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Abstract

Worst case average performance analysis is considered in
this paper. The disturbance in the system is assumed to
belong to a “class of inputs signals”. A class of signals
is here defined to be a set of families of signals, where
each family satisfies an average spectral constraint. Exact
characterizations in terms of integral quadratic constraints
(IQC) are given for a class of white signals and a class of
signals that are generated by autonomous linear systems.
The IQCs are defined in terms of multipliers and impor-
tant issues in numerical optimization of the multipliers are
discussed in the paper.

1 Introduction

In order to reduce conservatism in robust performance
analysis we need to exploit information on the distur-
bance signals. This is not always straightforward. For
example, if the disturbance is of white noise type then it
is natural to use a stochastic signal model for the perfor-
mance criterion while it is more convenient to consider
deterministic signals for the stability robustness. This
problem has received much attention in connection to
the robust Hy performance problem, see, for example,
[Meg92, ZGBDY94, Fer97, Pag99, Pag96b], and [Pag96a].
We consider performance analysis in a standard frame-
work of Integral Quadratic Constraints (IQC), see [MR97].
This means that we work with square integrable functions.
Many signals of practical importance are not directly rep-
resentable as such functions. We introduce the concept of
“signal classes” to cope with this problem. A class of sig-
nals is defined to be a set of families of signals, where the
signals in each family satisfies some average spectral prop-
erty. In this way we can define the class of white signals to
be such that each family has an average spectrum which
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is flat over some bandwidth and zero outside this band-
width. The performance analysis must now be considered
as the worst case average over the class of signals.

We show that the class of white signals and a class of ex-
ponentially decaying signals are uniquely defined in terms
of IQCs. The latter signal class can, for example, be used
to account for uncertain initial conditions in the linear
part of the system.

We will discuss how our result on white signals are re-
lated to robust Hs analysis. In fact, the resulting robust-
ness condition is similar to Paganinis in [Pag99]. Paganini
consider sets of almost white signals and then let the ac-
curacy tend to zero. Sufficient, and for some special cases
also necessary, conditions for robust Hy performance is
then obtained in [Pag99] by letting the bandwidth tend
to infinity. Making the bandwidth tend to infinity thus
gives strong results but it also makes verification of the
robustness constraint harder.

Our analysis results can be applied to a large class of
nonlinear and uncertain systems. The performance condi-
tions are easily implemented in terms of convex optimiza-
tion problems. Suitable parametrizations of the multipli-
ers that define the IQCs are discussed in detail.

Notation

We let L3*[0, 00) denote the vector space of square inte-
grable R™ valued functions. The norm on L'[0, 00) is
defined as

11l = / Y T ft

The bi-infinite space L3 (—00, 00) is defined similarly. We
will use the notation Ls to mean either of these two vector
spaces. A causal operator A : Ly — L3*[0, 00) is bounded
if there exists ¢ > 0 such that ||A(v)|| < ¢||v]], for all
v € LY. The following standard notation is used:

RLZ*™ The vector space of proper real rational transfer
functions with no poles on the imaginary axis.

RHZ*™ The subspace of RLZ.*™ consisting of functions
with no poles in the closed right half plane.
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Figure 1: System for performance analysis.

RH}'*"™ Consists of the strictly proper transfer functions
in RHZ ™.
Smxm

The subset {H € RL*™ : H = H*}, where
the adjoint is defined as H*(s) = H(—s)".

The Hy-norm of H € RH, is defined by |H|3 =
5 fooo tr(G(jw)*G(jw))dw, where tr(-) is the trace of a
matrix. We define the Fourier transform of w € Lj as

w(jw) = / e It (t)dt.

J —oo

2 Average Performance Analysis

We will here discuss worst case average performance anal-
ysis using IQCs. Consider the system, see also Figure 1,

J=el]=lar el
y = A(v),

where it is assumed that A is bounded and causal on L’
and G is a bounded and causal operator with transfer
function in RHH™X(4m) e agsume for simplicity
that the feedback loop is stable, i.e., the map from w to
z is bounded on L}. We want to compute the worst case
average performance of this system over a class of input
signals. A class of signals is defined as follows.

Definition 1. A signal class is a set of families of signals
W=A{w:w={wi,...,wn},w; €Ly}, where each family
satisfies an average spectral constraint

| N
Nz (Jw)w;(jw)* € S

where S C SI".

Let 0, be a time-invariant quadratic form that defines
the performance constraint. For example, if

[&

op(z,w) = |22 = [,

then the average IQC constraint

| X
N Z op(zi,w;) <0 (2)
i=1

or all w = w1, ..., WNy € VV and corresponding outputs
zi, implies that the worst case average Ls-gain of system
(1) over the class W is 7.

We will use IQCs to derive sufficient conditions for ro-
bust average performance. The perturbation A is said to
satisfy the IQC defined by oa (A € IQC(oa)) if

oa(v,A(v) >0, v e Ly[0,00).

We will consider quadratic forms on the form

s = [ [ oo s o
where IT € 272,

Similarly, the signal class W is said to satisfy the IQC
defined by oy (W € IQC(oyw)) if

N
1
Nzﬂw(wi) >0 (4)
i=1
for all w = {wy,...,wn} € W. We consider IQCs on the
form
ow(w) = / WY (jw)wdw, (5)

where U € S7*". The next proposition gives a sufficient
condition for robust average performance.

Proposition 1. Assume that the system in (1) is stable
and that the input w belongs to the signal class W. If
A € IQC(oa) and W € IQC(ow) then the performance
criterion in (2) is satisfied if

0(Gu,u) = op(Gru, w) + oa(Gau,y) + ow(w) <0, (6)

for all u = (w”,y")7" € Lg’+m. Here Gi = [GH Glg]
and GQ = [G21 GQQ].

Proof. Assume w = {ws,...,wy} € W and let the result-
ing signals in the closed loop system be denoted z;, v;,
yi, and finally let u; = (w!,yl). Since Gou; = v; and
yi = A(v;) we have

_ZUA GQUZ yz =

and since w € W

E UAUZ

1
_ZUW(wi) >0
N i=1

Hence, (6) implies that (2) is satisfied since o), (G u;, w;) =
0p(zi, w;). This proves the proposition. O

Remark 1. Solving (6) with strict inequality (i.e.,
o(Gw,w) < —e|lw||?, for some £ > 0) is often advanta-
geous from a computational point of view. Another ad-
vantage with using strict inequality is that it ensures both
robust performance and robust stability of the system (1)
under some weak conditions.



temark 4. 11 oA 18 delined by 11 and oy 1S denned by W
then (6) can be formulated as

1 0 0 0
|:G:|* 0 H]] 0 H]2 |: :|( )<0 (7)
Jw
1 0 0 2T+0 0 1
0 I, 0 1E)

for all w € [0, oc].

Remark 3. In general, we have many IQCs and the ro-
bustness conditions in (6) (or equivalently (7)) should
be stated as a convex feasibility problems over the set
of 1QCs. To do ‘rhls we assume ‘rha‘r we have finite
parametrizations Z 1A%, and ZZ 1 kill;, where the
parameter vectors sa‘rlsfy A €A and k € K for appro-
priate convex cones A and K. The robustness condition
can be formulated as the feasibility test: Find A € A and
Kk € K such that

op(Ghw,wr) + Z/ﬁmiA(Ggw,wg) + Z Aioiy (wr) <0,

i=1 i=1

where o'y is defined as in (3) with II replaced by II; and
where o}, is defined as in in (5) with ¥ replaced by ¥
This feasibility test can be formulated as a parameter de-
pendent LMI on the same form as in (7). A software pack-
age for solving the strict version of this LMI is available,
see [MKJRO7].

3 A Class of White Signals

We will here discuss how deterministic white noise signals
can be represented as Lo-signals with flat spectrum over a
suitably large frequency range. For the scalar case we say
that a signal w € Ly(—o00, 00) is white over the frequency
range —b < w < b if

™ 2
() = { el

The situation is less trivial in higher dimensions. We
would like to say that w € LI (—o00,00) is white over the
frequency range —b < w < b if

w € [—b, ]
lw| > b

(8)

S

7r 2

— I, e [-b,b
i)ty = ¢ ol T @ €0

0, lw| > b

This is, however, impossible since the left hand side is a
rank one matrix. To overcome this problem we define the
following class of white signals.

Definition 2. In the class Wynite = {w : w =
{wy,...,wn},w; € LY(—00,00)}, each family satisfies

1 cl,
— w)w; (jw)* =
N; (o)) {07

where ¢ = 7/(bnNN) ZZI\;] [Jwi |2

wl <0,
lw| > b.

(9)

1n1s means that each ramily in the class has an average
spectrum which is flat over the bandwidth [—b,b]. That
is, the energy is concentrated to the interval [—b, b] with
equal distribution between the components of the signals
and there is no cross correlation between the components.

Note that it is possible to find n signals wy, ..., w, such
that the average satisfies the property (9). We just need
to let w; = we;, where e; is the it" unit vector and w is a
scalar signal satisfying (8).

The next proposition gives an exact characterization of
the class Wahite-

Proposition 2. The IQCs defined by the multipliers

b
Uihite = {\I! e S / tr(P (jw))dw > 0}. (10)
—b

give an exact characterization of Wynite -

Proof. We need to prove two things

(i) For every ¥ € Wypite we have

1 [™
~ Z/ 0} Uiidw > 0,
=17 X

for any family w = {w1,...,wn} € Wyhite-

(11)

(i7) If wy,...,wn € Lj(—oc,00) violates (9), then there
exists W € ¥ pite such that

1 [~
~ Z/ W} Viidw < 0,
=17 X

)
szZ”“’f”/ (W) > 0.

For the proof of (ii) we define the function

(12)

To prove (i) we just note that

1 N e} o0
= | @ Bde = /
vl

— 00 — 0o

bl, w > b,
ZU(U‘)) = WIa |UJ| < b: (13)
—bl, w< —b.

This is a function of bounded variation and it belongs to
the dual space of S”*". Tt defines a linear functional on
S2*™ in terms of the Stieltjes integral

(U, Zy) —/O:otr

We note that

(¥ (jw)dZo(w))-

b
(W, Zy) = / (W () 2 0



whnich Snows that Yyhite 1S the nall Space
‘I}white = {‘I} € Sgoxn : <\I'IZ(]> > O} .

Now let wy,...,wy € L} (—00,00) be a set of signals that
does not satisfy (9) and define

1K
Z(w) = NZ/ W; W} dv
i=170

This is a function of bounded variation that is different
from Zy, and it thus defines another half space. It follows
that there exists ¥ € Wypige such that (¥, 7) < 0. O

(14)

4 Robust Hy-performance

Average analysis with our class of white signals gives a
robustness condition that is analogous to Paganinis result
in [Pag99]. To see this and the corresponding connection
to robust Hy analysis we consider the case when the un-
certainty A € RH.*™ satisfies the quadratic constraint

I 1. I
agio] 169 [agig) 20 v
If we let Y =~2/(n2b)I — ¥ then we have

b
[ (Y () <

and our condition for the average Lo-gain to be less than

~v/V2nb becomes

[1 0 0 0 1
[ R SRR T PP
1 0 0 |-Y(@yw) 0 r =
0 I, 0 I,
(15)

Let Q = A(I — G2 A)"'Gy and multiply the above in-
equality with V* = [I Q*] on the left, V on the right
and then integrate the trace from —b to b. This gives

b b
/ tr(Ga (jw)* Ga (ju))dw < / (Y () ) < 72,
b —b

where G is the linear fractional transformation that rep-
resents the closed loop system

Ga =G + G2 A(I - G22A)71G21-

Hence, as b — oo we get ||Gallu, < 7. The crite-
rion in (15) is thus closely related to the one obtained
in in [Pag99], where sufficient and for some cases even
necessary conditions for robust Hs performance are de-
rived. The price paid to obtain such strong conclusions is
that Y needs to integrable over the imaginary axis with
J7 tr(Y(jw))dw < 4*. This will in general complicate
the verification of (15) since Y will be strictly proper.
Average analysis with signals that are white only over a
finite bandwidth is generally much simpler.

e]¢’(“’)4w>

Figure 2: Generation of output signals from an au-
tonomous system. We assume that ® € RH) " x € R",
and that ¢ : R — R is odd and measurable. This means
that e7¢(«) gives a frequency varying phase adjustment
of the signal. It is assumed that ¢ is chosen such that
w € LJ'[0,00). We assume that z and ¢ can vary from
experiment to experiment.

5 IQCs for Autonomous Systems

We will in this section derive an exact characterization
of a class of signals that can be viewed as outputs of the
autonomous systems in Figure 2. By doing average anal-
ysis along the lines of Proposition 1, we get an estimate
of what can be expected when the autonomous system
generates inputs to the system in (1).

Definition 3. Assume ® € RHS" ™" and define the class
W = {w : w = {wy,...,wn}, w; € LT'[0,0¢)}, where
any family w = {wy,...,wy} satisfies the following aver-
age spectral condition

N

1 PN

N E w;w; € to(Ss). (16)
i=1

Here ©o denotes the closed convex hull and Se¢ =
{®z2T®* : 2z € R"}.

These signals are exponentially decaying in the follow-
ing sense

Lemma 1. There is a positive constant a such that
e“w; € LJ'[0,0c), for every member of the families

w={wy,...,wn} € Ws.

Proof. Tt follows from Definition 3 that we can assume

2

1 n

A~ A~y T x %
— E w;W; = E bx;x; O
N ! o
i=1 i=1

for some z; € R". Let a be such that ®(s—a) € RHY ™.
Then wy; = e*'w; € L'[0,00),i=1,..., N, since

o o o 1 XN
T lal? = [ Y (@it
N i=1 - N i=1
:Z:U’T/ " (jw — a)P(jw — a)dwz; < 0.
i=1 >

This proves the lemma. O

Remark 4. Note that it is impossible to prove exponen-
tial decay of the form |w(t)] < ce™®' for some positive



consStants ¢ and . 1he reason 18 that we allow an arbi-
trary time delay in the signal. To see this, consider sig-
nals with Fourier transforms @; and @, = e 7“Tw, (jw).
We have w,w] = wows, and the conclusion follows since
wa(t) = wy(t —T), and T can be arbitrarily large.

The IQCs for the signals in Definition 3 should be de-
fined in the the average sense (4). We have the following
unicity result

Proposition 3. Let ® € RH,™" be given. The signals
in Wes are uniquely defined in terms of the multipliers
\Ilq,:{\I!ESZZ;xm: / <I>*\P<I>dw>0}.

Proof. We will first give an alternative characterization of
the multipliers in ¥g. We notice that ¥ € Uy if and only

if
2T </ CI)*\IMI)dw) T

= /Oo tr (U (za”

— 0o

®*)) dw = (¥, Z) > 0, Vz € R,
(17)

where Z(w fo

space of SZOX” and the linear functional (-,
terms of the Stieltjes integral

(\II,Z)—/O;tr

It follows from (17) that

(iv)zz” ®(iv)*dv belongs to the dual
-} is defined in

(V(jw)dZ(w)).

Vo = Nzeze {¥ €S (¥, Z) >0}

= Nyecoo(70) (¥ € S : (¥, Z) >0}, (18)

where Zg is defined as
Zo = {Z(w) = / dral ®*dv :x € R”} )
0

We are now ready to prove the claim of the proposition.
Assume that w = {wq,...,wn} € We and ¥ € ¥g. Then

N
1 R
¥ Z / w; Vi;dw = (¥, Z,,) (19)
i=1" 7
where
1 [
== | @b}y (20)
N3 /0

It follows by the definition of Ws that Z, € to(Zs).
Hence, it follows from (18) that (19) is positive.

For the other direction assume that w;,...,wyx does
not satisfy (16). If we define Z,, as in (20) with these w;
then Z,, ¢ ©0(Zs). We will show that there exists ¥ € Ug
such that (¥, Z,,) < 0.

10 a0 this we nrst note that
ﬁcg(zéuzw){\p : <\IJ7Z> Z 0} C \I’q>

where the inclusion is proper. The properness of the in-
clusion follows since the convex cone Wg is the intersec-
tion of the half spaces Hy = {¥ € SI*™ : (¥, Z) > 0},
Z € ©(Zs), and the first convex cone is obtained by in-
tersecting W with the halfspace H,, = {¥ € SZ*™ :
(¥, Z,,) > 0}, which is different from the Hyz’s since by
assumption Z,, ¢ ©0(Zq¢). Hence, there exists nonzero

U € Uy \ Neo(zauz) {¥ 1 (T, Z) > 0}.

We obviously have <\Tl Zw> < 0. O

6 Numerical Issues

We want to parametrize a finite-dimensional subset of
U hite- One such parametrization is ¥ =Y 4+ Y*, where

Z;
- X
“+Z <s+aZ s—|—6i>

where the a; are distinct with Re a; > 0 and Z; = X,;+1iY;,
X;,Y; € R™"™. We note that
X a; € R,

1( Z; Z; >
— + —
2\s+a; s+a;

s+a;’

s% 4+ 2Re(a;)s + |a;]?

otherwise.

This means that Y € RH." and in fact, this is the most
general way to construct an n x n transfer function with
distinct poles.

The values of Z; must be constrained such that
f tr(P)dw > 0. We can obtain an efficient character-
1za‘r10n for this constraint. Let us first consider the case
when a; € R. We have

b b

1 —
/ : dJ—Q/ 2a7dm 2arctan(b/a;). (21)
_p Jw+a; 0 W Ta;

The left hand side of (21) is an analytic function of a; in
the region Re a; > 0. It follows by analytic continuation
that (21) holds for all Re a; > 0. Hence,

b

b
/ tr(Y (jw) + Y (jw)*)dw = 2/ tr(Y (jw))dw
—b —b
= 4btr(X,) +4ZR9 (tr(Z;) - arctan(b/a;)).

I'Note that both sets are nontrivial convex cones. To see this let
P={U € S*™: ¥(jw) >0, Vw}. Then it is easy to verify that
PC IFL",()(Zq,UZw){\IJ : <\II1Z> > 0} - I’_]f‘,n(Z@){\Il : <\II7Z>} > U}



Hence, the matrices A;, ¥; must SatiSry

tr(bXo + Z(Re(arctan(b/ai)))(i_

Im(arctan(b/a;)Y;))) > 0

We will next discuss how we can find suitable finite di-
mensional parametrizations of multipliers from the set W .
It is of particular interest to find a computationally inex-
pensive method to impose the constraint ffooo P U Pdw >
0. This constraint can for general finite dimensional
parametrizations be transformed into an equivalent con-
straint that involves a Lyapunov equation (or Lyapunov
inequality) and an LMI constraint on the Lyapunov ma-
trix, see for example [J6n96]. The number of decision vari-
ables will, however, grow fast with the number of states
of ®*Wd. We will here show how this can be overcome by
precomputing the Lyapunov equations for a basis of the
multipliers.

We will only discuss the case when ¥ has a finite number
of distinct stable real poles. Complex poles can be treated
in exactly the same way. Let

N N
X XT

U = E +

— + ay, —S + ag P

Wy MWy,
1

x~

where a > 0,

1

and X; € R™*™ is the variable. We can represent the
M, as linear combinations

m

%)

g=1r=1

0 E,
ET 0|

where E,, = equT, i.e., all elements are zero except for the

1 at the gr'" position. We can now represent the vectors
in our finite dimensional subset of ¥4 as

N
V=3 an, VM, Vs,

k=1 q,r

where z,, € R are the decision variables. The constraints
J7. @*¥®dw > 0 can now be represented as

N

Zzﬂfkq,‘ﬂqu >0,

k=1 qr
where qur = [Z_®*U; M, U;®dw can be precom-
puted as follows. Let Wy (s)®(s) = Ck(sI — Ay) ' By,

where Ay, is stable since ), and ® are assumed to be sta-
ble. Then M, = B,Z’quer, where

A,prqu + quTAk + C,?qur CrL=0.

XAlllplce

-9

0
'

1
§24s5+1

s=tf([1 0],1)

G=1/(s*s+s+1)

K=-5

b=50

abst_init_iqc;
e=iqc_white(1,b,[0.5+2.4%i]);
w=signal;

v=Kx* (e+G*w) ;
w==iqc_slope(v,3,1,0,1);
g=iqc_gain_tbx(e,w);

Poles Energy gain
- 11.7665
0.5+ 2.4 6.9243
several 6.5

8 Concluding Remarks

The suggested approach of average performance analysis over
a class of input signals is a combination of deterministic and
stochastic ideas. In fact, Definition 1 means that each member
of the family w = {w1,...,wn} is equally likely.
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