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hnology, 10044Sto
kholm, Sweden ulfj�math.kth.se2 Laboratory for Information and De
ision Systems, Massa
husetts Institute ofTe
hnology, Cambridge, MA 02139, USA ameg�mit.eduSummary. Lo
al robustness of limit 
y
les are investigated for systems that 
anbe modeled as a feedba
k inter
onne
tion of an exponentially stable linear systemwith a nonlinear fun
tion. Conditions are given under whi
h the limit 
y
le and thenumber of unstable modes persist for suÆ
iently small dynami
 perturbations.1 Introdu
tionStability and robustness of limit 
y
le os
illations are properties of fundamen-tal importan
e in many appli
ations in ele
troni
s, me
hani
s, biology, andphysi
s. Limit 
y
le os
illation is 
ru
ial in 
ontrol appli
ations su
h as bio-logi
al lo
omotion [6℄, rhythmi
 me
hani
al motion [7℄ and auto-tuning [1℄.Tools for rigorous analysis of stability and robustness of limit 
y
le os
illa-tions is important in the design and veri�
ation of su
h systems. The 
lassi
alliterature provides several useful results but few, if any of them, extends di-re
tly to system des
riptions that are subje
t to various forms of unmodelleddynami
s. One problem is that the 
lassi
 results were derived in a state spa
eformalism whi
h does not extend easily to systems with unknown possible in-�nite dimension. Another problem is that the introdu
tion of un
ertainty inthe system dynami
s perturbs both the period time and the orbit of the limit
y
le whi
h is in stark 
ontrast to the traditional problems in robust 
ontrolwhere the equilibrium solution remains �xed when the system is perturbed.This makes robust stability analysis of limit 
y
les a 
hallenging problem.In this paper we brie
y review and extend some of the results in [3℄. Therewe proved that the well-known 
ondition on the 
hara
teristi
 multipliers forrobustness of �nite dimensional systems extends to a 
lass of systems withdynami
 un
ertainties. We also showed how bounds on a robustness margin
an be estimated. Here we extend the lo
al result to hold also in the 
ase whenthe limit 
y
le is hyperboli
. In parti
ular, we derive 
onditions under whi
hthe limit 
y
le and the number of unstable modes persist for suÆ
iently smalldynami
 perturbations.



2 Ulf T. J�onsson and Alexandre MegretskiNotationWe will let C(1) denote the set of 
ontinuous one periodi
 fun
tions equippedwith the norm kvkC(1) = supt2[0;1℄ jv(t)j. The exponentially weighted L2 spa
eL2�[0;1) = fe(t) : R10 e2�tje(t)j2dt <1g will be used to de�ne and prove ex-ponential stability. The norm on the usual L2[0;1) spa
e is denoted k�k whilethe norm on L2�[0;1) is denoted and de�ned as kvk� = (R10 e2�tjv(t)j2dt)1=2.The spatial norm will always be the Eu
lidean norm jvj = (Pni=1 v2i )1=2. Atseveral pla
es we 
onsider the spa
e C(1)�R with the norm k(v; T )kC(1)�R =(kvk2C(1)+ jT j2)1=2. If X denotes a normed ve
tor spa
e then its dual X� is theBana
h spa
e of all bounded linear fun
tionals on X . If g 2 X� and x 2 X ,then we use the notation g(x) = hx; gi for the fun
tional.We use that the 
hara
teristi
 multipliers of a periodi
 matrix A(t) =A(t+ T0) are the eigenvalues of the monodromy matrix �(T0; 0), whereddt�(t; 0) = A(t)�(t; 0); �(0; 0) = I:2 Model AssumptionsWe 
onsider systems 
onsisting of a feedba
k inter
onne
tion of an exponen-tially stable linear time-invariant (LTI) plant and a memoryless nonlinearityy(t) = Z t�1 h(t� �; �)'(y(�))d�; 8t: (1)This system equation is suitable for representing stationary solutions su
h asequilibrium solutions or stationary periodi
 solutions. The parameter � is as
aling of the size of the un
ertainty in the system and we assume it belongsto an open interval I� , whi
h 
ontains 0.We next summarize the assumptions on (1).Assumption 1 For the system in (1) we assume(i) The nonlinearity '(�) is C1 (
ontinuously di�erentiable).(ii)For some exponential de
ay rate � > 0 and all � 2 I� (an open in-terval 
ontaining � = 0) we have e�th(t; �) 2 L1[0;1) and furthemorethat h(t; �) is C1 with respe
t to � and has time di�erential dh(t; �) =_h
(t; �)dt +P1k=0 hk(�)Æ(t � tk)dt, where Æ(�) denotes the dira
 implulse,e�t _h
 2 L1[0;1), P1k=0 e�tk jhkj < 1, t0 = 0 and tk > 0. Under theseassumptions the Lapla
e transforms H(s; �) and sH(s; �) are (i) analyti
in Re s > ��, (ii) 
ontinuous on ��+ iR, and (iii) bounded su
h that forRe s � �� we have max(jsH(s; �)j; jH(s; �)j) � b for some number b.(iii)The system is 
alled nominal when � = 0 and our assumption is thatthe nominal system has a T0-periodi
 solution y0. The periodi
 solution is
alled a limit 
y
le when it is isolated.



Lo
al Robustness of Hyperboli
 Limit Cy
les 3We will derive 
onditions under whi
h there remains a limit 
y
le when � isperturbed from zero. Conditions for stability of the limit 
y
le are also derived.A more 
on
ise operator notation for (1) isy = H(s; �)'(y): (2)The un
ertain dynami
s is often represented as a linear fra
tional transfor-mation (LFT) (see Figure (1))H(s; �) = H11(s) + �H12�(s)(I � �H22(s)�(s))�1H21(s): (3)Here we normally assume that the nominal dynami
s H(s) is a �nite dimen-sional transfer fun
tion with all poles in Re s < �� and with H11 and eitherH12 orH21 stri
tly proper. If �(s) is a transfer fun
tion with impulse responsefun
tion satisfying �(t) = �
(t) +P1k=0�kÆ(t� tk) (4a)e�t�
(t) 2 L1[01); t0 = 1; tk > 0; P1k=0 je�tk�kj <1 (4b)then Assumption 1 holds for I� = (��̂; �̂) if the small gain 
ondition �̂k�(s��)kH1 � kH22(s� �)kH1 < 1 is satis�ed.
2221

1211 HH
HH

.( )ϕ

θ∆Fig. 1. Blo
k diagram 
orresponding to the perturbed system in (2)-(3).Example 1. Consider Van der Pol's equation with a dynami
 un
ertainty�u(t) +m(u(t)2 � 1) _u(t) + u(t) = �(�u)(t)where �(s) is a transfer fun
tion with impulse response satisfying (4). Torepresent this system on the form (1) we introdu
e the new 
oordinatesx1 = � _u�m(u3=3� u)x2 = uDi�erentiation gives



4 Ulf T. J�onsson and Alexandre Megretski_x(t) = Ax(t) +B'(y(t)) + �B�(�y)(t)y(t) = Cx(t)whereA = � 0 1�1 �2� ; B = �01� ; B� = ��10 � ; C = �0 1 �and '(y) = �my3=3 + (2 +m)y. Now the system 
an be represented on theLFT form in (2)-(3) with '(y) = �my3=3 + (2 +m)y and (where C� = C)H(s) = �H11(s) H12(s)H21(s) H22(s)� = 264 A B B�C 0 0C� 0 0 375 :We will next dis
uss a 
ondition from [3℄ for the existen
e of a periodi
 solutionwhen � is suÆ
iently 
lose to 0. Later we derive 
onditions for lo
al stabilityor more generally hyberboli
ity of this limit 
y
le solution.3 Existen
e of SolutionIt is no restri
tion to assume that the period time T0 = 1 sin
e we 
an alwaysre-s
ale the time axis by the transformation t=T0 ! t, whi
h gives the nominaldynami
sy0(t) = Z t�1 T0h(T0(t� �); 0)'(y0(�))d�; for t 2 [0; 1℄:Hen
e, by rede�ning T0h(T0t; 0) ! h(t; 0) we 
an assume T0 = 1. A generalperiodi
 solution to (1) 
an thus be writteny(t) = Z t�1 Th(T (t� �); �)'(y(�))d�; for t 2 [0; 1℄: (5)The advantage of this reformulation is that a periodi
 solution 
an be repre-sented as a pair z = (y; T ) 2 C(1)�R of a 1-periodi
 traje
tory and a periodtime. This will simplify our work 
onsiderably sin
e the perturbation of theperiod time and the orbit are separated. In this se
tion, the assumption is thusthat (5) has a solution z0 = (y0; 1) when � = 0. We often use the following
on
ise notation for the system equation in (5)y = H(s=T; �)'(y) (6)where the nominal transfer fun
tion H(s; 0) in this paper often is assumed tohave a �nite dimensional state spa
e realization.



Lo
al Robustness of Hyperboli
 Limit Cy
les 5With Z = C(1)�R and Y = C(1) we de�ne the operatorF : Z � I� ! Y as (z; �) 7! F (z; �) = y �H(s=T; �)'(y)for any z = (y; T ) 2 Z. A solution to the equation F (z�; �) = 0 
orresponds toa periodi
 solution z� = (y�; T�) 2 C(1) �R of (5) or similarly a T�-periodi
solution y�(t=T�) of (1).We will use an impli
it fun
tion theorem to derive 
onditions for the exis-ten
e of a solution of the perturbed system. The Fre
h�et derivative of F withrespe
t to the traje
tory at a periodi
 solution z� = (y�; T�) has the blo
kstru
ture F 0z(z�; �) = �F 0y(z�; �) F 0T (z�; �) � (7a)= � I � Lst(z�; �) 1T� (I � Lst(z�; �))(t _y�) � (7b)where Lst(z�; �) = H(s=T�; �)'0(y�):The notation Lst is used to indi
ate that this operator has to do with thestationary behavior of the system. The last 
omponent of the derivative followsafter some 
al
ulation whi
h is left to Appendix 1. Note that the argumentt _y� of I �Lst(z�; �) does not belong to C(1) while our 
laim is that the valuedoes. The 
laim follows from the proof in Appendix 1.It is interesting to note that the variational system 
orresponding to thenominal 1-periodi
 solution y0 
an be written (I � L0st)v = 0, where L0st =Lst(z0; 0). The next proposition shows that _y0 is in the kernel of (I�L0st), i.e. 1is an eigenvalue of L0st with _y0 as the 
orresponding eigenfun
tion. This followssin
e the periodi
 solution is unique only modulo arbitrary time translations.Proposition 1. We have _y0 2 Ker (I � L0st), where L0st = Lst(z0; 0).Proof. Let h0(t) = h(t; 0). By de�nition,y0(t) = Z t�1 h0(t� �)'(y0(�))d�for all t 2 R. Di�erentiation of this identity gives_y0(t) = h0(0)'(y0(t)) + Z t�1 dh0(t� �)'(y0(�))= h0(0)'(y0(t)) + limT!�1 [�h0(t� �)'(y0(�))℄tT+ Z t�1 h0(t� �)'0(y0(�)) _y0(�)d�= Z t�1 h0(t� �)'0(y0(�)) _y0(�)d�where we used that h0(t)! 0 as t!1. This 
on
ludes the proof. ut



6 Ulf T. J�onsson and Alexandre MegretskiTheorem 1. If the operator F 0z(z0; 0) in (7) has a bounded right inverse thenfor ea
h suÆ
iently small j�j there exists y� 2 C(1) and T� > 0 that satis-�es (5). The perturbed solution y(�) = y�, T (�) = T� are C1 fun
tions of� su
h that y(0) = y0 and T (0) = 1. The solution is unique modulo timetranslation of y�(t).Proof. We sket
h a proof. Let F̂ (x; �) = F (z0+G0x; �), where G0 is a boundedright inverse of F 0z(z0; 0). We have F̂ (0; 0) = 0 and F̂ 0x(0; 0) = I. By theimpli
it fun
tion theorem there exists a unique solution C1 fun
tion x� :=x(�) su
h that F̂ (x�; �) = 0 for all suÆ
iently small j�j. This implies thatz� = z0 + G0x� satis�es F (z�; �) = 0. The only nonuniqueness is due to the
hoi
e of G0 and it 
an be shown that this 
orresponds to a time translation.utWe will next show how to 
onstru
t a right inverse using the following lemma.Lemma 1. Let X be a normed ve
tor spa
e and 
onsider a bounded linearoperator F : X �R! X with blo
k de
ompositionF = �F1 f2 �where F1 = I � L, with L : X ! X being a 
ompa
t operator with a simpleeigenvalue at one and f2 62 ImF1 is a nonzero ve
tor. Then a right inverse
an be 
onstru
ted as F y = � Ig � (F1 + f2g)�1where g 2 X� is any ve
tor su
h that (F1 + f2g) : X ! X has a boundedinverse. In fa
t, any g 2 X� su
h that jg(e)j = j he; gi j > 0 for a unit lengthve
tor e 2 KerF1 
an be used.Proof. The �rst 
laim follows immediately sin
e�F1 f2 � � Ig � (F1 + f2g)�1 = (F1 + f2g)(F1 + f2g)�1 = I:Let g be de�ned as suggested in the se
ond 
laim and suppose there existsx 2 X su
h that (F1 + f2g)x = 0. If y 2 (ImF1)? is nonzero, thenh(F1 + f2g)x; yi = hf2; yi hx; gi = 0:Sin
e hf2; yi 6= 0 it follows that hx; gi = 0. Hen
e, x 2 KerF1 \Ker g = f0g.This shows that Ker (F1+f2g) = f0g. Sin
e L�f2g is a 
ompa
t operator andKer (I � L + f2g) = Ker (F1 + f2g) = f0g it follows that Im (F1 + f2g) = X(see e.g. Theorem 8.4-5 in [5℄). Hen
e, F1 + f2g : X ! X is a bije
tion andit follows from Bana
h's isomorphism theorem that (F1+f2g)�1 is a boundedoperator. utWe next use this lemma to 
onstru
t a right inverse for the nominal operator.



Lo
al Robustness of Hyperboli
 Limit Cy
les 7Theorem 2. Consider the operator F 0z(z0; 0) de�ned in (7) in the �nite di-mensional 
ase when h(t; 0) = CeAtB�(t), where �(t) is the unit step fun
tionand A 2 Rn�n. Let us de�neA
l(t) = A+B'0(y0(t))C; B
l(t) = B'0(y0(t))and let x0(t) be the 1-periodi
 solution of the nominal state spa
e representa-tion of (5) _x0(t) = Ax0(t) +B'(Cx0(t)):If n � 1 of the 
hara
teristi
 multipliers of A
l(t) are di�erent from 1 thenF 0z(z0; 0) has a bounded right inverse. One possible right inverseF 0z(z0; 0)y = � I +G1G2 � : C(1)! C(1)�Ris de�ned as(F 0z(z0; 0)y(w))(t) = (w(t) + Z 10 g1(t; �)w(�)d�; Z 10 g2(1; �)w(�)d�)where g1(t; �) = � (� (t)�
l(1; t) + C)�
l(t; �)B
l(�); t > �� (t)�
l(1; �)B
l(�); t < �g2(t; �) = k(I � �
l(1; 0)� kkT )�1�
l(t; �)B
l(�)and � (t) = C(�
l(t; 0) + _x0(t)k)(I � �
l(1; 0)� kkT )�1:Here �
l(t; 0) is the transition matrix 
orresponding to A
l and k = _x0(0)T .Proof. See Appendix 2. ut4 StabilityThe system in (1) is generally of unknown or in�nite dimension and the de�ni-tion of stability needs extra 
are. We de�ne lo
al stability in terms of the vari-ational system 
orresponding to the following non-steady-state version of (1)y(t) = f(t) + Z t0 h(t� �)'(y(�))d�; t � 0 (8)where the dependen
e on � is suppressed for notational 
onvenien
e. In (8),f(�) represents initial 
onditions and external disturban
es. The 
hoi
ef0(t) = Z 0�1 h(t� �)'(y0(�))d� (9)



8 Ulf T. J�onsson and Alexandre Megretskigives the T0-periodi
 solution y0(t), sin
e (8) has a unique solution for any lo-
ally integrable fun
tion f(�). A linearization of (8) along the nominal periodi
solution gives rise to the variational systemv = Lv + w (10)where we de�neL : L2[0;1)! L2[0;1) as v 7! Lv = H(s)'0(y0)v: (11)Note that we have de�ned the operator to a
t on L2[0;1) and not L1[0;1),whi
h would be more natural for the linearization. However, this will allow ansimple yet natural de�nition of stability in terms of the variational system (10)and the operator (11). Stability 
an also be de�ned in terms of the non-steadystate system (8). This requires a more elaborate analysis but 
an be done,see [3℄.The next proposition shows that the variational equation in (10) 
annotbe solved for arbitrary w 2 L2[0;1) unless y0 � 0. This follows be
ause theinput-output map w 7! v de�ned by (10) is unbounded on L2[0;1), sin
ethere is a �nite energy input whi
h maps to an in�nite energy output. For�nite dimensional systems this observation 
orresponds to the fa
t that theperiodi
 linear system obtained as a result of linearization around a limit 
y
lealways has a neutrally stable mode 
orresponding to a 
hara
teristi
 multiplierat unity.Proposition 2. If y0 6= 
onst is a T -periodi
 solution of (1) thenw(t) = Z 0�1 h(t� �)'0(y0(�)) _y0(�)d�produ
es a periodi
 solution v(t) = _y0(t) of the variational system (10).Proof. Let us di�erentiate y0(t). This gives_y0(t) = ddt Z t�1 h(t� �)'(y0(�))d� = h(0)'(y0(t)) + Z t�1 dh(t� �)'(y0(�))= h(0)'(y0(t)) + limT!�1 [�h(t� �)'(y0(�))℄tT+ Z t�1 h(t� �)'0(y0(�)) _y0(�)d�= Z t0 h(t� �)'0(y0(�)) _y0(�)d� + w(t)where we used that limT!�1 h(t � T )'(y0(T )) = 0 sin
e h is exponentiallystable and 
ontinuous. ut



Lo
al Robustness of Hyperboli
 Limit Cy
les 9In order to get around this problem we noti
e that the non-steady-statesystem, if stable, generally 
onverges to y0(t + d), where d 2 R is a nonzerophase lag. In fa
t, this is the reason for the neutrally stable mode of L, whi
himplies that the image of the return di�eren
e (I�L) has nonzero 
odimension.The lost term 
an be 
ompensated for by 
onsidering the system(I � L)v + ed = w (12)where e = (I � L)( _y0). Under Assumption 1 (ii) it 
an be shown thatL2�[0;1) 3 e 62 Im (I � L). The next step is to 
onsider (12) as a systemon the spa
e of exponentially 
onverging signals L2�[0;1). The neutral modeis now moved to the unstable and if the equation (12) 
an be proven to havean exponentially bounded solution for all exponentially bounded inputs thenthe limit 
y
le y0 is said to be exponentially stable. We also 
onsider the 
asewhen in addition to the neutral mode derived in Proposition 2 there are a�nite number of unstable solutions of (10). We state this as a de�nition.De�nition 1. If the system (12) has a unique solution (v; d) 2 L2�[0;1)�Rfor all w 2 L2�[0;1) then the limit 
y
le y0 is 
alled lo
ally exponentially sta-ble and � 
orresponds to the rate of exponential de
ay. Otherwise, if the sub-spa
e W � L2�[0;1) of 
odimension nu is the largest subspa
e su
h that (12)has a unique solution (v; d) 2 L2�[0;1) � R for all w 2 W , then the limit
y
le y0 is said to have nu unstable modes.This stability de�nition 
an be veri�ed by 
omputing the stability defe
t ofthe open loop operator L in (11). The stability defe
t is introdu
ed as anequivalent of the notion \number of unstable 
losed-loop poles", whi
h 
anbe applied to time-varying systems. In the following de�nition, an open loopplant is represented by a linear operator on some normed spa
e of signals.De�nition 2. Let L be a bounded linear operator on a Bana
h spa
e X, whi
his denoted L 2 L(X;X). The feedba
k system with open loop operator L is
alled non-singular if there exists " > 0 su
h thatk(I � L)uk � "kuk; 8u 2 X: (13)The stability defe
t def(L) of a non-singular system with the open loop oper-ator L is de�ned as the 
odimension of the subspa
eIm (I � L) = f(I � L)u : u 2 Xg � X:The stability defe
t, if well-de�ned on X = L2�, will be 
alled the �-defe
t ofL in (11), denoted def�(L).The stability defe
t 
orresponds to the number of unstable modes of (I �L)�1, i.e., the unstable 
losed loop poles, while 
ondition (13) means that I�Ldoes not have zeros on the stability boundary. The motivation for working onL2� is that the neutrally stable mode in Proposition 2 is moved from thestability boundary to an unstable mode.



10 Ulf T. J�onsson and Alexandre MegretskiAn important feature of the stability defe
t is the zero ex
lusion prin
iple,whi
h says that the stability defe
t def(L) remains 
onstant as L 
hanges
ontinuously and 
ondition (13) is satis�ed. This is a robustness 
ondition,whi
h is used in the proof of Theorem 5.Proposition 3 (Zero Ex
lusion Prin
iple). Let L = fL � L(X;X) : 9" >0 s:t: k(I � L)uk � "kuk; 8u 2 Xg. Then any 
onne
ted 
omponent L of L
ontaining an element with def(L) < 1 has 
onstant stability defe
t, i.e.,every eL 2 L has def(eL) = def(L).Proof. The non-singularity and the �nite 
odimension of the image impliesthat L is a Fredholm operator with index n = def(L). The proof follows sin
ethe set of Fredholm operators with 
onstant �nite index is open [4℄. A proof isgiven in Appendix 3. utTheorem 3. Suppose def�(L) = nu + 1 where L is de�ned in (11). Theny0 is a hyperboli
 solution with nu unstable modes and the subspa
e W inDe�nition 1 is W = R � PR?spanfeg, where e = (I � L) _y0, R = Im(I � L)and PR? is the orthogonal proje
tion onto R?.Proof. See Appendix 4. utThe next results shows that the stability defe
t is easy to 
ompute in the �nitedimensional 
ase.Theorem 4. Consider the operator L de�ned in (11) in the �nite dimen-sional 
ase when h(t) = CeAtB�(t), where �(�) is the unit step fun
tion andRe�(A) < ��. If the 
hara
teristi
 multipliers 
orresponding to A
l(t) =A+B'0(y0(t))C 
an be sorted asj�1j � j�2j � � � � � j�nu j > �nu+1 = 1 > j�nu+2j � � � � � j�njthen def�(L) = nu + 1 for � 2 (0;� log j�nu+2jT ).Proof. See Appendix 5. ut5 Main ResultBy using Theorem 1 { Theorem 4 we obtain the following result.Theorem 5. Suppose the system in (1) has a T0-periodi
 solution y0 when� = 0. Assume further that the nominal system is �nite dimensional withh(t) = CeAtB�(t), where �(�) is the unit step fun
tion and Re�(A) < ��. Ifthe 
hara
teristi
 multipliers 
orresponding to A
l(t) = A + B'0(y0(t))C 
anbe sorted asj�1j � j�2j � � � � � j�nu j > �nu+1 = 1 > j�nu+2j � � � � � j�njwhere �T < �log(�nu+2), then for all suÆ
iently small j�j there exists aunique (modulo time translation) hyperboli
 limit 
y
le solution with nu un-stable modes to equation (1).



Lo
al Robustness of Hyperboli
 Limit Cy
les 11Proof. First note that the 
hara
teristi
 multipliers do not 
hange if we nor-malize the nominal period time to T0 = 1. Existen
e of a solution in a neigh-borhood of � = 0 follows from Theorem 1 if F 0z(z0; 0) has a bounded rightinverse. From Theorem 2, we see that this is the 
ase sin
e n� 1 of the 
har-a
teristi
 multipliers are di�erent from 1.To prove the stability statement we 
onsider the operator L in (11), whi
hbe
omes (L(�)v)(t) = Z t0 T (�)h(T (�)(t� �); �)'0(y�(�))v(�)d�:It follows from Theorem 4 that L(0) has �-defe
t nu + 1. From Proposition 3we 
on
lude that the �-defe
t remains 
onstant for suÆ
iently small j�j sin
eL(�) depends 
ontinuously on �. Hen
e, def�(L(�)) = nu + 1 for suÆ
ientlysmall j�j, whi
h by Theorem 3 proves the statement on stability. utExample 2. Theorem 5 shows that the 
hara
teristi
 multipliers ofA
l(t) = A+B'0(y0(t))C = � 0 1�1 m(1� y0(t)2)�must be sorted as j�2j < �1 = 1 in order for the limit 
y
le of the Van der Polos
illator to be robustly stable. From Liouvilles formula we have�2 = det(�
l(1; 0)) = eR 10 tr(A
l(�))d� = eR 10 m(1�y0(�)2)d� :If, for example m = 0:2, then a numeri
al integration shows that �2 = 0:34and the Van der Pol system thus has a robustly stable limit 
y
le for thisvalue of m. This gives a new interpretation to the same 
ondition in [2℄.Appendix 1We have F 0T (z�; �) = � sT 2� H 0s(s=T�; �)'(y�)whi
h in time domain has the representation(F 0T (z�; �))(t) = Z t�1 h(T�(t� �); �))'(y�(�))d�+ Z t�1(t� �)T�dh(T�(t� �); �))'(y�(�)):This is a C(1) fun
tion by our assumptions on the transfer fun
tion H(s; �)and sin
e '(y�(�)) 2 C(1).After a partial integration of the se
ond term we get



12 Ulf T. J�onsson and Alexandre Megretski(F 0T (z�; �))(t) = Z t�1(t� �)h(T�(t� �); �)'0(y�(�)) _y�(�)d�= � Z t�1 h(T�(t� �))'0(y�(�))(� _y�(�))d�+th(0; �)'(y0(t)) + t Z t�1 T�dh(T�(t� �); �)'(y�(�))= 1T� �t _y�(t)� Z t�1 h(T�(t� �))'0(y�(�))(� _y�(�))d�� (14)where in the se
ond equality we made a partial integration and the last equal-ity follows be
ause_y�(t) = T�h(0; �)'(y�(t)) + Z t�1 T 2� dh(T�(t� �); �)'(y�(�)):A more 
on
ise formulation of (14) is 1T� (I � Lst(z�; �))(t _y�(t)) whi
h provesthe statement.Appendix 2The operator F 0z(z0; 0) : v 7! w has the following state spa
e realization3_x = Ax+B'0(y0)v + _x0ÆTw = v � Cxwhere _x0(t) = Ax0(t) + B'(y0(t)). In order to use Lemma 1 we identifyF1 : v 7! w1 and f2 : gv 7! w2 as operators with the state spa
e realizationsF1 : � _x1 = Ax1 +B'0(y0)vw1 = v � Cx1 f2 : � _x2 = Ax2 + _x0gvw2 = �Cx2:Let g : v 7! gv be de�ned by the state spa
e realization_x3(t) = Ax3(t) +B'0(y0(t))v(t) + _x0(t)kx3(0)gv = kx3(0):If x3(0) = x1(0) +x2(0) then F1 + f2g : v 7! w has the state spa
e realization_x3(t) = Ax3(t) +B'0(y0(t))v(t) + _x0(t)kx3(0)w(t) = v(t)� Cx3(t):The inverse of F1+f2g 
an be derived by using v = w+Cx3 in this equation.This gives the right inverse F 0z(z0; 0)y : w 7! (v; ÆT )3All state equations in this se
tion has a periodi
ity 
onstraint of the form x(1) =x(0) on the state ve
tor. This is not written out expli
itly.



Lo
al Robustness of Hyperboli
 Limit Cy
les 13_x3(t) = (A+B'0(y0(t))C)x3(t) +B'0(y0(t))w(t) + _x0(t)kx3(0) (15a)(v(t); ÆT ) = (w(t) + Cx3(t); kx3(0)): (15b)In order for (15) to be well de�ned and bounded on C(1) it is ne
essary andsuÆ
ient that the following equation has a solution for all w 2 C(1)x3(0) = (�
l(1; 0) + _x0(0)k)x3(0) + Z 10 �
l(1; �)B'0(y0(�); 0)w(�)d�where we used that R 10 �
l(1; �) _x0(�)d�kx3(0) = _x0(0)kx3(0). Sin
e we havespanf _x0(0)g = Ker (I � �
l(1; 0)) it follows that there exists a ve
tor k su
hthat I � �
l(1; 0) � _x0(0)k is invertible. Indeed, one possible 
hoi
e is k =_x0(0)T . System (15) has the equivalent 
onvolution form given in the theoremstatement.Appendix 3The set L is open and by assumption 
onne
ted. We will prove that the set ofoperators with 
onstant (�nite) stability defe
t is open. This proves the 
laimof the proposition sin
e 
onne
tedness of L otherwise would be 
ontradi
ted.Consider an operator L with def(L) < 1. Sin
e L is non-singular, weknow that there exists " > 0 su
h that k(I � L)uk � "kuk for all u 2 X .Hen
e, it follows that H = I � L has KerH = 0 and 
odim ImH = def(L).This means that H is a Fredholm operator with indexIndH := dimKerH � 
odim ImH = �def(L):Sin
e the 
odimension of XL = ImH is �nite it follows that there is a dire
tsum de
omposition X = XL �XCwhere dimXC = def(L). Now let �L be any perturbation of L with k�Lk <"=2 and 
onsider the maps bH : X ! X=XC and d�L : X ! X=XC indu
edby H and �L. Here X=XC denotes the quotient spa
e and bH = q ÆH , whereq : X ! X=XC is the quotient map. Then kd�Lk < "=2 and bH has a boundedinverse by Bana
h's isomorphism theorem with norm bound kĤ�1k � 1=".We have bH �d�L = bH(I � bH�1d�L);from whi
h it follows that Ĥ �d�L has a bounded inverse sin
e k bH�1d�Lk �k bH�1k � kd�Lk < 1=2. Hen
e, Ind( bH �d�L) = 0, whi
h gives the relationInd( bH �d�L) = dimXC + Ind(H ��L) = 0 (16)sin
e the quotient map q : X ! X=XC has index dimXC and the index of the
omposite map bH�d�L = q Æ (H��L) is additive. Furthermore, invertibility



14 Ulf T. J�onsson and Alexandre Megretskiof bH�d�L implies that L+�L is nonsingular and thus Ker (I�L��L) = 0.Hen
e, from (16) we get
odim Im (I�L��L) = dimXC+dimKer (I�L��L) = dimXC = def(L)whi
h shows that def(L+�L) = def(L) for all k�Lk < "=2.Appendix 4Let R = Im (I � L). We will prove that(I � L)v + de = w; e = (I � L)( _y0)has a unique solution (v; d) 2 L2�[0;1) if and only if w 2 W = R �PR?spanfeg. Here PR? = I � PR, where PR is the orthogonal proje
tiononto R = Im (I � L) � L2�[0;1). The assumptions on H in Assumption 1
an be used to prove that e 2 L2�[0;1), see [3℄. This implies that R � W isa stri
t in
lusion sin
e e 62 R, i.e. PR?e 6= 0. We have(I � PR)((I � L)v + de) = d(I � PR)e = (I � PR)wwhi
h gives d = (I � PR)w=((I � PR)e) and the norm bound jdj � 
1kwk�,where 
1 = 1=k(I�PR)e)k�. Using this d it follows that (I�L)v = w�de hasa unique solution in L2�[0;1) if and only if w 2 W be
ause then w�de 2 R.Sin
e L is nonsingular (see de�nition of stability defe
t) there exists �
2 su
hthat kvk� � �
2kw � dek� � �
2(1 + 
1kek�)kwk�and hen
e for ea
h w 2 W we have found a unique solution satisfying thenorm bound kvk2�+ jdj2 � 
kwk2�, where 
2 = 
21+ 
22 and 
2 = �
2(1+ 
1kek�).Appendix 5For 
onvenien
e we transform L to an equivalent operator L� de�ned onL2[0;1) as L� = e�Le�1� where e� is de�ned by multipli
ation in the timedomain with e�t. It 
an be shown that def(L�) = def�(L), see [3℄. We willshow(i) Ker (I � L�) = 0(ii)
odim Im (I � L�) = nu+1Condition (i) and (ii) shows that L� is a Fredholm operator with index nu+1.From Bana
h's isomorphism theorem it follows that I�L� is nonsingular. Thisproves the theorem.To prove (i) we assume there exists nonzero v 2 L2 su
h that (I�L�)v = 0.In state spa
e domain this means that



Lo
al Robustness of Hyperboli
 Limit Cy
les 15_x = (A + �I)x+B'0(y0)v; x(0) = 00 = v � Cxwhi
h implies that v = Cx and _x = (A + �I + B'0(y0)C)x; x(0) = 0. This
ontradi
ts the assumption that v is nonzero. Hen
e, Ker (I � L�) = 0.To prove (ii) we use (Im (I � L�))? = Ker (I � L�)�. One possible statespa
e representation of the adjoint system v 7! w = (I � L��)v is_x = �(A+ �I)Tx+ CT v; x(1) = 0w = v + '0(y0)TBTx:Any v 2 Ker (I � L��) must satisfy v = �'0(y0)TBTx where_x = �(A+ �+B'0(y0)C)Tx; x(1) = 0: (17)A result by Lyapunov shows that there exists a time-periodi
 
oordinate trans-formation that turns system (17) into a linear system with 
onstant 
oeÆ-
ients [2℄. It is no restri
tion to assume the new 
oordinates are 
hosen su
hthat � _z1_z2 � = �A1 00 A2 � � z1z2 � ; � z1(1)z2(1)� = 0where A1 2 C(nu+1)�(nu+1) is stable and A2 is unstable with jeig(eA2T )j �je��T =�nu+2 j > 1. If the 
oordinates are related asx(t) = �P1(t) P2(t) � � z1(t)z2(t)�where P (t) = �P1(t) P2(t) � is invertible and T periodi
, then we see thatKer (I � L�)� = �v(t) = �'0(y0(t))TBTP1(t)eA1tz1(0) : z1(0) 2 Rnu+1	 :This is an nu + 1 dimensional spa
e.A
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