
Loal Robustness of Hyperboli Limit CylesUlf T. J�onsson1 and Alexandre Megretski21 Optimization and Systems Theory, Royal Institute of Tehnology, 10044Stokholm, Sweden ulfj�math.kth.se2 Laboratory for Information and Deision Systems, Massahusetts Institute ofTehnology, Cambridge, MA 02139, USA ameg�mit.eduSummary. Loal robustness of limit yles are investigated for systems that anbe modeled as a feedbak interonnetion of an exponentially stable linear systemwith a nonlinear funtion. Conditions are given under whih the limit yle and thenumber of unstable modes persist for suÆiently small dynami perturbations.1 IntrodutionStability and robustness of limit yle osillations are properties of fundamen-tal importane in many appliations in eletronis, mehanis, biology, andphysis. Limit yle osillation is ruial in ontrol appliations suh as bio-logial loomotion [6℄, rhythmi mehanial motion [7℄ and auto-tuning [1℄.Tools for rigorous analysis of stability and robustness of limit yle osilla-tions is important in the design and veri�ation of suh systems. The lassialliterature provides several useful results but few, if any of them, extends di-retly to system desriptions that are subjet to various forms of unmodelleddynamis. One problem is that the lassi results were derived in a state spaeformalism whih does not extend easily to systems with unknown possible in-�nite dimension. Another problem is that the introdution of unertainty inthe system dynamis perturbs both the period time and the orbit of the limityle whih is in stark ontrast to the traditional problems in robust ontrolwhere the equilibrium solution remains �xed when the system is perturbed.This makes robust stability analysis of limit yles a hallenging problem.In this paper we briey review and extend some of the results in [3℄. Therewe proved that the well-known ondition on the harateristi multipliers forrobustness of �nite dimensional systems extends to a lass of systems withdynami unertainties. We also showed how bounds on a robustness marginan be estimated. Here we extend the loal result to hold also in the ase whenthe limit yle is hyperboli. In partiular, we derive onditions under whihthe limit yle and the number of unstable modes persist for suÆiently smalldynami perturbations.



2 Ulf T. J�onsson and Alexandre MegretskiNotationWe will let C(1) denote the set of ontinuous one periodi funtions equippedwith the norm kvkC(1) = supt2[0;1℄ jv(t)j. The exponentially weighted L2 spaeL2�[0;1) = fe(t) : R10 e2�tje(t)j2dt <1g will be used to de�ne and prove ex-ponential stability. The norm on the usual L2[0;1) spae is denoted k�k whilethe norm on L2�[0;1) is denoted and de�ned as kvk� = (R10 e2�tjv(t)j2dt)1=2.The spatial norm will always be the Eulidean norm jvj = (Pni=1 v2i )1=2. Atseveral plaes we onsider the spae C(1)�R with the norm k(v; T )kC(1)�R =(kvk2C(1)+ jT j2)1=2. If X denotes a normed vetor spae then its dual X� is theBanah spae of all bounded linear funtionals on X . If g 2 X� and x 2 X ,then we use the notation g(x) = hx; gi for the funtional.We use that the harateristi multipliers of a periodi matrix A(t) =A(t+ T0) are the eigenvalues of the monodromy matrix �(T0; 0), whereddt�(t; 0) = A(t)�(t; 0); �(0; 0) = I:2 Model AssumptionsWe onsider systems onsisting of a feedbak interonnetion of an exponen-tially stable linear time-invariant (LTI) plant and a memoryless nonlinearityy(t) = Z t�1 h(t� �; �)'(y(�))d�; 8t: (1)This system equation is suitable for representing stationary solutions suh asequilibrium solutions or stationary periodi solutions. The parameter � is asaling of the size of the unertainty in the system and we assume it belongsto an open interval I� , whih ontains 0.We next summarize the assumptions on (1).Assumption 1 For the system in (1) we assume(i) The nonlinearity '(�) is C1 (ontinuously di�erentiable).(ii)For some exponential deay rate � > 0 and all � 2 I� (an open in-terval ontaining � = 0) we have e�th(t; �) 2 L1[0;1) and furthemorethat h(t; �) is C1 with respet to � and has time di�erential dh(t; �) =_h(t; �)dt +P1k=0 hk(�)Æ(t � tk)dt, where Æ(�) denotes the dira implulse,e�t _h 2 L1[0;1), P1k=0 e�tk jhkj < 1, t0 = 0 and tk > 0. Under theseassumptions the Laplae transforms H(s; �) and sH(s; �) are (i) analytiin Re s > ��, (ii) ontinuous on ��+ iR, and (iii) bounded suh that forRe s � �� we have max(jsH(s; �)j; jH(s; �)j) � b for some number b.(iii)The system is alled nominal when � = 0 and our assumption is thatthe nominal system has a T0-periodi solution y0. The periodi solution isalled a limit yle when it is isolated.



Loal Robustness of Hyperboli Limit Cyles 3We will derive onditions under whih there remains a limit yle when � isperturbed from zero. Conditions for stability of the limit yle are also derived.A more onise operator notation for (1) isy = H(s; �)'(y): (2)The unertain dynamis is often represented as a linear frational transfor-mation (LFT) (see Figure (1))H(s; �) = H11(s) + �H12�(s)(I � �H22(s)�(s))�1H21(s): (3)Here we normally assume that the nominal dynamis H(s) is a �nite dimen-sional transfer funtion with all poles in Re s < �� and with H11 and eitherH12 orH21 stritly proper. If �(s) is a transfer funtion with impulse responsefuntion satisfying �(t) = �(t) +P1k=0�kÆ(t� tk) (4a)e�t�(t) 2 L1[01); t0 = 1; tk > 0; P1k=0 je�tk�kj <1 (4b)then Assumption 1 holds for I� = (��̂; �̂) if the small gain ondition �̂k�(s��)kH1 � kH22(s� �)kH1 < 1 is satis�ed.
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θ∆Fig. 1. Blok diagram orresponding to the perturbed system in (2)-(3).Example 1. Consider Van der Pol's equation with a dynami unertainty�u(t) +m(u(t)2 � 1) _u(t) + u(t) = �(�u)(t)where �(s) is a transfer funtion with impulse response satisfying (4). Torepresent this system on the form (1) we introdue the new oordinatesx1 = � _u�m(u3=3� u)x2 = uDi�erentiation gives



4 Ulf T. J�onsson and Alexandre Megretski_x(t) = Ax(t) +B'(y(t)) + �B�(�y)(t)y(t) = Cx(t)whereA = � 0 1�1 �2� ; B = �01� ; B� = ��10 � ; C = �0 1 �and '(y) = �my3=3 + (2 +m)y. Now the system an be represented on theLFT form in (2)-(3) with '(y) = �my3=3 + (2 +m)y and (where C� = C)H(s) = �H11(s) H12(s)H21(s) H22(s)� = 264 A B B�C 0 0C� 0 0 375 :We will next disuss a ondition from [3℄ for the existene of a periodi solutionwhen � is suÆiently lose to 0. Later we derive onditions for loal stabilityor more generally hyberboliity of this limit yle solution.3 Existene of SolutionIt is no restrition to assume that the period time T0 = 1 sine we an alwaysre-sale the time axis by the transformation t=T0 ! t, whih gives the nominaldynamisy0(t) = Z t�1 T0h(T0(t� �); 0)'(y0(�))d�; for t 2 [0; 1℄:Hene, by rede�ning T0h(T0t; 0) ! h(t; 0) we an assume T0 = 1. A generalperiodi solution to (1) an thus be writteny(t) = Z t�1 Th(T (t� �); �)'(y(�))d�; for t 2 [0; 1℄: (5)The advantage of this reformulation is that a periodi solution an be repre-sented as a pair z = (y; T ) 2 C(1)�R of a 1-periodi trajetory and a periodtime. This will simplify our work onsiderably sine the perturbation of theperiod time and the orbit are separated. In this setion, the assumption is thusthat (5) has a solution z0 = (y0; 1) when � = 0. We often use the followingonise notation for the system equation in (5)y = H(s=T; �)'(y) (6)where the nominal transfer funtion H(s; 0) in this paper often is assumed tohave a �nite dimensional state spae realization.



Loal Robustness of Hyperboli Limit Cyles 5With Z = C(1)�R and Y = C(1) we de�ne the operatorF : Z � I� ! Y as (z; �) 7! F (z; �) = y �H(s=T; �)'(y)for any z = (y; T ) 2 Z. A solution to the equation F (z�; �) = 0 orresponds toa periodi solution z� = (y�; T�) 2 C(1) �R of (5) or similarly a T�-periodisolution y�(t=T�) of (1).We will use an impliit funtion theorem to derive onditions for the exis-tene of a solution of the perturbed system. The Freh�et derivative of F withrespet to the trajetory at a periodi solution z� = (y�; T�) has the blokstruture F 0z(z�; �) = �F 0y(z�; �) F 0T (z�; �) � (7a)= � I � Lst(z�; �) 1T� (I � Lst(z�; �))(t _y�) � (7b)where Lst(z�; �) = H(s=T�; �)'0(y�):The notation Lst is used to indiate that this operator has to do with thestationary behavior of the system. The last omponent of the derivative followsafter some alulation whih is left to Appendix 1. Note that the argumentt _y� of I �Lst(z�; �) does not belong to C(1) while our laim is that the valuedoes. The laim follows from the proof in Appendix 1.It is interesting to note that the variational system orresponding to thenominal 1-periodi solution y0 an be written (I � L0st)v = 0, where L0st =Lst(z0; 0). The next proposition shows that _y0 is in the kernel of (I�L0st), i.e. 1is an eigenvalue of L0st with _y0 as the orresponding eigenfuntion. This followssine the periodi solution is unique only modulo arbitrary time translations.Proposition 1. We have _y0 2 Ker (I � L0st), where L0st = Lst(z0; 0).Proof. Let h0(t) = h(t; 0). By de�nition,y0(t) = Z t�1 h0(t� �)'(y0(�))d�for all t 2 R. Di�erentiation of this identity gives_y0(t) = h0(0)'(y0(t)) + Z t�1 dh0(t� �)'(y0(�))= h0(0)'(y0(t)) + limT!�1 [�h0(t� �)'(y0(�))℄tT+ Z t�1 h0(t� �)'0(y0(�)) _y0(�)d�= Z t�1 h0(t� �)'0(y0(�)) _y0(�)d�where we used that h0(t)! 0 as t!1. This onludes the proof. ut



6 Ulf T. J�onsson and Alexandre MegretskiTheorem 1. If the operator F 0z(z0; 0) in (7) has a bounded right inverse thenfor eah suÆiently small j�j there exists y� 2 C(1) and T� > 0 that satis-�es (5). The perturbed solution y(�) = y�, T (�) = T� are C1 funtions of� suh that y(0) = y0 and T (0) = 1. The solution is unique modulo timetranslation of y�(t).Proof. We sketh a proof. Let F̂ (x; �) = F (z0+G0x; �), where G0 is a boundedright inverse of F 0z(z0; 0). We have F̂ (0; 0) = 0 and F̂ 0x(0; 0) = I. By theimpliit funtion theorem there exists a unique solution C1 funtion x� :=x(�) suh that F̂ (x�; �) = 0 for all suÆiently small j�j. This implies thatz� = z0 + G0x� satis�es F (z�; �) = 0. The only nonuniqueness is due to thehoie of G0 and it an be shown that this orresponds to a time translation.utWe will next show how to onstrut a right inverse using the following lemma.Lemma 1. Let X be a normed vetor spae and onsider a bounded linearoperator F : X �R! X with blok deompositionF = �F1 f2 �where F1 = I � L, with L : X ! X being a ompat operator with a simpleeigenvalue at one and f2 62 ImF1 is a nonzero vetor. Then a right inversean be onstruted as F y = � Ig � (F1 + f2g)�1where g 2 X� is any vetor suh that (F1 + f2g) : X ! X has a boundedinverse. In fat, any g 2 X� suh that jg(e)j = j he; gi j > 0 for a unit lengthvetor e 2 KerF1 an be used.Proof. The �rst laim follows immediately sine�F1 f2 � � Ig � (F1 + f2g)�1 = (F1 + f2g)(F1 + f2g)�1 = I:Let g be de�ned as suggested in the seond laim and suppose there existsx 2 X suh that (F1 + f2g)x = 0. If y 2 (ImF1)? is nonzero, thenh(F1 + f2g)x; yi = hf2; yi hx; gi = 0:Sine hf2; yi 6= 0 it follows that hx; gi = 0. Hene, x 2 KerF1 \Ker g = f0g.This shows that Ker (F1+f2g) = f0g. Sine L�f2g is a ompat operator andKer (I � L + f2g) = Ker (F1 + f2g) = f0g it follows that Im (F1 + f2g) = X(see e.g. Theorem 8.4-5 in [5℄). Hene, F1 + f2g : X ! X is a bijetion andit follows from Banah's isomorphism theorem that (F1+f2g)�1 is a boundedoperator. utWe next use this lemma to onstrut a right inverse for the nominal operator.



Loal Robustness of Hyperboli Limit Cyles 7Theorem 2. Consider the operator F 0z(z0; 0) de�ned in (7) in the �nite di-mensional ase when h(t; 0) = CeAtB�(t), where �(t) is the unit step funtionand A 2 Rn�n. Let us de�neAl(t) = A+B'0(y0(t))C; Bl(t) = B'0(y0(t))and let x0(t) be the 1-periodi solution of the nominal state spae representa-tion of (5) _x0(t) = Ax0(t) +B'(Cx0(t)):If n � 1 of the harateristi multipliers of Al(t) are di�erent from 1 thenF 0z(z0; 0) has a bounded right inverse. One possible right inverseF 0z(z0; 0)y = � I +G1G2 � : C(1)! C(1)�Ris de�ned as(F 0z(z0; 0)y(w))(t) = (w(t) + Z 10 g1(t; �)w(�)d�; Z 10 g2(1; �)w(�)d�)where g1(t; �) = � (� (t)�l(1; t) + C)�l(t; �)Bl(�); t > �� (t)�l(1; �)Bl(�); t < �g2(t; �) = k(I � �l(1; 0)� kkT )�1�l(t; �)Bl(�)and � (t) = C(�l(t; 0) + _x0(t)k)(I � �l(1; 0)� kkT )�1:Here �l(t; 0) is the transition matrix orresponding to Al and k = _x0(0)T .Proof. See Appendix 2. ut4 StabilityThe system in (1) is generally of unknown or in�nite dimension and the de�ni-tion of stability needs extra are. We de�ne loal stability in terms of the vari-ational system orresponding to the following non-steady-state version of (1)y(t) = f(t) + Z t0 h(t� �)'(y(�))d�; t � 0 (8)where the dependene on � is suppressed for notational onveniene. In (8),f(�) represents initial onditions and external disturbanes. The hoief0(t) = Z 0�1 h(t� �)'(y0(�))d� (9)



8 Ulf T. J�onsson and Alexandre Megretskigives the T0-periodi solution y0(t), sine (8) has a unique solution for any lo-ally integrable funtion f(�). A linearization of (8) along the nominal periodisolution gives rise to the variational systemv = Lv + w (10)where we de�neL : L2[0;1)! L2[0;1) as v 7! Lv = H(s)'0(y0)v: (11)Note that we have de�ned the operator to at on L2[0;1) and not L1[0;1),whih would be more natural for the linearization. However, this will allow ansimple yet natural de�nition of stability in terms of the variational system (10)and the operator (11). Stability an also be de�ned in terms of the non-steadystate system (8). This requires a more elaborate analysis but an be done,see [3℄.The next proposition shows that the variational equation in (10) annotbe solved for arbitrary w 2 L2[0;1) unless y0 � 0. This follows beause theinput-output map w 7! v de�ned by (10) is unbounded on L2[0;1), sinethere is a �nite energy input whih maps to an in�nite energy output. For�nite dimensional systems this observation orresponds to the fat that theperiodi linear system obtained as a result of linearization around a limit ylealways has a neutrally stable mode orresponding to a harateristi multiplierat unity.Proposition 2. If y0 6= onst is a T -periodi solution of (1) thenw(t) = Z 0�1 h(t� �)'0(y0(�)) _y0(�)d�produes a periodi solution v(t) = _y0(t) of the variational system (10).Proof. Let us di�erentiate y0(t). This gives_y0(t) = ddt Z t�1 h(t� �)'(y0(�))d� = h(0)'(y0(t)) + Z t�1 dh(t� �)'(y0(�))= h(0)'(y0(t)) + limT!�1 [�h(t� �)'(y0(�))℄tT+ Z t�1 h(t� �)'0(y0(�)) _y0(�)d�= Z t0 h(t� �)'0(y0(�)) _y0(�)d� + w(t)where we used that limT!�1 h(t � T )'(y0(T )) = 0 sine h is exponentiallystable and ontinuous. ut



Loal Robustness of Hyperboli Limit Cyles 9In order to get around this problem we notie that the non-steady-statesystem, if stable, generally onverges to y0(t + d), where d 2 R is a nonzerophase lag. In fat, this is the reason for the neutrally stable mode of L, whihimplies that the image of the return di�erene (I�L) has nonzero odimension.The lost term an be ompensated for by onsidering the system(I � L)v + ed = w (12)where e = (I � L)( _y0). Under Assumption 1 (ii) it an be shown thatL2�[0;1) 3 e 62 Im (I � L). The next step is to onsider (12) as a systemon the spae of exponentially onverging signals L2�[0;1). The neutral modeis now moved to the unstable and if the equation (12) an be proven to havean exponentially bounded solution for all exponentially bounded inputs thenthe limit yle y0 is said to be exponentially stable. We also onsider the asewhen in addition to the neutral mode derived in Proposition 2 there are a�nite number of unstable solutions of (10). We state this as a de�nition.De�nition 1. If the system (12) has a unique solution (v; d) 2 L2�[0;1)�Rfor all w 2 L2�[0;1) then the limit yle y0 is alled loally exponentially sta-ble and � orresponds to the rate of exponential deay. Otherwise, if the sub-spae W � L2�[0;1) of odimension nu is the largest subspae suh that (12)has a unique solution (v; d) 2 L2�[0;1) � R for all w 2 W , then the limityle y0 is said to have nu unstable modes.This stability de�nition an be veri�ed by omputing the stability defet ofthe open loop operator L in (11). The stability defet is introdued as anequivalent of the notion \number of unstable losed-loop poles", whih anbe applied to time-varying systems. In the following de�nition, an open loopplant is represented by a linear operator on some normed spae of signals.De�nition 2. Let L be a bounded linear operator on a Banah spae X, whihis denoted L 2 L(X;X). The feedbak system with open loop operator L isalled non-singular if there exists " > 0 suh thatk(I � L)uk � "kuk; 8u 2 X: (13)The stability defet def(L) of a non-singular system with the open loop oper-ator L is de�ned as the odimension of the subspaeIm (I � L) = f(I � L)u : u 2 Xg � X:The stability defet, if well-de�ned on X = L2�, will be alled the �-defet ofL in (11), denoted def�(L).The stability defet orresponds to the number of unstable modes of (I �L)�1, i.e., the unstable losed loop poles, while ondition (13) means that I�Ldoes not have zeros on the stability boundary. The motivation for working onL2� is that the neutrally stable mode in Proposition 2 is moved from thestability boundary to an unstable mode.



10 Ulf T. J�onsson and Alexandre MegretskiAn important feature of the stability defet is the zero exlusion priniple,whih says that the stability defet def(L) remains onstant as L hangesontinuously and ondition (13) is satis�ed. This is a robustness ondition,whih is used in the proof of Theorem 5.Proposition 3 (Zero Exlusion Priniple). Let L = fL � L(X;X) : 9" >0 s:t: k(I � L)uk � "kuk; 8u 2 Xg. Then any onneted omponent L of Lontaining an element with def(L) < 1 has onstant stability defet, i.e.,every eL 2 L has def(eL) = def(L).Proof. The non-singularity and the �nite odimension of the image impliesthat L is a Fredholm operator with index n = def(L). The proof follows sinethe set of Fredholm operators with onstant �nite index is open [4℄. A proof isgiven in Appendix 3. utTheorem 3. Suppose def�(L) = nu + 1 where L is de�ned in (11). Theny0 is a hyperboli solution with nu unstable modes and the subspae W inDe�nition 1 is W = R � PR?spanfeg, where e = (I � L) _y0, R = Im(I � L)and PR? is the orthogonal projetion onto R?.Proof. See Appendix 4. utThe next results shows that the stability defet is easy to ompute in the �nitedimensional ase.Theorem 4. Consider the operator L de�ned in (11) in the �nite dimen-sional ase when h(t) = CeAtB�(t), where �(�) is the unit step funtion andRe�(A) < ��. If the harateristi multipliers orresponding to Al(t) =A+B'0(y0(t))C an be sorted asj�1j � j�2j � � � � � j�nu j > �nu+1 = 1 > j�nu+2j � � � � � j�njthen def�(L) = nu + 1 for � 2 (0;� log j�nu+2jT ).Proof. See Appendix 5. ut5 Main ResultBy using Theorem 1 { Theorem 4 we obtain the following result.Theorem 5. Suppose the system in (1) has a T0-periodi solution y0 when� = 0. Assume further that the nominal system is �nite dimensional withh(t) = CeAtB�(t), where �(�) is the unit step funtion and Re�(A) < ��. Ifthe harateristi multipliers orresponding to Al(t) = A + B'0(y0(t))C anbe sorted asj�1j � j�2j � � � � � j�nu j > �nu+1 = 1 > j�nu+2j � � � � � j�njwhere �T < �log(�nu+2), then for all suÆiently small j�j there exists aunique (modulo time translation) hyperboli limit yle solution with nu un-stable modes to equation (1).



Loal Robustness of Hyperboli Limit Cyles 11Proof. First note that the harateristi multipliers do not hange if we nor-malize the nominal period time to T0 = 1. Existene of a solution in a neigh-borhood of � = 0 follows from Theorem 1 if F 0z(z0; 0) has a bounded rightinverse. From Theorem 2, we see that this is the ase sine n� 1 of the har-ateristi multipliers are di�erent from 1.To prove the stability statement we onsider the operator L in (11), whihbeomes (L(�)v)(t) = Z t0 T (�)h(T (�)(t� �); �)'0(y�(�))v(�)d�:It follows from Theorem 4 that L(0) has �-defet nu + 1. From Proposition 3we onlude that the �-defet remains onstant for suÆiently small j�j sineL(�) depends ontinuously on �. Hene, def�(L(�)) = nu + 1 for suÆientlysmall j�j, whih by Theorem 3 proves the statement on stability. utExample 2. Theorem 5 shows that the harateristi multipliers ofAl(t) = A+B'0(y0(t))C = � 0 1�1 m(1� y0(t)2)�must be sorted as j�2j < �1 = 1 in order for the limit yle of the Van der Polosillator to be robustly stable. From Liouvilles formula we have�2 = det(�l(1; 0)) = eR 10 tr(Al(�))d� = eR 10 m(1�y0(�)2)d� :If, for example m = 0:2, then a numerial integration shows that �2 = 0:34and the Van der Pol system thus has a robustly stable limit yle for thisvalue of m. This gives a new interpretation to the same ondition in [2℄.Appendix 1We have F 0T (z�; �) = � sT 2� H 0s(s=T�; �)'(y�)whih in time domain has the representation(F 0T (z�; �))(t) = Z t�1 h(T�(t� �); �))'(y�(�))d�+ Z t�1(t� �)T�dh(T�(t� �); �))'(y�(�)):This is a C(1) funtion by our assumptions on the transfer funtion H(s; �)and sine '(y�(�)) 2 C(1).After a partial integration of the seond term we get



12 Ulf T. J�onsson and Alexandre Megretski(F 0T (z�; �))(t) = Z t�1(t� �)h(T�(t� �); �)'0(y�(�)) _y�(�)d�= � Z t�1 h(T�(t� �))'0(y�(�))(� _y�(�))d�+th(0; �)'(y0(t)) + t Z t�1 T�dh(T�(t� �); �)'(y�(�))= 1T� �t _y�(t)� Z t�1 h(T�(t� �))'0(y�(�))(� _y�(�))d�� (14)where in the seond equality we made a partial integration and the last equal-ity follows beause_y�(t) = T�h(0; �)'(y�(t)) + Z t�1 T 2� dh(T�(t� �); �)'(y�(�)):A more onise formulation of (14) is 1T� (I � Lst(z�; �))(t _y�(t)) whih provesthe statement.Appendix 2The operator F 0z(z0; 0) : v 7! w has the following state spae realization3_x = Ax+B'0(y0)v + _x0ÆTw = v � Cxwhere _x0(t) = Ax0(t) + B'(y0(t)). In order to use Lemma 1 we identifyF1 : v 7! w1 and f2 : gv 7! w2 as operators with the state spae realizationsF1 : � _x1 = Ax1 +B'0(y0)vw1 = v � Cx1 f2 : � _x2 = Ax2 + _x0gvw2 = �Cx2:Let g : v 7! gv be de�ned by the state spae realization_x3(t) = Ax3(t) +B'0(y0(t))v(t) + _x0(t)kx3(0)gv = kx3(0):If x3(0) = x1(0) +x2(0) then F1 + f2g : v 7! w has the state spae realization_x3(t) = Ax3(t) +B'0(y0(t))v(t) + _x0(t)kx3(0)w(t) = v(t)� Cx3(t):The inverse of F1+f2g an be derived by using v = w+Cx3 in this equation.This gives the right inverse F 0z(z0; 0)y : w 7! (v; ÆT )3All state equations in this setion has a periodiity onstraint of the form x(1) =x(0) on the state vetor. This is not written out expliitly.



Loal Robustness of Hyperboli Limit Cyles 13_x3(t) = (A+B'0(y0(t))C)x3(t) +B'0(y0(t))w(t) + _x0(t)kx3(0) (15a)(v(t); ÆT ) = (w(t) + Cx3(t); kx3(0)): (15b)In order for (15) to be well de�ned and bounded on C(1) it is neessary andsuÆient that the following equation has a solution for all w 2 C(1)x3(0) = (�l(1; 0) + _x0(0)k)x3(0) + Z 10 �l(1; �)B'0(y0(�); 0)w(�)d�where we used that R 10 �l(1; �) _x0(�)d�kx3(0) = _x0(0)kx3(0). Sine we havespanf _x0(0)g = Ker (I � �l(1; 0)) it follows that there exists a vetor k suhthat I � �l(1; 0) � _x0(0)k is invertible. Indeed, one possible hoie is k =_x0(0)T . System (15) has the equivalent onvolution form given in the theoremstatement.Appendix 3The set L is open and by assumption onneted. We will prove that the set ofoperators with onstant (�nite) stability defet is open. This proves the laimof the proposition sine onnetedness of L otherwise would be ontradited.Consider an operator L with def(L) < 1. Sine L is non-singular, weknow that there exists " > 0 suh that k(I � L)uk � "kuk for all u 2 X .Hene, it follows that H = I � L has KerH = 0 and odim ImH = def(L).This means that H is a Fredholm operator with indexIndH := dimKerH � odim ImH = �def(L):Sine the odimension of XL = ImH is �nite it follows that there is a diretsum deomposition X = XL �XCwhere dimXC = def(L). Now let �L be any perturbation of L with k�Lk <"=2 and onsider the maps bH : X ! X=XC and d�L : X ! X=XC induedby H and �L. Here X=XC denotes the quotient spae and bH = q ÆH , whereq : X ! X=XC is the quotient map. Then kd�Lk < "=2 and bH has a boundedinverse by Banah's isomorphism theorem with norm bound kĤ�1k � 1=".We have bH �d�L = bH(I � bH�1d�L);from whih it follows that Ĥ �d�L has a bounded inverse sine k bH�1d�Lk �k bH�1k � kd�Lk < 1=2. Hene, Ind( bH �d�L) = 0, whih gives the relationInd( bH �d�L) = dimXC + Ind(H ��L) = 0 (16)sine the quotient map q : X ! X=XC has index dimXC and the index of theomposite map bH�d�L = q Æ (H��L) is additive. Furthermore, invertibility



14 Ulf T. J�onsson and Alexandre Megretskiof bH�d�L implies that L+�L is nonsingular and thus Ker (I�L��L) = 0.Hene, from (16) we getodim Im (I�L��L) = dimXC+dimKer (I�L��L) = dimXC = def(L)whih shows that def(L+�L) = def(L) for all k�Lk < "=2.Appendix 4Let R = Im (I � L). We will prove that(I � L)v + de = w; e = (I � L)( _y0)has a unique solution (v; d) 2 L2�[0;1) if and only if w 2 W = R �PR?spanfeg. Here PR? = I � PR, where PR is the orthogonal projetiononto R = Im (I � L) � L2�[0;1). The assumptions on H in Assumption 1an be used to prove that e 2 L2�[0;1), see [3℄. This implies that R � W isa strit inlusion sine e 62 R, i.e. PR?e 6= 0. We have(I � PR)((I � L)v + de) = d(I � PR)e = (I � PR)wwhih gives d = (I � PR)w=((I � PR)e) and the norm bound jdj � 1kwk�,where 1 = 1=k(I�PR)e)k�. Using this d it follows that (I�L)v = w�de hasa unique solution in L2�[0;1) if and only if w 2 W beause then w�de 2 R.Sine L is nonsingular (see de�nition of stability defet) there exists �2 suhthat kvk� � �2kw � dek� � �2(1 + 1kek�)kwk�and hene for eah w 2 W we have found a unique solution satisfying thenorm bound kvk2�+ jdj2 � kwk2�, where 2 = 21+ 22 and 2 = �2(1+ 1kek�).Appendix 5For onveniene we transform L to an equivalent operator L� de�ned onL2[0;1) as L� = e�Le�1� where e� is de�ned by multipliation in the timedomain with e�t. It an be shown that def(L�) = def�(L), see [3℄. We willshow(i) Ker (I � L�) = 0(ii)odim Im (I � L�) = nu+1Condition (i) and (ii) shows that L� is a Fredholm operator with index nu+1.From Banah's isomorphism theorem it follows that I�L� is nonsingular. Thisproves the theorem.To prove (i) we assume there exists nonzero v 2 L2 suh that (I�L�)v = 0.In state spae domain this means that



Loal Robustness of Hyperboli Limit Cyles 15_x = (A + �I)x+B'0(y0)v; x(0) = 00 = v � Cxwhih implies that v = Cx and _x = (A + �I + B'0(y0)C)x; x(0) = 0. Thisontradits the assumption that v is nonzero. Hene, Ker (I � L�) = 0.To prove (ii) we use (Im (I � L�))? = Ker (I � L�)�. One possible statespae representation of the adjoint system v 7! w = (I � L��)v is_x = �(A+ �I)Tx+ CT v; x(1) = 0w = v + '0(y0)TBTx:Any v 2 Ker (I � L��) must satisfy v = �'0(y0)TBTx where_x = �(A+ �+B'0(y0)C)Tx; x(1) = 0: (17)A result by Lyapunov shows that there exists a time-periodi oordinate trans-formation that turns system (17) into a linear system with onstant oeÆ-ients [2℄. It is no restrition to assume the new oordinates are hosen suhthat � _z1_z2 � = �A1 00 A2 � � z1z2 � ; � z1(1)z2(1)� = 0where A1 2 C(nu+1)�(nu+1) is stable and A2 is unstable with jeig(eA2T )j �je��T =�nu+2 j > 1. If the oordinates are related asx(t) = �P1(t) P2(t) � � z1(t)z2(t)�where P (t) = �P1(t) P2(t) � is invertible and T periodi, then we see thatKer (I � L�)� = �v(t) = �'0(y0(t))TBTP1(t)eA1tz1(0) : z1(0) 2 Rnu+1	 :This is an nu + 1 dimensional spae.AknowledgementThis extension of the loal result in [3℄ to hyperboli limit yles was triggeredby omments from R. Brokett and C. I. Byrnes during the onferene NewDiretions in Control theory and Appliations. The authors were supportedby grants from Swedish Researh Counil, the NSF and the AFOSR.Referenes1. K. J. �Astr�om and T. H�agglund. Automati Tuning of PID Controllers. ResearhTriangle Park, N.C.: Instrument Soiety of Ameria, 1988.2. M. Farkas. Periodi Motions. Springer-Verlag, New York, 1994.
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