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Abstract

Conditions for robust stability of networks of identical coupled os-

cillators are derived. It is shown that local stability and robustness can

be verified using the characteristic multipliers of a variational system

obtained by linearizing along the synchronized network solution. The

computation of a robustness margin is considered using small gain

conditions. All analysis conditions decompose to lower dimensional

problems determined by the spectrum of the network interconnection

matrix and the dynamics of the individual oscillators. It is also dis-

cussed how the network topology can be analyzed and designed for

robustness and performance.

1 Introduction

The theory and application of oscillator networks have in recent years re-
ceived ample attention in applied mathematics, biology, and engineering.
We refer to the surveys in [5,12] and the recent contributions in [9,13,14,17].
Many of these works discuss stability and synchronization of the networks.
Robustness properties have not been discussed explicitly but they appear
implicitly in several works. Some examples are the conditions for the onset
of oscillation in [10,11] and the synchronization results in [7,8], which all are
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developed using dissipation theory. Robustness to the removal of nodes in
the network is discussed in e.g. [15].

In this paper we consider robust stability of networks of identical coupled
oscillators subject to dynamic uncertainty in the individual oscillators. We
assume that the coupling of the network is such that the limit cycle of a sin-
gle oscillator is embedded in the network solution. When this is the case the
network is said to be synchronized and all oscillators remain stable in their
nominal limit cycle. We provide conditions for the system to remain near
synchronized when the oscillators are perturbed and no longer identical. For
the robustness result we use a recent result in [4], which will be reviewed in
the next section. There it is proven that a well-known condition for robust-
ness of limit cycles in finite dimensional systems extends to a class of systems
with dynamic uncertainties. In this way a condition on the variational system
(obtained after linearization along the limit cycle) is used to verify that the
limit cycle persist and is stable for all sufficiently small dynamic perturba-
tions of the system. We consider symmetric networks where the robustness
condition decomposes to stability conditions on the characteristic multipliers
of a number of low dimensional systems, one for each spectral value of the
interconnection matrix. This is analogous to the results in [6, 18] with the
exception that we obtain a new robustness interpretation of this condition.

Bounds on a robustness margin can be estimated using a number of small
gain conditions developed in [4]. We apply this result to a symmetric in-
terconnection structure. Our analysis shows that the network cannot have
better robustness margin than an individual oscillator. This is expected, but
what is more interesting is that small gain analysis provides insight into how
the network topology should be designed to make the modes corresponding
to unsynchronized states as robust as possible with as fast rate of convergence
as possible.

We illustrate design of the network on the simpler problem of optimizing
the rate at which the network synchronizes. The dependence of the synchro-
nization rate on the network size is also discussed. We end the paper with
a discussion on robustness to perturbation of the network topology and its
dependence on the size of the network. A brief version of the paper appeared
in the IEEE conference [2]



Notation

We let L2(1) denote the space of square integrable 1-periodic functions and
C(1) is the set of continuous 1-periodic functions equipped with the norm
‖v‖C(1) = supt∈[0,1] |v(t)|, where | · | always denotes the Euclidean norm. We

let 1 =
[

1 . . . 1
]T

and ⊗ denotes the Kronecker product. The spatial

norm will always be the Euclidean norm |v| = (
∑n

i=1 v2
i )

1/2. We will almost
always denote norms and induced norms on L2(1) without the suffix, i.e.
‖ · ‖ := ‖ · ‖L2(1) and ‖ · ‖ := ‖ · ‖L2(1)→L2(1). At several places we consider
the space C(1) × R with the norm ‖(v, T )‖C(1)×R = (‖v‖2

C(1) + |T |2)1/2 and

similarly for L2(1) × R.

2 Robustness of Single Oscillators

We consider systems consisting of a feedback interconnection of an exponen-
tially stable linear time-invariant (LTI) plant and a memoryless nonlinearity

y(t) =

∫ t

−∞
h(t − τ, θ)ϕ(y(τ))dτ, ∀t (1)

This system equation is suitable for representing stationary solutions such as
equilibrium solutions or stationary periodic solutions. The parameter θ is a
scaling of the size of the uncertainty in the system.

We next summarize the assumptions on (1).

Assumption 1. For the system in (1) we assume

(i) The nonlinearity ϕ(·) is C1 (continuously differentiable).

(ii) For some exponential decay rate α > 0 and all θ ∈ Iθ (an open in-
terval containing θ = 0) we have eαth(t, θ) ∈ L1[0,∞) and further-
more that h(t, θ) is C1 with respect to θ and has time differential
dh(t, θ) = ḣc(t, θ)dt +

∑∞
k=0 hk(θ)δ(t − tk)dt, where δ(·) denotes the

Dirac impulse, eαtḣc ∈ L1[0,∞),
∑∞

k=0 eαtk |hk| < ∞, t0 = 0 and tk > 0.
Under these assumptions the Laplace transforms H(s, θ) and sH(s, θ)
are (i) analytic in Re s > −α, (ii) continuous on −α + iR, and (iii)
bounded such that for Re s ≥ −α we have max(|sH(s, θ)|, |H(s, θ)|) ≤ b
for some number b.
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Figure 1: Block diagram corresponding to the perturbed system in (2)-(3).

(iii) The system is called nominal when θ = 0 and our assumption is that
the nominal system has a T0-periodic solution y0. The periodic solution
is called a limit cycle when it is isolated.

In this section we discuss results from [3,4] that provide conditions under
which there remains a stable limit cycle when θ is perturbed from zero.

A more concise operator notation for (1) is

y = H(s, θ)ϕ(y) (2)

The uncertain dynamics is often represented as a linear fractional transfor-
mation (LFT) (see Figure (1))

H(s, θ) = H11(s) + H12∆(s, θ)(I − H22(s)∆(s, θ))−1H22(s) (3)

where we assume

1. ∆(s, 0) = 0 and ∆ is C1 as a function of θ

2. the nominal dynamics and ∆(s, θ) is such that the H(s, θ) is strictly
proper and exponentially stable for all θ ∈ Iθ = (−θ̂, θ̂)

This is often easy to verify using analysis techniques from robust control.

Example 1. Consider Van der Pol’s equation with a dynamic uncertainty

ÿ(t) + m(y(t)2 − 1)ẏ(t) + y(t) = (∆(s, θ)y)(t).



An interesting case is ∆(s, θ) = e−sθ − 1, which corresponds to a delay in the
system equation, i.e. ÿ(t) + m(y(t)2 − 1)ẏ(t) + y(t − θ) = 0.

To represent this system on the form (1) we introduce the new coordinates

x1 = −ẏ − m(y3/3 − y)

x2 = y

Now the system can be represented on the LFT form in (2)-(3) with ϕ(y) =
−my3/3 + (2 + m)y and

H(s) =









A B B∆

C 0 0

C∆ 0 0









=













0 1 0 −1

−1 −2 1 0

0 1 0 0

0 1 0 0













Local Results from [3,4]

We will next discuss a local robustness result in the case when the nominal
dynamics of (1) is finite dimensional, i.e. H(s, 0) = C(sI−A)−1B, where A is
Hurwitz. Although the nominal dynamics is finite dimensional the perturbed
system is generally of unknown or infinite dimension and the definition of
stability needs extra care. Local stability is defined in terms of the variational
system corresponding to the following non-steady-state version of (1)

y(t) = f(t) +

∫ t

0

h(t − τ)ϕ(y(τ))dτ, t ≥ 0 (4)

where the dependence on θ was suppressed for notational convenience. In (4),
f(·) represents initial conditions and external disturbances. The choice

f0(t) =

∫ 0

−∞
h(t − τ)ϕ(y0(τ))dτ (5)

gives the T -periodic solution y0(t). A linearization of (4) along the nominal
periodic solution gives rise to the variational system

v = Lv + w (6)



where L : L2[0,∞) → L2[0,∞) is defined as

v 7→ Lv = H(s)ϕ′(y0)v (7)

We here let the linearized dynamics operate on L2[0,∞). The variational
equation in (6) cannot be solved for arbitrary w ∈ L2 unless y0 ≡ 0. This
follows because it can be shown that the input-output map w 7→ v defined
by (6) is unbounded on L2, since the input

w(t) =

∫ 0

−∞
h(t − τ)ϕ′(y0(τ))ẏ0(τ)dτ

produces a periodic solution v(t) = ẏ0(t), i.e. this finite energy input maps
to an infinite energy output. For finite dimensional systems this observation
corresponds to the fact that the periodic linear system obtained as a result
of linearization around a limit cycle always has a neutrally stable mode cor-
responding to an eigenvalue at unity. In order to get around this problem
we notice that the non-steady-state system generally converges to y0(t + d),
where d ∈ R is a nonzero phase lag. In fact, this is the reason for the
neutrally stable mode of L, which in turn implies that the return difference
(I − L) has nonzero co-dimension. The lost term in the image space can be
compensated for by considering the system

(I − L)v + ed = w (8)

where e = (I − L)(ẏ0) 6= Im (I − L).
The next step is to consider (8) as a system on the space of exponentially

converging signals

L2α =

{

v ∈ L2[0,∞) :

∫ ∞

0

e2αt|v(t)|2dt < ∞
}

with norm ‖v‖2
α =

∫ ∞
0

e2αt|v(t)|2dt. The neutral mode is now moved to the
unstable and if the equation can be proven to have an exponentially bounded
solution for all exponentially bounded inputs then the limit cycle y0 is said
to be exponentially stable. We state this as a definition.

Definition 1. The limit cycle y0 is called locally exponentially stable if there
exists c > 0 such that for all w ∈ L2α[0,∞) there exists a unique solution
(v, d) ∈ L2α[0,∞) × R to (8), which is bounded as

‖v‖2
α + |d|2 ≤ c‖w‖2

α



To verify stability we need to compute the stability defect defined next.
in (7)

Definition 2. Let L : L2α[0,∞) → L2α[0,∞) be defined as in (7). The
feedback system in (8) with open loop operator L is called non-singular if
there exists ε > 0 such that

‖(I − L)v‖ ≥ ε‖v‖, ∀v ∈ L2α[0,∞) (9)

The stability defect defα(L) of a non-singular system with the open loop
operator L is defined as the co-dimension of the subspace

Im (I − L) = {(I − L)u : u ∈ L2α} ⊂ L2α.

The stability defect corresponds to the number of unstable modes of (I −
L)−1, i.e., the unstable closed loop poles, while condition (9) means that I−L
does not have zeros on the stability boundary. It can be verified that y0 is
exponentially stable if and only if defα(L) = 1. The motivation for working
on L2α is that the neutrally stable mode of L is moved to an unstable mode.
The non-singularity assumption implies, by the robustness of the Fredholm
index, that the stability properties are preserved under small perturbations
of the operator L.

The next result shows that the characteristic multipliers corresponding to
a nominal finite dimensional linearized dynamics determine conditions under
which the nominal limit cycle persists under small enough perturbations.
They also determine the stability defect of L and thus the number of unstable
modes. We use that the characteristic multipliers of a periodic matrix A(t) =
A(t + T0) are the eigenvalues of the monodromy matrix Φ(T0, 0), where

d

dt
Φ(t, 0) = A(t)Φ(t, 0), Φ(0, 0) = I

Theorem 1. [4] Suppose Assumption 1 holds and consider the case when
h(t, 0) = CeAtBν(t), where ν(·) is the unit step function. If the characteristic
multipliers corresponding to Acl(t) = A + Bϕ′(y0(t))C can be sorted as

1 = |ρ1| > |ρ2| ≥ · · · ≥ |ρn|

then there exists a unique (modulo time translation) exponentially stable
limit cycle solution to (1) for all sufficiently small θ. The perturbed solution
and its period time y(θ), T (θ) are C1 functions of θ such that y(0) = y0 and
T (0) = T0.



Robustness Margin

We will next consider the computation of bounds on the size of perturbation
the limit cycle of (1) can tolerate. The introduction of uncertainty in the
system dynamics perturb both the period time and the orbit of the limit
cycle which is in stark contrast to the traditional problems in robust control
where the equilibrium solution remains fixed when the system is perturbed,
see e.g. [19]. By rescaling the time axis and the system dynamics it is possible
to represent general Tθ-periodic solutions of (1) as

yθ = H(s/Tθ, θ)ϕ(yθ)

where yθ is a 1-periodic trajectory and Tθ is the period time. If we let
zθ = (yθ, Tθ) be a trajectory and period time pair for a periodic solution
of (1) then we can define robustness margin as follows.

Definition 3 (Robustness Margin). A bound θ̄ is a robustness margin for the
nominal solution y0 of (1) if for a given tolerance r0 > 0 there exists a unique
(modulo time translation) C1 mapping zθ : [−θ̄, θ̄] → Z, where zθ is an
exponentially stable solution of (1) for all θ ∈ [−θ̄, θ̄] ⊂ Iθ, and

Z = {(y, T ) ∈ C(1) × R : ‖y − y0‖2
C(1) + |T − 1|2 ≤ r2

0}
To obtain a robustness result we need to verify existence of a solution in

Z as well as stability. For the stability condition we use the notation

L(zθ, θ) = H(s/Tθ, θ)ϕ
′(yθ)

and L0 := L(z0, 0). Condition (i) in Theorem 2 below ensures defα(L0) = 1
while (ii) is a zero exclusion result showing that also defα(L(zθ, θ)) = 1,
∀zθ ∈ Z, θ ∈ [−θ̄, θ̄], which implies that all perturbed limit cycles are stable.
For existence we introduce the operators F : (C(1)×R)× Iθ 7→ C(1) defined
as

F (zθ, θ) = yθ − H(s/Tθ)ϕ(zθ)

By assumption F (z0, 0) = 0 and we want to verify that there exists zθ ∈ Z
such that F (zθ, θ) = 0 for all θ ∈ [−θ̄, θ̄]. An implicit function theorem is
used to do this. We let the Frechèt derivative

F ′
z(zθ, θ) =

[

F ′
y(zθ, θ) F ′

T (zθ, θ)
]

=

[

I − Lst(zθ, θ)
1

Tθ

(I − Lst(zθ, θ))(tẏθ)

]



where

Lst(zθ, θ) = H(s/Tθ, θ)ϕ
′(yθ)

act as an operator on L2(1). The distinction between L and Lst is that
the later has to do with the stationary behavior of the system while the
former has to do with the transient behavior of the system. Condition (i) in
Theorem 2 below ensures that the right inverse F ′

z(z0, 0)† is well defined and
bounded, which by an implicit theorem proves local existence. Condition
(iii) and (iv) are used to prove that there exists zθ ∈ Z for all θ ∈ [−θ̄, θ̄].

Theorem 2. [4] Suppose h(t, 0) = CeAtBν(t), where ν(·) is the unit step
function. If

(i) the characteristic multipliers of Acl(t) = A+Bϕ′(y0(t))C can be sorted
as

1 = ρ1 > |ρ2| ≥ |ρ3| ≥ . . . ≥ |ρn|

(ii) there exists 0 < ǫ < c such that

‖(I − L0)v‖α ≥ c‖v‖α, ∀v ∈ L2α

sup
z∈Z,|θ|≤θ̄

‖L(zθ, θ) − L0‖α ≤ c − ǫ

(iii) sup
z∈Z,|θ|≤θ̄

‖F ′
z(z, θ) − F ′

z(z0, 0)‖ · ‖F ′
z(z0, 0)†‖ < 1

(iv) for ∆(z, θ) = F ′
z(z, θ) − F ′

z(z0, 0) we have

sup
z∈Z,|θ|≤θ̄

‖F ′
z(z0, 0)†(I − ∆(z, θ)F ′

z(z0, 0)†)−1F ′
θ(z, θ)‖L2(1)→C(1)×R <

r0

θ̄

then θ is a robustness margin for the solution y0.

3 Network of Oscillators

Here we consider a network of coupled oscillators. Each individual oscillator
is assumed to have the dynamics

yk(t) =

∫ t

−∞
hk(t − τ, θ)ϕ(yk(τ), 0)dτ (10)



Each impulse response function hk corresponds to an uncertain strictly proper
and exponentially stable transfer function Hk(s, θ). We assume that the nom-
inal transfer functions are identical and satisfies Assumption 1. We further
assume that ‖Hk(s, θ) − Hk(s, 0)‖ ≤ γ|θ| for all k, i.e. the systems have the
same uncertainty bounds. The oscillators may not be identical when θ 6= 0,
they only have the same uncertainty bound.

A compact description of the system equation in (10) is yk = Hk(θ)ϕ(yk, 0).
The additional argument of the nonlinearity is used for interconnection of N
oscillators of the above form

yk = Hk(θ)ϕ(yk, ȳk)

ȳk =
∑

l 6=k

γk,l(yl − yk) (11)

If we let

y =













y1

y2

...

yN













, ȳ =













ȳ1

ȳ2

...

ȳN













, Φ(y, ȳ) =







ϕ(y1, ȳ1)
...

ϕ(yN , ȳN)







Γ =













−∑

l 6=1 γ1,l γ1,2 . . . γ1,N

γ2,1 −∑

l 6=2 γ2,l . . . γ2,N

...
...

. . .
...

γN,1 γN,2 . . . −∑

l 6=N γN,l













H(θ) = diag (H1(θ), . . . , HN(θ)),

then the system equation can be rewritten as

y = H(θ)Φ(y, Γy) (12)

We make the standing assumption that Γ is symmetric. The network is called
nominal when θ = 0 and we have assumed that each individual nominal
oscillator has a stable T0-periodic limit cycle y0. Since 0 ∈ eig(Γ) with
corresponding eigenvector 1, this implies that yk = y0, k = 1, . . . , N is a
solution of the nominal network. We say that the network synchronize if this
solution is stable.

The next proposition shows that if the individual oscillators are locally
robust and if the network design is appropriate then the network is robust



in the sense that a near synchronized solution remains after the individual
oscillators are perturbed by independent but sufficiently small dynamic per-
turbations.

Proposition 1. Suppose the nominal dynamics of each individual oscillator
in (11) is finite dimensional with Hk(s, 0) = C(sI − A)−1B, where A is
Hurwitz. Suppose all but one characteristic multiplier of

Ak(t) = A + B
(

ϕ′
y(y0(t), 0) + λkϕ

′
ȳ(y0(t), 0)

)

C, λk ∈ eig(Γ) (13)

are strictly inside the unit circle. Then the network in (11) is robust in
the sense that for all sufficiently small θ, there exists a locally exponentially
stable solution yk(θ), k = 1, . . . , N to the network. The perturbed solution
and its period time yk(θ), Tk(θ) are C1 functions of θ such that yk(0) = y0

and Tk(0) = T0.

Proof. The variational system corresponding to the nominal dynamics has
the system matrix

Acl(t) = I ⊗ (A + Bϕ′
y(y0(t), 0)C) + (I ⊗ Bϕ′

ȳ(y0(t), 0))(Γ ⊗ I)(I ⊗ C))

(14)

which can be simplified to

Acl(t) = I ⊗ (A + Bϕ′
y(y0(t), 0)C) + Γ ⊗ (Bϕ′

ȳ(y0(t), 0)C)

Then ˙̄x0(t) = 1 ⊗ ẋ0 is the eigenfunction corresponding to the simple char-
acteristic multiplier at 1. Further if vk is an eigenvector corresponding to
λk ∈ eig(Γ) and xk(t) is an eigenfunction corresponding to the characteris-
tic multiplier ρk of Ak(t), then vk ⊗ xk(t) is an eigenfunction corresponding
to the characteristic multiplier ρk of Acl(t). Hence, the result follows from
Theorem 1 in the previous section.

Example 2. Consider the case when

ÿk + m((yk + ȳk)
2 − 1)(ẏk + ˙̄yk) − 2 ˙̄yk + yk = θ∆kyk

where ȳk = −yk +
1

N

∑

l 6=k yl. Using the new states

x1,k = −ẏk − m((yk + ȳk)
3/3 − yk − ȳk) + 2ȳk

x2,k = yk



gives the system equation

ẋk = Axk + B1ϕ(yk, ȳk) + θB∆(∆yk)(t)

yk = Cxk

where ϕ(y, ȳ) = φ(y + ȳ) and φ(y) = −my3/3 + (2 + m)y, A,B1, B∆ and C
are defined as in Example 1. Proposition 1 shows all but one characteristic
multipliers of

Ak(t) = A + (1 + λk)Bϕ′(y0(t))C

must be strictly inside the unit disc in order for the Van der Pol oscillator
network to be robustly stable. We have 1 +λ1 = 1 and 1 +λk = −1/(N − 1)
for the remaining eigenvalues. If, for example m = 0.2, then Liouvilles
formula gives for k = 1 that the characteristic multipliers are 1 and ρ =

e
∫

1

0
tr(A1(τ))dτ = e

∫

1

0
m(1−y0(τ)2)dτ = 0.34. Numerical calculation shows that the

remaining characteristic multipliers are within the unit circle for all network
size, i.e., for all integers N . This shows that the Van der Pol oscillators in
an all-to-all coupling are robust.

Robustness Margin

We have the following basic property.

Proposition 2. The network in (11) cannot have better robustness margin
than the individual oscillators in (10).

Proof. See the appendix.

The intuition behind the proposition is that the system effectively is de-
coupled when it is synchronized and in this sense the network is no more
robust than the individual oscillator. Still the network structure affects the
robustness of the synchronization process. We will use Theorem 2 to derive
design rules for the coupling matrix. We consider the special case when the
network in (12) has the special form

y = H(θ)Φ(y + ȳ) (15)

where each individual oscillator has an additive uncertainty Hk(θ) = H0 +
θ∆k and nonlinearity ϕ(yk, ȳk) = ϕ(yk + ȳk), i.e., the nonlinearity has only



one input. Furthermore ȳk =
∑

l 6=k γk,l(yl − yk) with a coupling matrix Γ =

ΓT = [γk,l]
N
k,l=1 of the same structure as before. We assume without loss of

generality that the nominal limit cycle has period T0 = 1.
We consider the different conditions in Theorem 2.

(i) The condition on the characteristic multipliers is completely analogous to
Proposition 1.
(ii) For the robust stability condition we first consider the computation of
the index of non-singularity (c > 0) as

‖(I − L0)v‖α ≥ c‖v‖α, ∀v ∈ L2α[0,∞)

Using that L0 = (I + Γ) ⊗ H0ϕ
′(y0(t)) we will obtain a simple expression.

If we let vk be a unit length eigenvector corresponding to the eigenvalue
λk ∈ eig(Γ) then with v = vk ⊗ vi we get

‖(I − L0)v‖α = ‖vk ⊗ (I − (1 + λk)H0ϕ
′(y0(t)))vi‖α

= ‖(I − (1 + λk)H0ϕ
′(y0(t)))vi‖α

Since λ1 = 0 ∈ eig(Γ) we see that the index of non-singularity of the indi-
vidual oscillators cannot be improved. For the remaining modes we have the
following result

Lemma 1. Suppose for some ĉ we have

‖(I − (1 + λk)H0ϕ
′(y0(t)))vi‖α ≥ ĉ‖vi‖α, ∀vi ∈ L2α (16)

for each λk ∈ eig(Γ) \ {0}. Then for all v ⊥ S = {1⊗ vi : vi ∈ L2α[0,∞)} we
have

‖(I − L0)v‖α ≥ ĉ‖v‖α

Proof. Let Li = H0ϕ
′(y0(t)). By homogeneity it is no restriction to assume

v has unit length. Each unit length vector v ⊥ S can be represented as
v =

∑N
k=2 αkvk ⊗vi,k where vk ⊥ 1 is a unit length eigenvector corresponding

to λk ∈ eig(Γ) \ {0}, ∑N
k=2 α2

k = 1 and vi,k ∈ L2α[0,∞) has ‖vi,k‖α = 1. By



using that the eigenvectors vk are orthogonal we get

‖(I − L0)v‖2
α = ‖

N
∑

k=2

αkvk ⊗ (I − (1 + λk)Li)vi,k‖2
α

=
N

∑

k=2

α2
k‖vk ⊗ (I − (1 + λk)Li)vi,k‖2

α

≥ inf
λk ∈ eig(Γ) \ {0}

‖vi,k‖α = 1

‖(I − (1 + λk)Li)vi,k‖2
α

≥ ĉ2 = ĉ2‖v‖2
α

where we used that ‖vk ⊗ w‖α = ‖w‖α.

For the small gain criterion in (ii) of Theorem 2 we use

Lθ − L0 = (I + Γ)diag (∆L1(z1,θ, θ), . . . , ∆LN(zN,θ, θ)),

where

∆Lk(zk,θ, θ) = H0(s/Tk,θ)ϕ
′(yk,θ, θ) − H0(s)ϕ

′(y0) + ∆k(s/Tk,θ)ϕ
′(yk,θ)

It is easy to see in the case when all zk,θ = zθ and ∆k = ∆ are equal, then
v = 1√

N
1 ⊗ vi gives (∆L(zθ, θ) = ∆Lk(zθ, θ))

‖(Lθ − L0)v‖α = ‖ 1√
N

1 ⊗ ∆L(zθ, θ)vi‖α

= ‖∆L(zθ, θ)vi‖α

This shows that the small gain condition is no better than for the individual
oscillators. Moreover, if |I+Γ| ≤ 1, i.e. if the eigenvalues are −2 ≤ λ(Γ) ≤ 0,
then the worst case norm for the network is no worse than the worst case
norm for a single oscillator.

(iii) We first consider the computation of the induced norm of the right
inverse F ′

z(z0, 0)†. One possible realization of F ′
z(z0, 0)† : w 7→ (v, δT ) is

(see [4])

ẋ =(I ⊗ A + (I + Γ) ⊗ Bϕ′(y0)C)x + I ⊗ Bϕ′(y0)w + Kx(0), x(1) = x(0)
(17)

(v, δT ) =(w + ((I + Γ) ⊗ C)x,Kx(0))



where K = (1 ⊗ ẋ0(0))T . Any bound γ > ‖Fz(z0, 0)†‖ satisfies

|Kx(0)|2 +

∫ 1

0

(|w + ((I + Γ) ⊗ C)x|2 − γ2|w|2)dt ≤ 0 (18)

for all w ∈ L2(1) subject to the dynamics in (17). Let us consider the choice
w = vk ⊗ wi and x(0) = vk ⊗ xi(0), where vk is a unit length eigenvector
corresponding to the eigenvalue λk ∈ eig(Γ). Then (18) reduces to (Ki =
ẋT

0 (0))

|vk ⊗ Kixi(0)|2 +

∫ 1

0

(|vk ⊗ (wi + (1 + λk)Cxi)|2 − γ2|vk ⊗ wi|2)dt

= |Kixi(0)|2 +

∫ 1

0

(|wi + (1 + λk)Cxi|2 − γ2|wi|2)dt ≤ 0

for all wi ∈ L2(1) subject to

ẋi =(A + (1 + λk)Bϕ′(y0)C)xi + Bϕ′(y0)wi + Kixi(0), xi(1) = xi(0) (19)

In particular, the case (vk, λk) = (1, 0) shows that the optimization problem
for an individual oscillator is recovered and thus the same norm bound is
achieved. The network should be designed to obtain as good bounds as
possible for the remaining eigenmodes of the coupling matrix. For this we
use the following lemma

Lemma 2. Suppose that for some γ̂ and for all λk ∈ eig(Γ) \ {0}

|Kixi(0)|2 +

∫ 1

0

(|wi + (1 + λk)Cxi|2 − γ̂2|wi|2)dt ≤ 0 (20)

for any solution of (19). Then condition (18) is satisfied with γ = γ̂ for all
w ⊥ S = {1 ⊗ wi : wi ∈ L2(1)}.

Proof. By homogeneity it is no restriction to assume w has unit length. A
unit length vector w ⊥ S can be decomposed as w =

∑N
k=2 αkvk ⊗ wi,k

where vk ⊥ 1 is a unit length eigenvector corresponding to λk ∈ eig(Γ) \ {0},
wi,k ∈ L2(1) with ‖wi,k‖ = 1, and

∑N
k=2 α2

k = 1. This input can be written

w =
∑N

k=2 αkwk where wk = vk ⊗ wi,k and it results in a state vector x =
∑N

k=2 αkvk ⊗ xi,k, where xi,k satisfies (19) with λk and input wi,k (note we



have a unique solution of (19) due to the condition on the characteristic
multipliers (i)). If we define

J(w) = |Kx(0)|2 +

∫ 1

0

|w + ((I + Γ) ⊗ C)x|2dt

then

J(w) = J(
N

∑

k=2

αkwk) =
N

∑

k=2

α2
kJ(wk)

≤ sup
λk ∈ eig(Γ) \ {0}

‖wi,k‖ = 1

J(wk) ≤ γ̂2 = γ̂2‖w‖2

This proves the lemma.

For the small gain condition (ii) in Theorem 2 we need the worst case
norm sup

z∈Z,|θ|≤θ̄

‖F ′
z(z, θ) − F ′

z(z0, 0)‖. It is not hard to see that the bound for

the network is no worse than for the individual oscillator if −2 ≤ eig(Γ) ≤ 0.
This same statement also holds for condition (iv) in Theorem 2.

To summarize the discussion we have seen that the worst case robustness
of a symmetric oscillator network can be no better than the worst case ro-
bustness of the individual oscillators. The network design problem is to make
the modes corresponding to unsynchronized states as robust as possible with
as fast rate of convergence as possible. We separate the design procedure
into two steps

1. For desired ĉ and γ̂ find a set Λ such that (16), (20) and the condition
on the characteristic multipliers (i) hold for all λ ∈ Λ.

2. Determine the coupling matrix Γ such that −2I ≤ Γ ≤ 0 and eig(Γ) \
{0} ∈ Λ.

We illustrate on the simpler problem of designing a network topology with
given rate of synchronization.

Design of Networks

From Proposition 1 we see that the exponential decay rate is determined by
the characteristic multipliers corresponding to the matrices Ak(t) = Acl(t) +



λkBϕ′(y0(t), 0)C, where Acl(t) = A + Bϕ′
y(y0(t), 0)C and λk ∈ σ(Γ). Since,

λ1 = 0 ∈ σ(Γ) it follows that n of the characteristic multipliers, including
the one at 1, are identical to the characteristic multipliers of the individual
nominal oscillators. If the network is designed such that the largest charac-
teristic multiplier of the remaining system matrices is small then the network
synchronization to the nominal solution is fast. We provide a formal defini-
tion

Definition 4. The synchronization rate for the network (11) is defined as

r = max
eig(Γ)∋λ6=0

max
i=1,...,n

|ρi(A(λ))|

where A(λ) = A + B(ϕ′
y(y0(t), 0) + λϕ′

ȳ(y0(t), 0))C.

We want to design the network such that r << 1. The interpretation of
the definition is given in the next proposition

Proposition 3. Consider the nominal variational system

ẋ = (I ⊗ Acl(t) + Γ ⊗ M(t))x (21)

where Acl(t) = A + Bϕ′
y(y0(t), 0)C and M = Bϕ′

ȳ(y0(t), 0)C and Γ = ΓT

has a simple eigenvalue at zero with eigenvector 1. Define the synchronized
solution and the synchronized initial state as

S = {1 ⊗ xi(t) : ẋi(t) = Acl(t)xi(t)}
S0 = {1 ⊗ xi0 : xi0 ∈ Rn}

If the network has synchronization rate r then there exists c > 0 such that
the solution of (21) satisfies

dist(x(t), S) ≤ ce−αt|x0|

for all x0 ∈ S⊥
0 and any 0 < α < − ln r.

Proof. An arbitrary x0 ∈ S⊥
0 can be decomposed as

x0 =
N

∑

k=2

n
∑

l=1

αk,lvk ⊗ xk,l(0)

where vk ⊥ 1 is a unit length eigenvector corresponding to λk ∈ eig(Γ) \ {0}
and xk,l(0) is a unit length eigenvector corresponding to the characteristic



multiplier ρl(Ak), where Ak is defined in (13). The solution decomposes
analogously

ẋ(t) =
N

∑

k=2

n
∑

l=1

αk,lvk ⊗ ẋk,l(t)

=
N

∑

k=2

n
∑

l=1

αk,lvk ⊗ Ak(t)xk,l(t) ⊥ S

This implies ((Φk(t, 0) is the transition matrix of Ak(t))

dist(x(t), S)2 = |x(t)|2

= |
N

∑

k=2

n
∑

l=1

αk,lvk ⊗ Φk(t, 0)xk,l(0)|2

= |
N

∑

k=2

vk ⊗ Φk(t, 0)
n

∑

l=1

αk,lxk,l(0)|2

=
N

∑

k=2

|Φk(t, 0)
n

∑

l=1

αk,lxk,l(0)|2

≤
N

∑

k=2

c2
ke

−2αkt|
n

∑

l=1

αk,lxk,l(0)|2

≤ ce−2αt

N
∑

k=2

|
n

∑

l=1

αk,lxk,l(0)|2 = ce−2αt|x0|2

where we used |Φk(t, 0)| ≤ cke
−αkt for some ck > 0, c = maxk(c

2
k), 0 < αk <

− ln(maxi |ρi(Ak)|). At two places we use that the vk are orthonormal.

Attention will be restricted to the special case when the network has the
further symmetry condition

γk,l = γ|k−l| and γN−k = γk (22)



In this case the coupling matrix is the circulant matrix

Γ =

















γ0 γ1 γ2 . . . γ1

γ1 γ0 γ1 . . . γ2

γ2 γ1 γ0 . . . γ3

...
...

...
. . .

...

γ1 γ2 γ3 . . . γ0

















(23)

where γ0 = −∑N−1
i=1 γk. The eigenvalues of a circulant matrix are the Fourier

transform of the first row. Exploiting that γN−k = γk gives the real valued
eigenvalues

λk =
N−1
∑

l=0

e−2πkl/Nγl = 2

⌊N/2⌋
∑

l=1

γl(cos(2πkl/N) − 1) (24)

We can design the network interconnection for given synchronization rate as
follows
1. Find Λ = {λ ∈ R : maxi=1,...,n |ρi(A(λ))| < r} where 0 < r < 1 is the
desired synchronization rate.
2. Find an optimal network topology and interconnection strengths such
that λ ∈ Λ for all λ ∈ eig(Γ) \ {0}. There are several possible optimization
problems. One example is the integer program

min−γ−1 +

⌊N/2⌋
∑

k=1

dkzk subj. to

{

∑⌊N/2⌋
l=1 2zk(cos(2πkl/N) − 1) ∈ γ−1Λ,

γ−1 ≥ ǫ; zk ∈ {0, 1},∀k = 1, . . . , ⌊N/2⌋

where ǫ is a positive number. Here the binary variables determine the topol-
ogy of the network. The cost variables dk can, for example, be chosen as an
increasing sequence in order to achieve localized coupling, i.e. each oscillator
is only interconnected to a few neighbors. To obtain a linear program we
maximize the inverse of the interconnection strength, which must be chosen
strictly positive.



Another example is the integer program of the form

min

⌊N/2⌋
∑

k=1

(ckγk + dkzk) subj. to

{

∑⌊N/2⌋
l=1 2γl(cos(2πkl/N) − 1) ∈ Λ,

0 ≤ γk ≤ zkM ; zk ∈ {0, 1}, ∀k = 1, . . . , ⌊N/2⌋

Once again the binary variables determine the topology of the network but
here the interconnection strengths are optimized individually.

We apply this procedure to an example.

Example 3. In this example we will study a network of Van der Pol oscillators.
Two different interconnection structures are considered.
1. A linear coupling on the form

ÿk + m(y2
k − 1)ẏk + yk = θ∆kyk + ȳk (25)

where ȳk =
∑

l 6=k γk,l(yl − yk). This network can be represented as

ẋk(t) = Axk(t) + B1φ(yk(t), ȳk(t)) + θB2(∆yk)(t)

yk(t) = Cxk(t)

where A,B2 and C are defined as in Example 1 while

φ(y, ȳ) =

[

−my3/3 + (2 + m)y

ȳ

]

, B1 =

[

0 1

1 0

]

and ȳk =
∑

l 6=k γk,l(yl − yk) under the symmetry assumption in (22).
2. A nonlinear coupling of the form

ÿk + m((yk + ȳk)
2 − 1)(ẏk + ˙̄yk) − 2 ˙̄yk + yk = θ∆kyk

where ȳk =
∑

l 6=k γk,l(yl − yk). Using the new states

x1,k = −ẏk − m((yk + ȳk)
3/3 − yk − ȳk) + 2ȳk

x2,k = yk

gives the system equation

ẋk = Axk + B1ϕ(yk, ȳk) + θB∆(∆yk)(t)

yk = Cxk



N r λ2

r
Λ M γ

10 0.6 0.6 [−0.9,−0.2] 2 0.18

10 0.2 1.7 [−2.2,−0.25] 2 0.23

10 0.034 10 [−1.2,−0.5] 3 0.27

10 0.0034 100 [−1.0,−0.9] 5 0.40

10 0.034 10 [−1.2,−0.5] 3 0.11

20 0.034 10 [−1.2,−0.5] 4 0.087

40 0.034 10 [−1.2,−0.5] 5 0.08

60 0.034 10 [−1.2,−0.5] 6 0.067

80 0.034 10 [−1.2,−0.5] 7 0.054

100 0.034 10 [−1.2,−0.5] 10 0.043

25 0.2 1.7 [−2.2,−0.25] 3 0.15

25 0.034 10 [−1.2,−0.5] 5 0.072

25 0.0034 100 [−1.0,−0.9] 24 0.019

where ϕ(y, ȳ) = φ(y + ȳ) and φ(y) = −my3/3 + (2 + m)y, A,B1, B∆ and C
are defined as in Example 1 and ȳk =

∑

l 6=k γk,l(yl − yk) under the symmetry
assumption in (22).

For the dynamics of the Van der Pol oscillator we let m = 0.2. We
consider a network with N oscillators. For the results in Table 3 we used
(d1, d2, d3, d4, d5) = (1, 10, 100, 500, 1000), dk = 1000 for k > 5 and M refers
to the number of interconnections. The results were obtained using Xpress-
MP on the NEOS Server.

Robustness to Perturbations of the Network

We have seen that the interconnection matrix Γ determines the stability and
the robustness of the network. It is therefore important to design this matrix
such that the network is robust to the failure of individual links and to the
removal of nodes. We have the following result

Proposition 4. Suppose the bi-directional connection between node k and l
is broken. The resulting interconnection matrix is

Γ̂ = Γ + γk,lek,le
T
k,l



where γk,1 ≥ 0 and

ek,l =











1, i = k

−1, i = l

0, otherwise

ek,le
T
k,l =



















...
...

. . . 1 . . . −1 . . .
...

...

. . . −1 . . . 1 . . .
...

...



















(26)

We have

λN(Γ̂) = 0

λi(Γ) ≤ λi(Γ̂) ≤ min(λi+1(Γ), λi(Γ) + 2γk,l)

The proof is a special case of the following general result

Proposition 5. Suppose the interconnection between the nodes {(k1, l1), . . . , (km, lm)}
are lost. Then

Γ̂ = Γ + E, E =
m

∑

i=1

γki,lieki,lie
′
ki,li

where γk,l ≥ 0 and the eki,li are defined as in (26). We have

λN(Γ + E) = 0 (27)

λi(Γ) ≤ λi(Γ + E) ≤ min
i≤k≤N

(λi+N−k(Γ) + λk(E)) (28)

In particular, if node k in the network fails then the resulting coupling matrix
becomes

Γ̂ = T



Γ +
∑

i∈N (k)

γk,iek,ie
′
k,i



 T T

where N (k) are the nodes to which k is connected and

T =

[

Ik−1 0(k−1),1 0(k−1),(N−k)

0(N−k),(k−1) 0(N−k),1 IN−k

]



The eigenvalues of the perturbed matrix are now related as

λN−1(Γ̂) = 0

λi(Γ) ≤ λi(Γ̂) ≤ min
i≤k≤N−1

(λi+N−k(Γ) + λk(E))

for i = 1, . . . , N − 2.

Remark 1. From the above inequalities we see that

λi(Γ + E) ≤ min(λi+m(Γ), λi(Γ) + λmax(E))

The first part follows by letting k = N − m and using that λN−m(E) = 0
since E has at most rank m. The second inequality follows by using k = N .

Proof. By Weyl’s theorem (Theorem 4.3.7 in [1]) we have

λj+k−N(Γ + E) ≤ λj(Γ) + λk(E)

for all 1 ≤ j, k ≤ N , j + k ≥ N + 1. Let i = j + k − N . Then the above can
be written

λi(Γ) ≤ λi(Γ + E) ≤ min
i≤k≤N

(λi+N−k(Γ) + λk(E)) (29)

The left inequality is trivial and sufficient for our purposes. By the structure
of the matrices we have λN(Γ+E) = 0. This is a consequence of the Geršgorin
theorem (Theorem 6.1.1 in [1]. Indeed, 1 is an eigenvector corresponding to
the eignvalue 0. Since the spectrum of Γ + E belongs to the discs (the first
case with perturbation E is treated similarly)

∪N
i=1{z ∈ C : |z +

∑

j 6∈N (k)

γi,j| ≤
∑

j 6∈N (k)

γi,j}

where we use that all γi,j ≥ 0 and N (k) denotes the neighbors of k that are
removed. Clearly λmax(Γ + E) = 0, which proves the statement.

We will next discuss the properties of large networks. We have seen in
the example above that the number of interconnections in the network in-
crease with the demand on improved synchronization rate. This property
and certain robustness properties of the network have been discussed in sev-
eral works before, see e.g. [8, 15]. Here we will try to review and bring



some new interpretation of these issues. For symmetric couplings as in (23)
all nodes in the network are connected when at least one interconnection
strength γk is nonzero. To understand large connected networks we con-

sider γ =
[

γ1 γ2 . . .
]

∈ l1(Z
+). The boundedness assumption reflects

the physical constraint that only a finite total interconnection strength can
be applied at each node. Hence, for large N the eigenvalues in (24) can be
approximated by the sum

λ(ω) =
∞

∑

l=1

(cos(ωl) − 1)γl

for ω ∈ [0, 2π]. Note that λ(0) = 0 and since λ(·) is a continuous function it
follows that there exists some interval near ω = 0 where |λ(ω)| ≤ ǫ for any
ǫ > 0. This implies that in large networks the synchronization rate is near
zero. Hence, large networks will from a dynamic point of view effectively be
disconnected or put in other terms, the synchronization effect is only present
in local clusters while far away nodes do not communicate.

By Parceval’s theorem we have

〈v̂, λv̂〉
L2[0,2π] = 〈v, Γv〉l2(Z) (30)

where Γ is the infinite dimensional circulant matrix corresponding to γ ∈
l1(Z

+), v ∈ l2(Z). Due to the symmetry of Γ it is no restriction to assume
v−k = vk and therefore v̂ ∈ L2[0, 2π], the corresponding discrete Fourier
transform, can be computed as

v̂(ω) =
∞

∑

k=0

vk cos(ωk)

Expression (30) can be viewed as the limit of the eigenvalue decomposition
as the network size tends to infinity. This can be used to understand certain
robustness properties of large networks. Indeed, the interlacing property of
the eigenvalues in Proposition 5 together with the dense clustering of the
eigenvalues for a large network imply that the network will be insensitive
to the removal of interconnections and nodes. It has recently been argued
that a special type of interconnection topologies, “small world networks”,
combine the robustness of the regular networks discussed here with the fast
synchronization of large random networks, see [16].



4 Appendix. Proof of Proposition 2

Let
θ̂ = sup{θ̄ : θ̄ is a robustness margin of (10)}.

For any individual oscillator let Fk(zk,θ, θ) = yk,θ − Hk(s/Tk,θ, θ)ϕ(yk,θ, ȳk,θ).

By assumption we have Fk(zk,θ, θ) ≡ 0 on (−θ̂, θ̂). Differentiation of this
inequality gives

d

dz
Fk(zk,θ, θ)

dzk,θ

dθ
= − d

dθ
Fk(zk,θ, θ)

The non-uniqueness of zk,θ due to time translation of the trajectory yk,θ

implies that (ẏk,θ, 0) ∈ Ker d
dz

Fk(zk,θ, θ), see [4]. It is shown in [4] that
dim Ker d

dz
Fk(zk,θ, θ) = 1 is a necessary and sufficient condition for the exis-

tence of a right inverse such that

dzk,θ

dθ
= −

(

d

dz
Fk(zk,θ, θ)

)†
d

dθ
Fk,(zk,θ, θ)

It can also be shown that the only non-uniqueness of the derivative corre-
sponds to time translation. On the contrary, if the right inverse of d

dz
Fk(zk,θ, θ)

ceases to exist at θ = θ0 then the uniqueness property of the derivative fails
at this point (the limit cycle may even cease to exist. We conclude that the
right inverse must exist on (−θ̂, θ̂).

Now consider the network (12) in the case when Hk1
(s, θ) = Hk2

(s, θ) for
all k1, k2 = 1, . . . , N . Then

zθ =
[

ẑT
θ , . . . , ẑT

θ

]T

(31)

is a synchronized solution for θ ∈ (−θ̂, θ̂), i.e. all oscillators have the same
solution zk,θ = ẑθ, k = 1, . . . , N . We will show that it cannot be continued
any further by proving that any of the following three conditions hold true

(i) existence of a unique solution fails, i.e. a bounded right inverse of
F ′

z(zθ, θ) ceases to exist at either of the boundary points {−θ̂, θ̂}.
(ii) zθ 6∈ Z for any sufficiently small θ > θ̂ or any sufficiently large θ < −θ̂.

(iii) the exponential stability is lost, or equivalently defα(L(zθ, θ)) = 1 fails
at either of the boundary points {−θ̂, θ̂} (note that according to the
stability definition, stability ceases to hold when the operator becomes
singular).



By assumption, any of (i)− (iii) must hold for the individual oscillators. We
will use that

L(zθ, θ) = (I + Γ) ⊗ Hk(s/T̂θ, θ)ϕ
′
y(ŷθ, 0)

and

F ′
z(zθ, θ) =

[

I − (I + Γ) ⊗ Lk,st(ẑθ, θ)
1

Tθ

(I + Γ) ⊗ (I − Lk,st(ẑθ, θ))(t ˙̂yθ)

]

From the structure of these operators we immediately see that if (i) or (iii)
are true for the individual oscillator then the corresponding condition holds
for the corresponding network operator. For example, consider (iii). Let
Lk(ẑθ, θ) = Hk(s/T̂θ, θ)ϕ

′
y(ŷθ, 0). If Lk(ẑθ, θ)vk = vk, i.e. the operator is

singular and the stability defect condition fails and so does local exponential
stability. Since also L(zθ, θ)(1 ⊗ vk) = 1 ⊗ vk, the same conclusion holds for
the network.

Finally, suppose (ii) holds true for the individual operator. Then

lim
θրθ̂

‖ẑθ‖C(1)×R = r0

lim
θրθ̂

d

dθ
‖ẑθ‖C(1)×R > 0

or similarly for the other limit. Obviously, since (31) is the network solu-
tion on (−θ̂, θ̂) the corresponding derivate limits also hold for the network
solution.
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