite-rion in (15) is thus losely related to the one obtainedin in [Pag99℄, where suÆient and for some ases evenneessary onditions for robust H2 performane are de-rived. The prie paid to obtain suh strong onlusions isthat Y needs to integrable over the imaginary axis withR1�1 tr(Y (j!))d! � 2. This will in general ompliatethe veri�ation of (15) sine Y will be stritly proper.Average analysis with signals that are white only over a�nite bandwidth is generally muh simpler.

�x ej�(!) wFigure 2: Generation of output signals from an au-tonomous system. We assume that � 2 RHm�n2 , x 2 Rn,and that � : R ! R is odd and measurable. This meansthat ej�(!) gives a frequeny varying phase adjustmentof the signal. It is assumed that � is hosen suh thatw 2 Lm2 [0;1). We assume that x and � an vary fromexperiment to experiment.5 IQCs for Autonomous SystemsWe will in this setion derive an exat haraterizationof a lass of signals that an be viewed as outputs of theautonomous systems in Figure 2. By doing average anal-ysis along the lines of Proposition 1, we get an estimateof what an be expeted when the autonomous systemgenerates inputs to the system in (1).De�nition 3. Assume � 2 RHm�n2 and de�ne the lassW� = fw : w = fw1; : : : ; wNg; wi 2 Lm2 [0;1)g, whereany family w = fw1; : : : ; wNg satis�es the following aver-age spetral ondition1N NXi=1 bwi bw�i 2 o(S�): (16)Here o denotes the losed onvex hull and S� =f�xxT�� : x 2 Rng.These signals are exponentially deaying in the follow-ing senseLemma 1. There is a positive onstant � suh thate�twi 2 Lm2 [0;1), for every member of the familiesw = fw1; : : : ; wNg 2 W�.Proof. It follows from De�nition 3 that we an assume1N NXi=1 bwi bw�i = nXi=1 �xixTi ��for some xi 2 Rn. Let � be suh that �(s��) 2 RHm�n2 .Then w�i = e�twi 2 Lm2 [0;1), i = 1; : : : ; N , sine2�N NXi=1 kw�ik2 = Z 1�1 1N NXi=1 tr( bw�i bw��i)d!)= nXi=1 xTi Z 1�1��(j! � �)�(j! � �)d!xi <1:This proves the lemma.Remark 4. Note that it is impossible to prove exponen-tial deay of the form jw(t)j � e��t for some positive



onstants  and �. The reason is that we allow an arbi-trary time delay in the signal. To see this, onsider sig-nals with Fourier transforms bw1 and bw2 = e�j!T bw1(j!).We have bw1 bw�1 = bw2 bw�2 , and the onlusion follows sinew2(t) = w1(t� T ), and T an be arbitrarily large.The IQCs for the signals in De�nition 3 should be de-�ned in the the average sense (4). We have the followinguniity resultProposition 3. Let � 2 RHm�n2 be given. The signalsin W� are uniquely de�ned in terms of the multipliers	� = �	 2 Sm�m1 : Z 1�1��	�d! � 0� :Proof. We will �rst give an alternative haraterization ofthe multipliers in 	�. We notie that 	 2 	� if and onlyif xT �Z 1�1��	�d!�x= Z 1�1 tr �	(�xxT��)� d! = h	; Zi � 0; 8x 2 Rn;(17)where Z(!) = R !0 �(i�)xxT�(i�)�d� belongs to the dualspae of Sn�n1 and the linear funtional h�; �i is de�ned interms of the Stieltjes integralh	; Zi = Z 1�1 tr(	(j!)dZ(!)):It follows from (17) that	� = \Z2Z� �	 2 Sm�m1 : h	; Zi � 0	= \Z2o(Z�) �	 2 Sm�m1 : h	; Zi � 0	 ; (18)where Z� is de�ned asZ� = �Z(!) = Z !0 �xxT��d� : x 2 Rn� :We are now ready to prove the laim of the proposition.Assume that w = fw1; : : : ; wNg 2 W� and 	 2 	�. Then1N NXi=1 Z 1�1 bw�i	 bwid! = h	; Zwi ; (19)where Zw(!) = 1N NXi=1 Z !0 bwi bw�i d�: (20)It follows by the de�nition of W� that Zw 2 o(Z�).Hene, it follows from (18) that (19) is positive.For the other diretion assume that w1; : : : ; wN doesnot satisfy (16). If we de�ne Zw as in (20) with these withen Zw 62 o(Z�). We will show that there exists 	 2 	�suh that h	; Zwi < 0.

To do this we �rst note that1\o(Z�[Zw)f	 : h	; Zi � 0g � 	�where the inlusion is proper. The properness of the in-lusion follows sine the onvex one 	� is the interse-tion of the half spaes HZ = f	 2 Sm�m1 : h	; Zi � 0g,Z 2 o(Z�), and the �rst onvex one is obtained by in-terseting 	� with the halfspae Hw = f	 2 Sm�m1 :h	; Zwi � 0g, whih is di�erent from the HZ 's sine byassumption Zw 62 o(Z�). Hene, there exists nonzeroe	 2 	� n \o(Z�[Zw) f	 : h	; Zi � 0g :We obviously have De	; ZwE < 0.6 Numerial IssuesWe want to parametrize a �nite-dimensional subset of	white. One suh parametrization is 	 = Y + Y �, whereY (s) = X0 + NXi=1 12 � Zis+ ai + Zis+ ai�where the ai are distint with Re ai > 0 and Zi = Xi+iYi,Xi; Yi 2 Rn�n. We note that12 � Zis+ ai + Zis+ ai�= 8<: Xis+ai ; ai 2 R;sXi +Re(ai)Xi + Im(ai)Yis2 + 2Re(ai)s+ jaij2 ; otherwise:This means that Y 2 RHn�n1 and in fat, this is the mostgeneral way to onstrut an n� n transfer funtion withdistint poles.The values of Zi must be onstrained suh thatR b�b tr(	)d! � 0. We an obtain an eÆient harater-ization for this onstraint. Let us �rst onsider the asewhen ai 2 R. We haveZ b�b 1j! + ai d! = 2 Z b0 ai!2 + a2i d! = 2artan(b=ai): (21)The left hand side of (21) is an analyti funtion of ai inthe region Re ai > 0. It follows by analyti ontinuationthat (21) holds for all Re ai > 0. Hene,Z b�b tr(Y (j!) + Y (j!)�)d! = 2 Z b�b tr(Y (j!))d!= 4btr(X0) + 4 NXi=1 Re(tr(Zi) � artan(b=ai)):1Note that both sets are nontrivial onvex ones. To see this letP = f	 2 Sm�m1 : 	(j!) � 0; 8!g. Then it is easy to verify thatP � \o(Z�[Zw)f	 : h	; Zi � 0g � \o(Z�)f	 : h	; Zig � 0g



Hene, the matries Xi; Yi must satisfytr(bX0 + NXi=1(Re(artan(b=ai))Xi�Im(artan(b=ai)Yi))) � 0We will next disuss how we an �nd suitable �nite di-mensional parametrizations of multipliers from the set 	�.It is of partiular interest to �nd a omputationally inex-pensive method to impose the onstraint R1�1��	�d! �0. This onstraint an for general �nite dimensionalparametrizations be transformed into an equivalent on-straint that involves a Lyapunov equation (or Lyapunovinequality) and an LMI onstraint on the Lyapunov ma-trix, see for example [J�on96℄. The number of deision vari-ables will, however, grow fast with the number of statesof ��	�. We will here show how this an be overome bypreomputing the Lyapunov equations for a basis of themultipliers.We will only disuss the ase when 	 has a �nite numberof distint stable real poles. Complex poles an be treatedin exatly the same way. Let	 = NXk=1 Xs+ ak + XT�s+ ak = NXk=1	�kMk	k;where ak > 0,	k(s) = 24 I1s+ ak I35 ; Mk = � 0 XkXTk 0 � ;and Xk 2 Rm�m is the variable. We an represent theMk as linear ombinationsMk = mXq=1 mXr=1 xkqr � 0 EqrETqr 0 � ;where Eqr = eqeTr , i.e., all elements are zero exept for the1 at the qrth position. We an now represent the vetorsin our �nite dimensional subset of 	� as	 = NXk=1Xq;r xkqr	�kMqr	k;where xkqr 2 R are the deision variables. The onstraintsR1�1��	�d! � 0 an now be represented asNXk=1Xqr xkqrfMkqr � 0;where fMkqr = R1�1 ��	�kMqqr	k�d! an be preom-puted as follows. Let 	k(s)�(s) = Ck(sI � Ak)�1Bk,where Ak is stable sine 	k and � are assumed to be sta-ble. Then fMkqr = BTk PkqrBk, whereATk Pkqr + PkqrAk + CTk MkqrCk = 0:

7 Example�5 1s2+s+1 ey
s=tf([1 0℄,1)G=1/(s*s+s+1)K=-5b=50abst_init_iq;e=iq_white(1,b,[0.5+2.4*i℄);w=signal;v=K*(e+G*w);w==iq_slope(v,3,1,0,1);g=iq_gain_tbx(e,w);Poles Energy gain� 11:76650:5� 2:4i 6:9243several 6.58 Conluding RemarksThe suggested approah of average performane analysis overa lass of input signals is a ombination of deterministi andstohasti ideas. In fat, De�nition 1 means that eah memberof the family w = fw1; : : : ; wNg is equally likely.Referenes[Fer97℄ E. Feron. Analysis of robust H2 performane usingmultiplier theory. SIAM Journal of Control andOptimization, 1997.[J�on96℄ U. J�onsson. Robustness Analysis of Unertain andNonlinear Systems. PhD thesis, Department ofAutomati Control, Lund Institute of Tehnology,Lund, Sweden, 1996.[Meg92℄ A. Megretski. S-proedure in optimalnon-stohasti �ltering. Tehnial ReportTRITA/MAT-92-0015, Royal Institute of Tehnol-ogy, Stokholm, Sweden, 1992.[MKJR97℄ A Megretski, C. Kao, U. J�onsson, and A. Rantzer.A Guide To IQC-beta: Software for RobustnessAnalysis. Laboratory for Information and Dei-sion Systems, Massahusetts Institute of Tehnol-ogy, 1997.[MR97℄ A. Megretski and A. Rantzer. System analysis viaintegral quadrati onstraints. IEEE Transationson Automati Control, 42(6):819{830, June 1997.[Pag96a℄ F. Paganini. A set-based approah for white noisemodeling. IEEE Transations on Automati Con-trol, 41(10):1453{1465, Otober 1996.[Pag96b℄ F. Paganini. Sets and Constraints in the Analysisof Unertain Systems. PhD thesis, California Insti-tute of Tehnology, Pasadena, California, 1996.
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