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Summary. Local robustness of limit cycles are investigated for systems that can
be modeled as a feedback interconnection of an exponentially stable linear system
with a nonlinear function. Conditions are given under which the limit cycle and the
number of unstable modes persist for sufficiently small dynamic perturbations.

1 Introduction

Stability and robustness of limit cycle oscillations are properties of fundamen-
tal importance in many applications in electronics, mechanics, biology, and
physics. Limit cycle oscillation is crucial in control applications such as bio-
logical locomotion [6], rhythmic mechanical motion [7] and auto-tuning [1].
Tools for rigorous analysis of stability and robustness of limit cycle oscilla-
tions is important in the design and verification of such systems. The classical
literature provides several useful results but few, if any of them, extends di-
rectly to system descriptions that are subject to various forms of unmodelled
dynamics. One problem is that the classic results were derived in a state space
formalism which does not extend easily to systems with unknown possible in-
finite dimension. Another problem is that the introduction of uncertainty in
the system dynamics perturbs both the period time and the orbit of the limit
cycle which is in stark contrast to the traditional problems in robust control
where the equilibrium solution remains fixed when the system is perturbed.
This makes robust stability analysis of limit cycles a challenging problem.

In this paper we briefly review and extend some of the results in [3]. There
we proved that the well-known condition on the characteristic multipliers for
robustness of finite dimensional systems extends to a class of systems with
dynamic uncertainties. We also showed how bounds on a robustness margin
can be estimated. Here we extend the local result to hold also in the case when
the limit cycle is hyperbolic. In particular, we derive conditions under which
the limit cycle and the number of unstable modes persist for sufficiently small
dynamic perturbations.
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Notation

We will let C(1) denote the set of continuous one periodic functions equipped
with the norm [|v]|c(1) = supejo 17 [v(#)|. The exponentially weighted Ly space
L2a[0,00) = {e(t) : [ e**t|e(t)[*dt < oo} will be used to define and prove ex-
ponential stability. The norm on the usual L2 [0, 00) space is denoted || -|| while
the norm on L1, [0, 00) is denoted and defined as [|v][o = ([~ €2 [v(t)[*dt)!/>.

The spatial norm will always be the Euclidean norm |v| = (3.1, v?)/2. At

several places we consider the space C'(1) x R with the norm ||(v, T") ||C(]) <R =
(loll3a) + |T'[>)'/2. If X denotes a normed vector space then its dual X * is the
Banach space of all bounded linear functionals on X. If g € X* and z € X,
then we use the notation g(x) = (z, g) for the functional.

We use that the characteristic multipliers of a periodic matrix A(t) =
A(t + Tp) are the eigenvalues of the monodromy matrix #(Tp,0), where

L ot,0) = A(t)a(t, 0)

L =1
y (0,0)

3

2 Model Assumptions

We consider systems consisting of a feedback interconnection of an exponen-
tially stable linear time-invariant (LTI) plant and a memoryless nonlinearity

y(t)z/ Wt — . 0)p(y(r))dr, V. (1)

J —oo

This system equation is suitable for representing stationary solutions such as
equilibrium solutions or stationary periodic solutions. The parameter 6 is a
scaling of the size of the uncertainty in the system and we assume it belongs
to an open interval Iy, which contains 0.

We next summarize the assumptions on (1).

Assumption 1 For the system in (1) we assume

(i) The nonlinearity o(-) is C* (continuously differentiable).

(i1) For some exponential decay rate o > 0 and all 8 € Iy (an open in-
terval containing 6 = 0) we have e®'h(t,0) € Li[0,00) and furthemore
that h(t,0) is C1 with respect to 0 and has time differential dh(t,0) =

he(t,0)dt + > oo o hi(0)8(t — t)dt, where 5(-) denotes the dirac implulse,
e*h, € I;]0,00), Yore e by < oo, to = 0 and t;, > 0. Under these
assumptions the Laplace transforms H(s,0) and sH(s,0) are (i) analytic
in Res > —a, (ii) continuous on —a+iR, and (iii) bounded such that for
Re s > —a we have max(|sH (s, )|, |H(s,0)|) < b for some number b.

(#4i)The system is called nominal when 8 = 0 and our assumption is that
the nominal system has a Ty-periodic solution yo. The periodic solution is
called a limit cycle when it is isolated.
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We will derive conditions under which there remains a limit cycle when 6 is
perturbed from zero. Conditions for stability of the limit cycle are also derived.
A more concise operator notation for (1) is

y = H(s, 0)0(y)- (2)

The uncertain dynamics is often represented as a linear fractional transfor-
mation (LFT) (see Figure (1))

H(870) = H]](S) + eH]zA(S)(I — QHQQ(S)A(S))ilHQ] (S) (3)

Here we normally assume that the nominal dynamics H(s) is a finite dimen-
sional transfer function with all poles in Res < —«a and with H;; and either
Hyy or Hyy strictly proper. If A(s) is a transfer function with impulse response
function satisfying

Alt) = Ac(t) + 352 Ard(t — ty) (4a)
e Ac(t) € Li[0o0), to=1, t; >0, > 2l Ayl <oo  (4b)

then Assumption 1 holds for Iy = (=8, 8) if the small gain condition 8] A(s —
a)|la., - ||Haa2(s — a)||lu., <1 is satisfied.

Fig. 1. Block diagram corresponding to the perturbed system in (2)-(3).

Ezample 1. Consider Van der Pol’s equation with a dynamic uncertainty
i(t) + m(u(t)? — Da(t) + u(t) = (Au)(t)

where A(s) is a transfer function with impulse response satisfying (4). To
represent this system on the form (1) we introduce the new coordinates

= —u—m(u®/3 —u)

o = U

Differentiation gives
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#(t) = Aw(t) + Bo(y(t)) + 6B (Ay) (1)
y(t) = Ca(t)

where

S RN N v

and ¢(y) = —my3/3 + (2 + m)y. Now the system can be represented on the
LFT form in (2)-(3) with ¢(y) = —my*/3 + (2 + m)y and (where Cx = C)

Hon(s) Hra(s)] |-t 22
H(s) = |:H21(S) H22(s) = g’ g 8
A

We will next discuss a condition from [3] for the existence of a periodic solution
when 6 is sufficiently close to 0. Later we derive conditions for local stability
or more generally hyberbolicity of this limit cycle solution.

3 Existence of Solution

It is no restriction to assume that the period time Ty = 1 since we can always
re-scale the time axis by the transformation ¢/T, — ¢, which gives the nominal
dynamics

yo(t) = / Toh(To(t — 7),0)p(yo(7))dT, for ¢t € [0, 1].

— 0o

Hence, by redefining Toh(Tot,0) — h(t,0) we can assume Ty = 1. A general
periodic solution to (1) can thus be written

y(t) = [ Th(T(t—71),0)p(y(r))dr, fort € [0,1]. (5)

The advantage of this reformulation is that a periodic solution can be repre-
sented as a pair z = (y,T') € C(1) x R of a 1-periodic trajectory and a period
time. This will simplify our work considerably since the perturbation of the
period time and the orbit are separated. In this section, the assumption is thus
that (5) has a solution zy = (yg,1) when 6 = 0. We often use the following
concise notation for the system equation in (5)

y=H(s/T,0)e(y) (6)

where the nominal transfer function H (s,0) in this paper often is assumed to
have a finite dimensional state space realization.
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With Z = C(1) x R and Y = C(1) we define the operator
F:ZxIyg—-Y as (z,0)— F(z,0)=y—H(s/T,0)p(y)

for any z = (y,T) € Z. A solution to the equation F'(zy,6) = 0 corresponds to
a periodic solution zg = (yg,Ty) € C(1) x R of (5) or similarly a Ty-periodic
solution yu(t/Ty) of (1).

We will use an implicit function theorem to derive conditions for the exis-
tence of a solution of the perturbed system. The Frechét derivative of F' with
respect to the trajectory at a periodic solution zp = (yg,Tp) has the block
structure

F.(z,0) = [ F;(20,0) Fr(29,9)] (7a)
= [I = Lyi(20.8) 7;(I = Lt(20,6))(t40) ] (7b)
where
Lyt(29.8) = H(s/Ty,0) (ys)-

The notation Lg; is used to indicate that this operator has to do with the
stationary behavior of the system. The last component of the derivative follows
after some calculation which is left to Appendix 1. Note that the argument
typ of I — Lg;(zp,0) does not belong to C(1) while our claim is that the value
does. The claim follows from the proof in Appendix 1.

It is interesting to note that the variational system corresponding to the
nominal 1-periodic solution yo can be written (I — L% )v = 0, where L%, =
Lst(20,0). The next proposition shows that g is in the kernel of (I—LY9,), i.e. 1
is an eigenvalue of LY, with ¢y as the corresponding eigenfunction. This follows
since the periodic solution is unique only modulo arbitrary time translations.

Proposition 1. We have g € Ker (I — LY,), where L%, = Ly (20,0).
Proof. Let ho(t) = h(t,0). By definition,

m@%j[ ho(t — 7)p(yo(r))dr

for all t € R. Differentiation of this identity gives

ydﬂzhdwﬂmﬁﬁ+/1dmﬂffwwdﬂ)

= ho(0)p(yo(0) +_Tim _[~ho(t — )p(uo ()]

——00

" /, ho(t — 7)¢' (3o (7))o ()d7

/, ho(t — 7)¢' (yo (7))o (7)dr

where we used that ho(t) = 0 as t — oc. This concludes the proof. O
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Theorem 1. If the operator F](zo,0) in (7) has a bounded right inverse then
for each sufficiently small |0| there exists yo € C(1) and Ty > 0 that satis-
fies (5). The perturbed solution y(0) = yy, T(9) = Ty are C' functions of
0 such that y(0) = yo and T(0) = 1. The solution is unique modulo time
translation of yg(t).

Proof. We sketch a proof. Let 13’(7“ 0) = F(z0+Gox,0), where Gy is a bounded
right inverse of F!(z,0). We have F(0,0) = 0 and F'(0,0) = I. By the
implicit function theorem there exists a unique solution C' function zy =
2(0) such that F(zg,0) = 0 for all sufficiently small |0]. This implies that
z9 = zo + Goxg satisfies F(z9,0) = 0. The only nonuniqueness is due to the
choice of Gy and it can be shown that this corresponds to a time translation.
O

We will next show how to construct a right inverse using the following lemma.

Lemma 1. Let X be a normed vector space and consider a bounded linear
operator F' : X x R — X with block decomposition

F=[F f]

where Fi = 1 — L, with L : X — X being a compact operator with a simple
eigenvalue at one and fo & Im Fy is a nonzero vector. Then a right inverse
can be constructed as

= [1] (s )

where g € X* is any vector such that (Fy + fog) : X — X has a bounded
inverse. In fact, any g € X* such that |g(e)| = | (e, g)| > 0 for a unit length
vector e € Ker Fy can be used.

Proof. The first claim follows immediately since

[P f] {ﬂ (FL+ f29)"' = (Fi + f29)(FL + fag) ' = L.

Let g be defined as suggested in the second claim and suppose there exists
x € X such that (Fy + fog)r = 0. If y € (Im Fy)* is nonzero, then

(F1 + f29)7,y) = (f2,y) (z,9) = 0.

Since (f2,y) # 0 it follows that (z,g) = 0. Hence, z € Ker F; N Kerg = {0}.
This shows that Ker (Fy + fog) = {0}. Since L — fag is a compact operator and
Ker (I — L + fog) = Ker (Fy + fog) = {0} it follows that Im (Fy + fog) = X
(see e.g. Theorem 8.4-5 in [5]). Hence, Fy + fag : X — X is a bijection and
it follows from Banach’s isomorphism theorem that (Fy + fag) ™t
operator. O

1s a bounded

We next use this lemma to construct a right inverse for the nominal operator.
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Theorem 2. Consider the operator F!(zo,0) defined in (7) in the finite di-
mensional case when h(t,0) = Ce ' Bu(t), where v(t) is the unit step function
and A € R"™"™. Let us define

Au(t) = A+ By'(yo(1))C, B (t) = Bo'(yo(t))

and let xo(t) be the 1-periodic solution of the nominal state space representa-
tion of (5)
io(t) = Axo(t) + Bop(Cxo(t)).

If n — 1 of the characteristic multipliers of A, (t) are different from 1 then
F!(z0,0) has a bounded right inverse. One possible right inverse

I+ @G,

! T
FZ(Z(],O) - [ G2

} :C(1)->C(1)x R
is defined as

(F (20, 0) (w))(8) = (w () + / g1 (¢, yw(r)dr, / go(1, 7)o (r)dr)

where
()P (1,8) + O)Boy(t,7)Bu (1), t > T
gi(t,7) = {r(t)@,h,r) Ba(r), N er
go(t,7) = k(I — ®,(1,0) — kk") '@ (t,7) B (1)
and

I(t) = C(Da(t,0) + do(t)k) (I — Sa(1,0) — kk") ™!
Here ®.(t,0) is the transition matriz corresponding to A, and k = i¢(0)7.

Proof. See Appendiz 2. O

4 Stability

The system in (1) is generally of unknown or infinite dimension and the defini-
tion of stability needs extra care. We define local stability in terms of the vari-
ational system corresponding to the following non-steady-state version of (1)

u(t) = £(t) + / it — Dply(r)dr, £ >0 (®)

where the dependence on 6 is suppressed for notational convenience. In (8),
f () represents initial conditions and external disturbances. The choice

0

folt) = / Wt — ) (yo(r))dr (9)

—0oQ
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gives the Ty-periodic solution yq(¢), since (8) has a unique solution for any lo-
cally integrable function f(-). A linearization of (8) along the nominal periodic
solution gives rise to the variational system

v=Lv+w (10)
where we define
L : Ly[0,00) = Ly[0,00) as v+ Lv = H(s)p'(yo)v. (11)

Note that we have defined the operator to act on L2 [0, 00) and not L [0, 00),
which would be more natural for the linearization. However, this will allow an
simple yet natural definition of stability in terms of the variational system (10)
and the operator (11). Stability can also be defined in terms of the non-steady
state system (8). This requires a more elaborate analysis but can be done,
see [3].

The next proposition shows that the variational equation in (10) cannot
be solved for arbitrary w € Ly[0, 00) unless yo = 0. This follows because the
input-output map w — v defined by (10) is unbounded on L;[0, c0), since
there is a finite energy input which maps to an infinite energy output. For
finite dimensional systems this observation corresponds to the fact that the
periodic linear system obtained as a result of linearization around a limit cycle
always has a neutrally stable mode corresponding to a characteristic multiplier
at unity.

Proposition 2. If yg # const is a T-periodic solution of (1) then
0
w(t) = [ At~ 7)ol io(r)dr
produces a periodic solution v(t) = §o(t) of the variational system (10).
Proof. Let us differentiate yo(t). This gives
t

h(t = 7)e(yo(7))d7 = h(0)p(yo(t)) +/ dh(t —7)p(yo(7))

—0oQ

d t
it o
BO)p(yo(1) +  lim_[~h(t — )pluo(r))]

Yo(t)

+ / Bt — )¢ (go(r))go (r)dr

- / Bt — 1) (o ()0 (T)dr + w(?)

where we used that Uimrp_,_ o h(t — T)p(yo(T)) = 0 since h is exponentially
stable and continuous. O
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In order to get around this problem we notice that the non-steady-state
system, if stable, generally converges to yo(t + d), where d € R is a nonzero
phase lag. In fact, this is the reason for the neutrally stable mode of L, which
implies that the image of the return difference (I— L) has nonzero codimension.

The lost term can be compensated for by considering the system
(I-Lv+ed=w (12)

where e = (I — L)(g0). Under Assumption 1 (ii) it can be shown that
L24[0,00) 3 e € Im (I — L). The next step is to consider (12) as a system
on the space of exponentially converging signals L, [0, 00). The neutral mode
is now moved to the unstable and if the equation (12) can be proven to have
an exponentially bounded solution for all exponentially bounded inputs then
the limit cycle yq is said to be exponentially stable. We also consider the case
when in addition to the neutral mode derived in Proposition 2 there are a
finite number of unstable solutions of (10). We state this as a definition.

Definition 1. If the system (12) has a unique solution (v,d) € L24[0,00) X R
for allw € Ly,[0,00) then the limit cycle yo is called locally exponentially sta-
ble and a corresponds to the rate of exponential decay. Otherwise, if the sub-
space W C Ly, [0,00) of codimension n, is the largest subspace such that (12)
has a unique solution (v,d) € Lon[0,00) x R for all w € W, then the limit
cycle yo is said to have n, unstable modes.

This stability definition can be verified by computing the stability defect of
the open loop operator L in (11). The stability defect is introduced as an
equivalent of the notion “number of unstable closed-loop poles”, which can
be applied to time-varying systems. In the following definition, an open loop
plant is represented by a linear operator on some normed space of signals.

Definition 2. Let L be a bounded linear operator on a Banach space X , which
is denoted L € L(X,X). The feedback system with open loop operator L is
called non-singular if there exists € > 0 such that

I(I = L)ul| Z eflull, Vue X. (13)

The stability defect def(L) of a non-singular system with the open loop oper-
ator L is defined as the codimension of the subspace

Im(I-L)={(I-Lu:ue X} CX.

The stability defect, if well-defined on X = Ly, will be called the a-defect of
L in (11), denoted def,(L).

The stability defect corresponds to the number of unstable modes of (I —
L)', i.e., the unstable closed loop poles, while condition (13) means that I — L
does not have zeros on the stability boundary. The motivation for working on
Ly, is that the neutrally stable mode in Proposition 2 is moved from the
stability boundary to an unstable mode.
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An important feature of the stability defect is the zero exclusion principle,
which says that the stability defect def(L) remains constant as L changes
continuously and condition (13) is satisfied. This is a robustness condition,
which is used in the proof of Theorem 5.

Proposition 3 (Zero Exclusion Principle). Let £ = {L C L(X,X) : Je >
0 s.t. ||(I = L)u|| > ¢||u||, Yu € X}. Then any connected component L of £
containing an element with def(L) < oo has constant stability defect, i.e.,
every L € L has def(L) = def(L).

Proof. The non-singularity and the finite codimension of the image implies
that L is a Fredholm operator with index n = def(L). The proof follows since
the set of Fredholm operators with constant finite indez is open [4]. A proof is
given in Appendiz 3. O

Theorem 3. Suppose defy(L) = ny + 1 where L is defined in (11). Then
Yo 4s a hyperbolic solution with n, wunstable modes and the subspace W in
Definition 1 is W = R @ Pr.span{e}, where e = (I — L)yo, R = Im(I — L)
and Pg. is the orthogonal projection onto R*.

Proof. See Appendiz 4. O

The next results shows that the stability defect is easy to compute in the finite
dimensional case.

Theorem 4. Consider the operator L defined in (11) in the finite dimen-
sional case when h(t) = Ce*Bu(t), where v(-) is the unit step function and
ReA(A) < —a. If the characteristic multipliers corresponding to A.(t) =
A+ By (yo(t))C can be sorted as

Al > A2l > > An, | > Anygr = 1> [An, g2 200 > Ay

108 [An, 42
then defy (L) = ny + 1 for a € (0, — og | ot \)_
Proof. See Appendiz 5. 0O

5 Main Result

By using Theorem 1  Theorem 4 we obtain the following result.

Theorem 5. Suppose the system in (1) has a Ty-periodic solution yo when
0 = 0. Assume further that the nominal system is finite dimensional with
h(t) = CeA'Bu(t), where v(-) is the unit step function and ReA(A) < —a. If
the characteristic multipliers corresponding to A, (t) = A+ By (yo(t))C can
be sorted as

‘)\1| > |A2| > 2> |An“| > An“+1 =1> ‘)\n,,+2‘ > 2> ‘)\n‘

where oT < —log(An, +2), then for all sufficiently small |6| there ezists a
unique (modulo time translation) hyperbolic limit cycle solution with n, un-
stable modes to equation (1).
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Proof. First note that the characteristic multipliers do not change if we nor-
malize the nominal period time to Tog = 1. Existence of a solution in a neigh-
borhood of 6 = 0 follows from Theorem 1 if F.(z0,0) has a bounded right
inverse. From Theorem 2, we see that this is the case since n — 1 of the char-
acteristic multipliers are different from 1.

To prove the stability statement we consider the operator L in (11), which
becomes

(L(O)v) () = /0 TO)L(T(0)(t —7),0)¢" (yo(7))o()dr.

It follows from Theorem 4 that L(0) has a-defect n, + 1. From Proposition 3
we conclude that the a-defect remains constant for sufficiently small || since
L(8) depends continuously on 6. Hence, def,(L(0)) = n, + 1 for sufficiently
small 0], which by Theorem 3 proves the statement on stability. O

Ezample 2. Theorem 5 shows that the characteristic multipliers of

/ 0 1
Aa(t) = A+ Be'(oM)C = | _y 0 _ o))

must be sorted as |A\s| < Ay = 1 in order for the limit cycle of the Van der Pol
oscillator to be robustly stable. From Liouvilles formula we have

Ay = det (B (1,0)) = elo trAa(mdr — fg m(-yo()*)dr

If, for example m = 0.2, then a numerical integration shows that As = 0.34
and the Van der Pol system thus has a robustly stable limit cycle for this
value of m. This gives a new interpretation to the same condition in [2].

Appendix 1

We have

s

Fi(20.0) = — 2 HL(5/T.6) 0 (3)
7

which in time domain has the representation

t

(F(z9,0))(t) = / BTy (t — 7),6))p(ys (7)) dr

—0oQ

t
+ [ = nTdnme - 0).0)e(us ()
This is a C(1) function by our assumptions on the transfer function H(s,#)
and since p(yg (7)) € C(1).

After a partial integration of the second term we get
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(Fr(20,0))(t) = [ (t = T)(Ty(t = 7),0)¢" (Yo (7))go (T)dT

- / W(Ty(t — 7)) (ys (7)) (740 (7))d7

—OoQ

+th(0, 8)p (o (1)) + ¢ / Tydh(Ty(t - 7). 6)p(yo (7))

- (tl)a(t) -/ BT (= 1) () e <T>>dr) (14)

where in the second equality we made a partial integration and the last equal-
ity follows because

io(t) = Tyh(0, 8)p(ye (1)) + / T2Ah(Ty(t — 7),8)p(ys (7).

—o0
A more concise formulation of (14) is %}(I — Lgi(29,0))(tys(t)) which proves
the statement.

Appendix 2

The operator F!(zp,0) : v — w has the following state space realization?

& = Az + By (yo)v + 39T

w=uv-—Cx

where #¢(t) = Azo(t) + By(yo(t)). In order to use Lemma 1 we identify
F :v— wy and fy : gv — wo as operators with the state space realizations

I %1 = Az 4+ By'(yo)v £ To = Axo + Zogu
"' Ywy =v—Cny 2 Y wy = —Cxs.

Let g : v = gv be defined by the state space realization

b3(1) = As(t) + B (o (1))n(t) + do(t)kz3(0)
gv = kx3(0).

If £5(0) = 21(0) + 22(0) then Fy + fag : v — w has the state space realization

(1) = Az () + B (yo(£))o(t) + do(t) s (0)
w(t) = v(t) — Cxs(t).

The inverse of F} + fag can be derived by using v = w + Cz3 in this equation.
This gives the right inverse F!(z9,0)! : w = (v,d7T)

% All state equations in this section has a periodicity constraint of the form z(1) =
z(0) on the state vector. This is not written out explicitly.
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i3(t) = (A + By'(yo (1)) C)ws () + B (yo(t))w(t) + dio(t) ka3 (0) (15a)
(v(t),0T) = (w(t) + Cs(t), kxs(0))- (15b)

In order for (15) to be well defined and bounded on C(1) it is necessary and
sufficient that the following equation has a solution for all w € C(1)

2133(0) = (ch(lz 0) + j?() (O)k})él?g (0) + /0 ch(lz T)B(pl(yo (T), O)lU(T)dT

where we used that [0 (1, 7)Eo(1)dTk23(0) = 40(0)kz3(0). Since we have
span{io(0)} = Ker (I — &.(1,0)) it follows that there exists a vector k such
that I — &,(1,0) — 40(0)k is invertible. Indeed, one possible choice is k =
#0(0)”. System (15) has the equivalent convolution form given in the theorem
statement.

Appendix 3

The set L is open and by assumption connected. We will prove that the set of
operators with constant (finite) stability defect is open. This proves the claim
of the proposition since connectedness of L otherwise would be contradicted.

Consider an operator L with def(L) < oco. Since L is non-singular, we
know that there exists € > 0 such that ||(I — L)u|| > ¢||u|| for all v € X.
Hence, it follows that H = I — L has Ker H = 0 and codimImH = def(L).
This means that H is a Fredholm operator with index

IndH := dim Ker H — codim Im H = —def(L).

Since the codimension of X = Im H is finite it follows that there is a direct
sum decomposition
X =X, Xe

where dim X = def(L). Now let AL be any perturbation of L with ||AL|| <

£/2 and consider the maps H:X > X/X¢ and AL: X - X /X induced
by H and AL. Here X/X¢ denotes the quotient space and H= qo H, where
q: X — X/X¢ is the quotient map. Then ||ZE|| < g/2 and H has a bounded
inverse by Banach’s isomorphism theorem with norm bound ||[H'|| < 1/e.
We have

H—AL=H(I-H'AL),

from which it follows that H — AL has a bounded inverse since ||ITI’1Z\L|| <
||I§’1|| : ||ZI|| < 1/2. Hence, Ind(ﬁ - ZZ) = 0, which gives the relation

Ind(H — AL) = dim X¢ 4+ Ind(H — AL) = 0 (16)

since the quo‘rlen‘r map q : X — X/X¢ has index dim X and the index of the
composite map H- AL = go (H — AL) is additive. Furthermore, invertibility
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of H— AL implies that L+ AL is nonsingular and thus Ker (I — L — AL) = 0.
Hence, from (16) we get

codimIm (I — L — AL) = dim X¢ +dimKer (I — L — AL) = dim X¢ = def(L)

which shows that def(L + AL) = def(L) for all ||AL|| < €/2.

Appendix 4
Let R =Im (I — L). We will prove that
(I-Lyw+de=w, e=(I~-L)go)

has a unique solution (v,d) € Lg,[0,00) if and only if w € W = R@®
Pgrispan{e}. Here Pg. = I — Pg, where Pg is the orthogonal projection
onto R = Im (I — L) C Ly, [0,00). The assumptions on H in Assumption 1
can be used to prove that e € Ly, [0, 00), see [3]. This implies that R C W is
a strict inclusion since e € R, i.e. Prie # 0. We have

(I — Pr)((I — L)v +de) = d(I — Pr)e = (I — Pr)w

which gives d = (I — Pr)w/((I — Pg)e) and the norm bound |d| < ¢;||w]|a,
where ¢; = 1/||(I — Pr)e)||a. Using this d it follows that (I — L)v = w —de has
a unique solution in Ly, [0, 00) if and only if w € W because then w —de € R.
Since L is nonsingular (see definition of stability defect) there exists ¢ such
that

lolla < allw — della < ea(1 + erllella) ]l

and hence for each w € W we have found a unique solution satisfying the
norm bound ||v]|2 +|d|? < c||w||?, where ¢? = ¢ +¢3 and ca = (1 +c1]le]la)-

Appendix 5

For convenience we transform L to an equivalent operator L, defined on
L>[0,00) as L, = e,Le, ! where e, is defined by multiplication in the time
domain with e*. It can be shown that def(L,) = def, (L), see [3]. We will
show

(i) Ker (I — Ly) =0
(ii)codimIm (I — Ly) = ny41

Condition (i) and (i) shows that L, is a Fredholm operator with index n,, + 1.
From Banach’s isomorphism theorem it follows that I— L, is nonsingular. This
proves the theorem.

To prove (i) we assume there exists nonzero v € Ly such that (I—L,)v = 0.
In state space domain this means that
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= (A+al)z+ By (yo)v, £(0) =0
0=v-Cz

which implies that v = Cz and & = (A + ol + By¢'(yo)C)z, x(0) = 0. This
contradicts the assumption that v is nonzero. Hence, Ker (I — L,) = 0.

To prove (ii) we use (Im (I — L,))* = Ker (I — L,)*. One possible state
space representation of the adjoint system v — w = (I — L¥)v is

i=—(A+ aI)Ta: + CTo, z(00) =0
w=uv+¢ (y)" B"x.
TBT

Any v € Ker (I — L%) must satisfy v = —¢'(yo) x where

i=—(A+a+ By (y)C) Tz, x(c0)=0. (17)

A result by Lyapunov shows that there exists a time-periodic coordinate trans-
formation that turns system (17) into a linear system with constant coeffi-
cients [2]. It is no restriction to assume the new coordinates are chosen such

2.11 _ A1 0 Z1 21(00) -0

2.12 N 0 A2 zZ9 ’ ZQ(OO) N
where A; € C(rat1)x(mu+1) jg stable and A, is unstable with |eig(e?27)| >
le=®T /XA, ..| > 1. If the coordinates are related as

z(t) = [Pi(t) P2(t)] {Z(t)}

where P(t) = [Pi(t) P»(t)] is invertible and T periodic, then we see that
Ker (I = La)* = {u(t) = —¢'(40(t) "B P (t)e™21(0) : 21 (0) € R™ '}

This is an n, + 1 dimensional space.
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