
Trajectory planning for systems with a multiplicative stochastic uncertainty
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A trajectory planning problem for linear stochastic differential equations is considered in this paper. The aim is to control
the system such that the expected value of the output interpolates given points at given times while the variance and an
integral cost of the control effort are minimized. The solution is obtained by using the dynamic programming technique,
which allows for several possible generalizations. The results of this paper can be used for control of systems with a
multiplicative stochastic disturbance on the state vector and systems with a stochastic growth rate. This is frequently
the case in investment problems, biomathematics and control theory.

1. Introduction

The theory of control theoretic splines is concerned
with controlling the state or some measured quantity of
the state to given values at discrete times. That is, given
a system of the form

_xx ¼ f ðxÞ þ u1g1ðxÞ þ � � � þ ukgkðxÞ

and

y ¼ Cx

where x 2 R
n and y 2 R

p, we look for a system of
controls that drive the output through or close to a
prescribed sequence of set points

f yðtiÞ ¼ �i: i ¼ 1, . . . ,Ng:

We call the generated output function an interpolating
spline if it exactly interpolates these points, otherwise it
is called a smoothing spline. The term control theoretic
spline refers to the way the spline function is con-
structed, i.e. as the output of a dynamical system
driven by a control function. The dynamics can
either be a model of a system to be controlled or an
auxiliary model that helps to define the form of the
constructed spline function. Much of the literature
surveyed below considers the case when the dynamics
is linear and the spline function is generated as the

solution of an optimal control problem. In this paper

we consider a version of this problem where there is a

multiplicative stochastic uncertainty in the dynamics. It

is then no longer possible to obtain exact interpolation

and instead we let the expected value interpolate the

given point at the same time as the variance and

the expected value of an integral quadratic cost along

the trajectory are minimized. By minimizing the vari-

ance at the interpolation points we minimize the effect

of uncertainty due to the diffusion term in the system

equation.

Interpolating splines have been important since the

1960s as a tool in numerical analysis. A quick review of

the literature shows a tremendous jump in the number

of papers related to splines around 1970 which corre-

sponds to the availability of computers for numerical

calculations. Smoothing splines were first used in the

1960s but it wasn’t until Grace Wahba did a systematic

development that they become important in statistics.

Wahba’s book (Wahba 1990) is an important reference

that is basic to understanding the myriad applications of

smoothing splines as a tool in non-parametric statistics.

The first appearance of control theoretic interpolating

splines was an application to trajectory planning for

aircraft in a seminal paper of Crouch and Jackson

(1990). Wahba’s development of smoothing splines

was very much in the spirit of control theoretic smooth-

ing splines but she was only interested in polynomial

splines. To our knowledge the first work on general

control theoretic smoothing splines was in Sun et al.

(2000). Control theoretic splines have been applied to

trajectory planning for aircraft (Crouch and Jackson

1990), to wildlife tracking (Egerstedt and Martin

2003), to trajectory planning for robots (Egerstedt

and Martin 2000) and, of course, to many problems

in curve estimation and to many different problems in

statistics.

Interpolating splines are useful when the data is

known to be exact and it is required for a curve to

exactly pass through a specific set of points. In most

applications exactness is not required and it suffices
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for the data to be close to the constructed curve.

Smoothing splines were designed for exactly this

purpose. In statistics the general object is to fit a curve

to data in such a manner that the error between the

data and the constructed curve has nice statistical prop-

erties, for example normally distributed. For control

theoretic splines the object was and is slightly different.

Here we want a trajectory that is close to the given

data points but we seek a trade-off between exactness

and cost. For example in aircraft applications, exactness

often comes at the price of large accelerations and hence

increases in fuel usage. In this paper we take a different

approach. We place the uncertainty in the dynamics

and require exactness in terms of expected value. So

both this approach and the approach of smoothing

splines have the effect of filtering the noisy data. For

many problems the approach of this paper is the most

natural.

While there is a great deal of literature on the prob-

lem of constructing splines using deterministic methods

there is little if any literature on the construction

of splines using stochastic dynamics. However, there

are many problems ranging from biological to economic

to trajectory planning where the dynamics can be

naturally considered as stochastic. This is the motivation

for writing this paper. In earlier work by Zhou and

Martin and other collaborators the problem of deter-

ministic splines was attacked by obtaining explicit

solutions to the output of the system and then

optimizing the cost over the control; see for example

the techniques in Martin et al. (2001). In this paper a

more powerful technique is used for the optimization–

dynamic programming. This is a necessary step to

finding the solution and allows one to use standard

techniques of solving the problem locally and showing

the explicit dependence of the solution on the Riccati

equation. It has the additional advantage in that it

directly leads to feedback solutions of the corresponding

control problem. We also solve the problem using

inequality constraints on the output and we present a

complete example of using the method for solving the

trajectory planning problem for a mobile robot. Here

the combined effect of surface irregularities, friction,

and other disturbances is modeled as a multiplicative

stochastic disturbance. Further examples and several

possible generalizations are discussed in the concluding

remarks.

2. Stochastic trajectory planning

We consider a trajectory planning problem where a

stochastic disturbance enters the differential equation.

As our basic problem we consider

J0ðx0Þ

¼ min
u2Mðt0, tN Þ

XN�1

k¼0

wkþ1VarfCXðtkþ1Þg

þEt0,x0

ðtN
0

juj2dt

� �

subject to

dX ¼ ðAX þBuÞdt

þGðXÞdZ, Xðt0Þ ¼ x0

Et0,x0fCXðtkþ1Þg ¼ �kþ1,

k ¼ 0, . . . ,N � 1

8>>>><>>>>:
ð1Þ

where wk � 0 and ðA,BÞ is a controllable pair. The last
term in the stochastic differential equation corresponds
to a multiplicative noise on the state vector defined by
an m-dimensional Brownian motion Zt. In other words,
Zt is a process with zero mean and independent incre-
ments, i.e. EfdZt dZ

T
s g ¼ �ðt� sÞIdt, where � denotes the

dirac function. We assume that G(x) is a linear function
on the form

GðxÞ ¼
Xn
i¼1

xiGi

where Gk 2 R
n�m. In (1), Et0, x0 is the expectation

operator given that Xðt0Þ ¼ x0 and VarfCXðtkÞg ¼
Et0, x0fðCXðtkÞ � Et0, x0fCXðtkÞgÞ

2
g.

We consider optimization over all Markov controls,
i.e. feedback controls on the form uðt,!Þ ¼ �ðt,Xðt,!ÞÞ.
We let Mðt0, tNÞ denote the set of Markov controls on
an interval ðt0, tNÞ. It can be shown that our optimal
solution is also optimal over all F t adapted processes,
where F t denotes the � algebra generated by Zs for s � t
(see, e.g. Øksendal 1998).

It turns out that there will be linear and constant
terms in the value function due to the variance term in
the objective function. It is therefore no essential
addition in complexity to consider a more general path
planning problem, where we allow the dynamics to be
time-varying and different from stage to stage. We also
consider integral costs that penalize the state vector.
This gives the following generalization of (1)

J0ðx0Þ ¼ min
u2Mðt0, tN Þ

Et0,x0

(XN�1

k¼0

wkþ1jC1,kþ1Xðtkþ1Þ
�

��kþ1j
2
þ

ðtkþ1

tk

�kðt, X , uÞdt

�)

subject to

dX ¼ ðAkðtÞX þBkðtÞuÞdt

þGkðt,XÞdZ, t 2 ½tk, tkþ1�,

Xðt0Þ ¼ x0

Et0,x0fC2,kþ1Xðtkþ1Þg ¼ �kþ1,

k¼ 0, . . . ,N� 1

8>>>>>>><>>>>>>>:
ð2Þ
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where

�kðt, x, uÞ ¼ xTQkðtÞxþ 2xTSkðtÞuþ uTRkðtÞu

þ 2qkðtÞ
Txþ 2rkðtÞ

Tuþ %kðtÞ

and

Gkðt, xÞ ¼
Xn
i¼1

xiGk, iðtÞ

and where everything else is defined in a similar way as
in (1). Here Ak,Bk,Qk, . . . , �k and Gk, i are piecewise
continuous functions of time and all pairs ðAkðtÞ,BkðtÞÞ
are assumed to be completely controllable and the cost is
strictly convex, which is the case if for all t 2 ½tk, tkþ1�,
k ¼ 0, . . . ,N � 1, we have

RkðtÞ > 0 and
QkðtÞ SkðtÞ
SkðtÞ

T RkðtÞ

� �
� 0: ð3Þ

Note that if C1 ¼ C2 ¼ C and �k ¼ �k then
Et0, x0fjCXðtkÞ � �kj

2
g ¼ VarfCXðtkÞg:

Let us define the cost-to-go functions

JkðxÞ ¼ min
u2Mðtk, tN Þ

Etk,x

(XN�1

i¼k

wiþ1jC1, iþ1Xðtiþ1Þ � �iþ1j
2

�
þ

ðtiþ1

ti

�iðt,X ,uÞdt

�)

subject to

dX ¼ ðAiðtÞX þBiðtÞuÞdtþGiðt,XÞdZ,

t 2 ½ti, tiþ1�, XðtkÞ ¼ x

Et0,x0fC2, iþ1Xðtiþ1Þg ¼ �iþ1,

i¼ k, . . . ,N� 1

8>>><>>>:
ð4Þ

JNðxÞ ¼ 0:

Due to the Markov property of the stochastic differen-
tial equation we can use dynamic programming to
solve (1). We next state two propositions and then the
main result that solves (1). The first states the dynamic
programming recursion.

Proposition 1: The optimal cost satisfies the following
dynamic programming equation

JkðxÞ ¼ min
u2Mðtk, tkþ1Þ

Etk,x

�ðtkþ1

tk

�kðt,X ,uÞdt

þwkþ1jC1,kþ1Xðtkþ1Þ � �kþ1j
2
þ Jkþ1ðXðtkþ1ÞÞ

�

subject to

dX ¼ ðAkðtÞX þBkðtÞuÞdt

þGkðt,XÞdZ, XðtkÞ ¼ x

Etk,xfC2,kþ1Xðtkþ1Þg ¼ �kþ1

8>><>>:
JNðxÞ ¼ 0:

Proof: The proof is based on a standard dynamic
programming argument and is given in the appendix
for completeness. œ

The next proposition states the solution to the sto-
chastic optimal control problem in (5) below. It shows
that Jk(x) is a quadratic function which is instrumental
in solving the dynamic programming iteration. Let

Vðx0, �, t0, tf Þ ¼ min
u2Mðt0, tf Þ

Et0,x0

�ðtf
t0

�ðt,XðtÞ,uðtÞÞdt

þXðtf Þ
TQ0Xðtf Þþ2qT0Xðtf Þþ%0

�

subject to

dX ¼ ðAðtÞXþBðtÞuÞdtþGðt,XÞdZ,

Xðt0Þ ¼ x0

Et0,x0 fCXðtf Þg ¼�

8><>:
ð5Þ

where

�ðt, x, uÞ ¼ xTQðtÞxþ 2xTSðtÞuþ uTRðtÞu

þ 2qðtÞTxþ 2rðtÞTuþ %ðtÞ

and where Q,R and S satisfy the conditions in (3).

Proposition 2: We have

Vðx0,�, t0, tf Þ

¼ xT0Pðt0Þx0 þ 2pðt0Þ
Tx0 þ �ðt0Þ

þ ðNðt0Þ
Tx0 þmðt0ÞÞ

TWðt0Þ
�1
ðNðt0Þ

Tx0 þmðt0ÞÞ

where

_PPþ ATPþ PAþQþPðPÞ

¼ ðPBþ SÞR�1
ðPBþ SÞT, Pðtf Þ ¼ Q0

_NN þ ðA� BR�1
ðPBþ SÞTÞTN ¼ 0, Nðtf Þ ¼ CT

_ppþ ðA� BR�1
ðPBþ SÞTÞTpþ q

¼ ðPBþ SÞR�1r, pðtf Þ ¼ q0

_WW þNTBR�1BTN ¼ 0, Wðtf Þ ¼ 0

_mm ¼ NTBR�1
ðBTpþ rÞ, mðtf Þ ¼ ��

_��þ % ¼ ðrþ BTpÞTR�1
ðrþ BTpÞ, �ðtf Þ ¼ %0

ð6Þ

and where PðPÞ is a linear matrix function with elements
PðPÞk, l ¼

1
2
trðGT

kPGlÞ. The optimal control is

u� ¼ �R�1
ðPBþ SÞTX � R�1BTNv� R�1

ðBTpþ rÞ

with v ¼ �Wðt0Þ
�1
ðNðt0Þ

Tx0 þmðt0ÞÞ.

Proof: The proof is done by Lagrangian relaxation
of the linear constraint. See the appendix for the
complete details. œ
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Remark 1: If Q,R and S satisfy condition (3), then the
linearly perturbed Riccati equation in (6) has an abso-
lutely continuous unique positive semidefinite solution
(Wonham 1968). All other differential equations in (6)
are linear with bounded piecewise continuous coeffi-
cients, which ensure existence of unique absolutely con-
tinuous solutions. Note also that we have WðtÞ > 0 for
t 2 ½t0, tf Þ by the complete controllability of the pair
ðAðtÞ,BðtÞÞ.

Remark 2: If the stochastic term in (1) and (2) is
removed then we obtain a deterministic trajectory plan-
ning problem. The solution to the deterministic problem
is obtained by omitting the term PðPÞ in the Riccati
equation above.

In order to obtain a compact notation we introduce

bQQ0 ¼
Q0 q0

qT0 %0

� �
, bQQ ¼

Q q

qT %

� �
, bSS ¼

S

rT

� �
bPP ¼

P p

pT �

� �
, bNN ¼

N

mT

� �
, bWW ¼ W , bRR ¼ R

bAA ¼
A 0

0 0

� �
, bBB ¼

B

0

� �
, bCCð�Þ ¼ ½C � ��

ĜGðt,xÞ ¼
Gðt,xÞ

0

� �
, P̂PðbPPÞ ¼ PðPÞ 0

0 0

� �
:

ð7Þ

If we finally let bXX ¼ ½XT 1�T and bxx0 ¼ ½xT0 1�T then the
optimization problem (5) can be written

Vðx0, �, t0, tf Þ

¼ min
u2Mðt0, tf Þ

Et0,x0

�ðtf
t0

½bXX TbQQbXX þ 2bXXTbSSuþ uTbRRu�dt
þ bXXðtf Þ

TbQQ0
bXXðtf Þ

�

subject to

dbXX ¼ ðbAAðtÞbXX þ bBBðtÞuÞdtþ bGGðt,XÞdZ,bXXðt0Þ ¼bxx0
Et0,x0fbCCð�ÞbXXðtf Þg ¼ 0

8>>><>>>:
ð8Þ

and the optimal solution can be written

Vðx0,�, t0, tf Þ ¼ bxx T
0
bPPðt0Þ þ bNNðt0Þ bWWðt0Þ

�1bNNðt0Þ
T

h ibxx0
where

_bPPbPPþ bAA TbPPþ bPP bAAþ bQQþ P̂PðbPPÞ
¼ ðbPP bBBþ bSSÞbRR�1

ðbPP bBBþ bSS Þ
T, bPPðtf Þ ¼ bQQ0

_bNNbNN þ ðbAA� bBB bRR�1
ðbPP bBBþ bSSÞTÞTbNN ¼ 0, bNNðtf Þ ¼ bCCð�ÞT

_bWWbWW þ bNN TbBB bRR�1bBB TbNN ¼ 0, bWWðtf Þ ¼ 0:

The optimal control is

u� ¼ �bRR�1
ðbPP bBBþ bSSÞTbxx� bRR�1bBB TbNN bWWðt0Þ

�1bNNðt0Þ
Tbxx0:

There is an equivalent feedback form given as u� ¼

�bRR�1
ððbPPþ bNN bWW�1bNN T

ÞbBBþ bSSÞTbXX .

We can now state the solution of the general stochas-

tic trajectory planning problem in (2).

Proposition 3: Consider the optimal control problem

in (2), where the condition (3) holds. The optimal

Markov control in each time interval ½tk, tkþ1� is (all

variables are defined analogously with (7))

u�ðtÞ ¼ �bRRkðtÞ
�1
ðbPPkðtÞbBBkðtÞ þ bSSkðtÞÞ

TbXXðtÞ

� bRRkðtÞ
�1bBBkðtÞ

TbNNkðtÞ bWWkðtkÞ
�1bNNkðtkÞ

TbXXðtkÞ

where for k ¼ N � 1, . . . , 0

_bPPbPPk þ
bAAT
k
bPPk þ

bPPk
bAAk þ

bQQk þ P̂Pkð
bPPkÞ

¼ ðbPPk
bBBk þ

bSSkÞ
bRR�1
k ðbPPk

bBBk þ
bSSkÞ

T

_bNNbNNk þ ðbAAk �
bBBk
bRR�1
k ðbPPk

bBBk þ
bSSkÞ

T
Þ
TbNNk ¼ 0,bNNkðtkþ1Þ ¼

bCC2, kþ1ð�kþ1Þ
T

_bWWbWWk þ
bNN T

k
bBBk
bRR�1
k
bBB T

k
bNNk ¼ 0, bWWkðtkþ1Þ ¼ 0

and where bPPN�1ðtNÞ ¼ wN
bCC1,Nð�NÞ

TbCC1,Nð�NÞ and for

k ¼ N � 2,N � 3, . . . , 0

bPPkðtkþ1Þ¼
bPPkþ1ðtkþ1Þþ

bNNkþ1ðtkþ1Þ
bWWkþ1ðtkþ1Þ

�1

� bNNkþ1ðtkþ1Þ
T
þwkþ1

bCC1,kþ1ð�kþ1Þ
TbCC1,kþ1ð�kþ1Þ:

The cost-to-go is

JkðxÞ ¼ bxx T bPPkðtkÞ þ bNNkðtkÞ bWWkðtkÞ
�1bNNkðtkÞ

T
h ibxx:

Proof: By dynamic programming. See details in the

appendix. œ

The formulation of Proposition 3 in the compact

notation (7) gives appealing formulas but in a numerical

implementation it is more efficient to perform computa-

tions using a system on the form (6). For the basic

trajectory planning in (1) this reduces to the following

result.

Corollary 1: Consider the optimal control problem in (1),

where the pair ðA,BÞ is controllable. The optimal Markov

control in each time interval ½tk, tkþ1� is

u�ðtÞ ¼ �R�1BTPkðtÞXðtÞ � R�1BTNkðtÞvk � R�1BTpkðtÞ

716 U. T. Jönsson et al.



with vk ¼ �WkðtkÞ
�1
ðNkðtkÞ

TXðtkÞ þmkðtkÞÞ, where

_PPk þ ATPk þ PkAþPðPkÞ ¼ PkBR
�1BTPk

_NNk þ ðA� BR�1BTPkÞ
TNk ¼ 0,

_ppk þ ðA� BR�1BTPkÞ
Tpk ¼ 0

_WWk þNT
k BR

�1BTNk ¼ 0

_mmk ¼ NT
k BR

�1BTpk

_��k ¼ pTkBR
�1BTpk

ð9Þ

where PðPkÞ is a linear matrix function with elements
PðPÞk, l ¼

1
2
trðGT

kPGlÞ and the boundary conditions are

Pkðtkþ1Þ ¼ Pkþ1ðtkþ1Þ þNkþ1ðtkþ1ÞWkþ1ðtkþ1Þ
�1

�Nkþ1ðtkþ1Þ
T
þ wkþ1C

TC

pkðtkþ1Þ ¼ pkþ1ðtkþ1Þ þNkþ1ðtkþ1ÞWkþ1ðtkþ1Þ
�1

�mkþ1ðtkþ1Þ þ wkþ1C
T�kþ1

�kðtkþ1Þ ¼ �kþ1ðtkþ1Þ þmkþ1ðtkþ1Þ
TWkþ1ðtkþ1Þ

�1

�mkþ1ðtkþ1Þ þ wkþ1�
T
kþ1�kþ1

and Nkðtkþ1Þ ¼ CT, mkðtkþ1Þ ¼ ��kþ1 and Wkðtkþ1Þ ¼ 0.
The optimal cost-to-go is

JkðxÞ ¼ xTPkðtkÞxþ 2pkðtkÞ
Txþ �kðtkÞ þ ðNkðtkÞ

Tx

þmkðtkÞÞ
TWkðtkÞ

�1
ðNkðtkÞ

TxþmkðtkÞÞ:

3. Path planning for mobile robot

We consider the problem of steering a robot from
rest at an initial condition ð�5, 1Þ to rest at the final
position ð�1, 5Þ in such a way that it stays inside the
corridor in the upper left part of figure 1. The dynamic
model of a mobile robot with the centre of the wheel axis
as a reference point will be non-linear and non-
holonomic. However, by moving the reference point to
an off-axis point it is possible to feedback linearize the
dynamics (see e.g. Laumond 1998). We use a feedback
linearization of a unicycle model derived in Lawton et al.
(2000)

€yy ¼ uþ e:

Here we have added a noise signal e that takes into
account friction, irregularities in the floor, and other
error sources. If we let the components of the noise
be modelled as dEi ¼ _yyi dWi, where a W is a two-
dimensional Brownian motion, then the robot dynamics
can be modelled by the stochastic system

dX ¼ ðAX þ BuÞ dtþ GðXÞ dW

Y ¼ CX

where

A ¼

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

26664
37775, B ¼

0 0

1 0

0 0

0 1

26664
37775,

C ¼
1 0 0 0

0 0 1 0

� �
, GðxÞ ¼

0 0

x2 0

0 0

0 x4

26664
37775:

Let us use the design equation

min E0,x0

�
w1jC1Xð3Þ � �1j

2
þ w2jC3Xð6Þ � �3j

2

þ

ð6
0

juj2dt

�
subject to

dX ¼ ðAX þ BuÞ dtþ GðXÞ dW , Xð0Þ ¼ x0

E0, x0 C2Xð3Þ
� �

¼ �2, E0,x0 C3Xð6Þ
� �

¼ �3

(
ð10Þ

where

C1 ¼
1 0 0 0

0 0 1 0

� �
, �1 ¼

�1

1

� �
C2 ¼ 1 0 1 0

	 

, �2 ¼ 0

C3 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

26664
37775, �3 ¼

�1

0

5

0

26664
37775:

The idea behind the optimization problem is to divide

the control problem into two stages. First, we steer the

robot to the switching surface C2x ¼ �2 in such a way

that the expected deviation from the point C1x ¼ �1 is

small. Then in the next stage we steer to the final

position x ¼ �3 in such a way that the variance of the

deviation from this point is small. The integral cost is

introduced to keep the expected control energy small.

With the weights w1 ¼ 7 and w2 ¼ 1 we get the result

in figure 1. We see from the lower plot that the expected

path of the robot stays well inside the corridor as

desired. It is possible to push the trajectory further

toward the middle of the corridor by adding an integral

cost E0, x0f
Ð 6
0 qjCx� y0ðtÞj

2dtg, where q � 0 and y0ðtÞ is

some nominal trajectory near the middle of the corridor.

The corresponding optimization problem still belongs to

the problem class considered in this paper.
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4. Interpolation with inequality constraints

In this section we consider the case with interpola-
tion constraints on the form

� k � Et0, x0fC2, kXðtkÞg � �k:

This means that we consider

J0ðx0Þ

¼ min
u2Mðt0, tN Þ

Et0,x0

(XN�1

k¼0

�
wkþ1jC1,kþ1Xðtkþ1Þ��kþ1j

2

þ

ðtkþ1

tk

�kðt,X ,uÞdt

�)

subject to

dX ¼ ðAkðtÞXþBkðtÞuÞdtþGkðt,XÞdZ,

t2 ½tk, tkþ1�, Xðt0Þ ¼ x0

�kþ1 �Et0,x0fC2,kþ1Xðtkþ1Þg � �kþ1,

k¼ 0, . . . ,N�1:

8>>>>><>>>>>:
ð11Þ

The assumptions on the system matrices are the same as
in the previous section. In the next result we use the
compact notation of the previous section with the excep-
tion that

bCC2, kð�kÞ ¼
C2, k ��k

�C2, k �k

� �
:

We also use the notation �k ¼ ½�
T
k �Tk �

T for the Lagrange
multipliers corresponding to the interpolation inequal-
ities and let �N ¼ ; and �k ¼ ½�TN . . . �Tkþ1�

T.

Proposition 4: For k ¼ N � 1,N � 2, . . . , 0 let

_bPPbPPk þ
bAA T

k
bPPk þ

bPPk
bAAk þ

bQQk þ P̂Pkð
bPPkÞ

¼ ðbPPk
bBBk þ

bSSkÞ
bRR�1
k ðbPPk

bBBk þ
bSSkÞ

T

_bNNbNNk þ ðbAAk �
bBBk
bRR�1
k ðbPPk

bBBk þ
bSSkÞ

T
Þ
TbNNk ¼ 0,bNNkðtkþ1, �

kþ1
Þ ¼ bCC2, kþ1ð�kþ1Þ

T

_bWWbWWk þ
bNN T

k
bBBk
bRR �1

k
bBBT
k
bNNk ¼ 0, bWWkðtkþ1Þ ¼ 0
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Figure 1. The upper left figure shows the initial and final positions for the robot. The upper right figure shows one realization of
the optimal path of the robot and the lower right figure shows the corresponding control signals, where u1 corresponds to the
solid line and u2 is the dashed line. The weights w1 ¼ 7 and w2 ¼ 1 were used in the optimization problem (10). Finally,
the lower right figure shows an estimate of the expected path obtained by averaging over 100 stochastic simulations.
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where bPPN�1ðtN , �
N
Þ ¼ wN

bCC1,Nð�NÞ
TbCC1,Nð�NÞ andbPPkðtkþ1, �

kþ1
Þ

¼ �PPkþ1ðtkþ1, �
kþ1

Þ þ wkþ1
bCC1, kþ1ð�kþ1Þ

TbCC1, kþ1ð�kþ1Þ

�PPkðtk, �
k
Þ

¼ bPPkðtk, �
kþ1

Þ þ enþ1�
T
kþ1

bNNkðtk, �
kþ1

Þ

þ bNNkðtk, �
kþ1

Þ
T�kþ1e

T
nþ1 � �Tkþ1

bWWkðtkÞ�kþ1enþ1e
T
nþ1

and where enþ1 ¼ ½0 � � � 0 1� 2 R
nþ1. Note that bPPk andbNNk depend quadratically, respectively linearly, on �kþ1

while bWWk is independent of �. The optimal cost function
is obtained as the solution to the following quadratic
optimization problem

max
�0�0

bxx T
0
�PP0ðt0, �

0
Þbxx0: ð12Þ

If �� ¼ ½ð��NÞ
T . . . ð��1Þ

T
�
T is the maximizing argument

in (12) then the optimal control in each time interval
½tk, tkþ1� is given as

u�ðtÞ ¼ bRR �1
k ðtÞð �PPkðt, �

�
ÞbBBkðtÞ þ bSSkðtÞÞ

TbXXðtÞ

where

�PPkðtÞ ¼ bPPkðt,�
�
Þ þ enþ1ð�

�
kþ1Þ

TbNNkðt,�
�
Þ

þ bNNkðt,�
�
Þ
T��kþ1e

T
nþ1 � ð��kþ1Þ

T bWWkðtÞ�
�
kþ1enþ1e

T
nþ1:

Proof: See the appendix. œ

5. Concluding remarks

In this paper we considered and solved the trajectory
planning problem in (1) and some generalizations of it.
Such problems occur in a variety of settings and
there are many important application areas in which
the techniques of this paper are relevant. We have
already mentioned applications in trajectory planning
for robots and aircrafts. Other possible applications
are in population studies, and investment problems.
We considered a simple example of a model for housing
investments with variable interest rates in Jönsson et al.
(2002).

There are many possible generalizations of this
work. An important area is to consider problems that
are of mixed types. In the simplest such examples we can
assume that some data must be interpolated and some
must be smoothed. These problems can be attacked
using the methods of this paper. The potential applica-
tions of the techniques presented in this paper to
problems in economics and finance are enormous. In
this area it is interesting to consider generalizations to
models where the stochastic uncertainty multiplies the
control signal (Lim and Zhou 1999). Another extension
is to consider the construction of splines when the
dynamics are governed by two point boundary value
problems (see, e.g. Adams et al. (1984 a, b) and Krener

(1978) for techniques and examples). An interesting
problem that remains open is to solve the problem
when there is a constraint such as

Eð _yyðtÞÞ � 0

for 0 � t � T where T is the final time. This particular
problem was solved by Zhou et al. (2001) in the deter-
ministic case. Both in the deterministic and the stochas-
tic cases the problem remains open for solving the
problem with constraints such as f ðtÞ � Eð yðtÞÞ � gðtÞ
for a < t < b. This current paper represents an impor-
tant first step in extending control theoretic splines to
the stochastic setting where these problems exist.
Dynamic programming is a powerful tool and fits the
needs of stochastic splines very well as is demonstrated
in this paper.
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Appendix

Proof of Proposition 1: Let J�
ðxÞ denote the optimal

cost-to-go function in (4). We will show that it satisfies
the stated dynamic programming iteration. Obviously,
we have J�

NðxÞ ¼ JNðxÞ ¼ 0. Assume by induction
that J�

kþ1ðxÞ ¼ Jkþ1ðxÞ. For compactness of notation
we introduce new notation for the cost function
and constraints. First, let ���n ¼ ð�n, . . . ,�N�1,�NÞ and
���n ¼ ð�n, . . . ,�N�1,�NÞ. Then we lety

Cnðu,�nþ1Þ

¼

ðtnþ1

tn

�nðt,X , uÞdtþ wnþ1jC1,nþ1Xðtnþ1Þ � �nþ1j
2

Cnðu, ���nþ1Þ ¼
XN�1

k¼n

�ðtkþ1

tk

�kðt,X , uÞdt

þ wkþ1jC1,nþ1Xðtkþ1Þ � �kþ1j
2

�
Unðx, ���nþ1Þ

¼ u 2 Mðtn, tNÞ:

dX ¼ ðAkX þ BkuÞdt

þGkðXÞdZ, t 2 ½tk, tkþ1�,

XðtnÞ ¼ x

Etn,xfC2,kþ1Xðtkþ1Þg ¼ �kþ1,

k ¼ n, . . .N � 1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

8>>>>>>>><>>>>>>>>:
yIn the definition of Cnðu,�nþ1Þ and Cnðu, ���nþ1Þ we

implicitly assume that XðtÞ satisfies the stochastic differential
equations in the definition of Unðx,�nþ1Þ and Unðx, ���nþ1Þ,
respectively.
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and finally Unðx,�nþ1Þ is defined similarly but only on
the time interval ½tn, tnþ1�. We have

J�
n ðxÞ ¼ min

u2Unðx, ���nþ1Þ
Etn,x

(XN�1

k¼n

�ðtkþ1

tk

�kðt,X , uÞdt

þwkþ1jC1,kþ1Xðtkþ1Þ � �kþ1j
2

�)
¼ min

u2Unðx, ���nþ1Þ
Etn,xCnðu, ���nþ1Þ

¼ min
u12Unðx,�nþ1Þ

Etn,x
n
Cnðu1,�nþ1Þ

þ min
u22Unþ1ðXðtnþ1Þ, ���nþ2Þ

Etn,x Cnþ1ðu2, ���nþ2Þ jXðtnþ1Þ
� �o

¼ min
u12Unðx,�nþ1Þ

Etn,x
n
Cnðu1,�nþ1Þ

þ min
u22Unþ1ðXðtnþ1Þ, ���nþ2Þ

Etnþ1,Xðtnþ1Þ Cnþ1ðu2, ���nþ2Þ
� �o

¼ min
u2Unðx,�nþ1Þ

Etn,x Cnðu,�nþ1Þ þ J�
nþ1ðXðtnþ1ÞÞ

� �
¼ min

u2Unðx,�nþ1Þ
Etn,x

n
Cnðu,�nþ1Þ þ Jnþ1ðXðtnþ1ÞÞ

o
¼ JnðxÞ

where the Markov property was used in the third
equality and the induction hypothesis in the fourth.

œ

Proof of Proposition 2: We use the compact notation
introduced in (7) and (8) after the proposition. If we
apply the Lagrange multiplier rule to (8) then we obtain

Vðx0,�, t0, tf Þ

¼ max
�

min
u2Mðt0, tf Þ

Et0,x0

(ðtf
0

½bXX TbQQ bXX þ 2bXX TbSSu
þ uTbRRu� dtþ bXXðtf Þ

TbQQ0
bXXðtf Þ þ 2�TbCCð�ÞbXXðtf Þ

)
subject to dbXX ¼ ðbAAðtÞbXX þ bBBðtÞuÞ dtþ bGGðt,XÞ dZ,bXXðt0Þ ¼ bxx0:

The solution to the inner optimization can be obtained
from the Hamilton–Jacobi–Bellman equation (HJBE)

�
@V

@t
¼ min

u2Rm

(bxx TbQQbxxþ 2bxx TbSSuþ uTbRRu
þ
@V

@bxxT

ðbAAbxxþ bBBuÞ þ 1

2

Xn
i¼1

Xn
j¼1

aij
@2V

@xi@xj

)

Vðx, tf Þ ¼ bxx TbQQ0bxxþ 2�TbCCð�Þbxx

where

aij ¼ ð��T
Þij ¼

Xn
k¼1

xkGk

 ! Xn
l¼1

xlG
T
l

 ! !
ij

¼
Xn
k, l¼1

xkxlGkiG
T
lj

where Gki is the ith row of Gk. With the value function
Vðbxx, tÞ ¼ bxx T �PPðtÞbxx we get

1

2

Xn
i¼1

Xn
j¼1

aij
@2V

@xi@xj

¼
1

2

Xn
k¼1

Xn
l¼1

xkxl trðG
T
kPGlÞ ¼ bxx TP̂Pð �PPÞbxx:

If we plug Vðbxx, tÞ ¼ bxx T �PPðtÞbxx into the HJBE we get the
optimal control u ¼ �bRR �1

ð �PPbBBþ bSSÞTbxx, and that the
following Riccati equation must hold

_�PP�PPþ bAA T �PPþ �PPbAAþ bQQþ P̂Pð �PPÞ ¼ ð �PPbBBþ bSS ÞbRR�1
ð �PPbBBþ bSSÞT

with boundary condition �PPðtf Þ ¼ bQQ0 þ enþ1�
TbCCþbCC T�eTnþ1, where enþ1 ¼ ½0 � � � 0 1�T 2 R

nþ1. The opti-
mal cost becomes

Vðx0,�, t0, tf Þ ¼ max
�

bxx T
0
�PPð�, t0Þbxx0: ð13Þ

To perform the optimization with respect to � we need
to obtain an explicit expression of �PP as a function of �.
It turns out that we can use

�PP ¼ bPPþ bNN� eTnþ1 þ enþ1�
TbNN T

� �T bWW�enþ1e
T
nþ1

where bPP, bNN and bWW are given in (7). This follows since

�PPðtf Þ ¼ bPPðtf Þ þ bNNðtf Þ�e
T
nþ1 þ enþ1�

TbNNðtf Þ
T

� �T bWWðtf Þ�enþ1e
T
nþ1

¼ bQQ0 þ enþ1�
TbCC þ bCC T�eTnþ1

and

_�PP�PP ¼ �bAA TbPP� bPP bAA� bQQ� P̂Pð �PPÞ þ ðbPPbBBþ bSSÞbRR�1
ðbPPbBBþ bSS Þ

T

� ðbAA� bBB bRR�1
ðbBB TbPPþ bSS T

ÞÞ
TbNN�eTnþ1

� enþ1�
TbNN T

ðbAA� bBB bRR�1
ðbBB TbPPþ bSS T

ÞÞ

� �TbNN TbBBbRR�1bBB TbNN�enþ1e
T
nþ1

¼ �bAA T �PP� �PPbAA� bQQ� P̂PðbPPÞ þ ð �PPbBBþ bSS ÞbRR�1
ð �PPbBBþ bSSÞT

which follows since

bAA T
ðenþ1�

TbNN T
þ �T bWW�enþ1e

T
nþ1Þ ¼ 0bBB T

ðenþ1�
TbNN T

þ �T bWW�enþ1e
T
nþ1Þ ¼ 0:
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The optimization in (13) thus becomes

max
�
bxx T

0 ð
bPPðt0Þ þ bNNðt0Þ�e

T
nþ1 þ enþ1�

TbNNðt0Þ
T

� �T bWWðt0Þ�enþ1e
T
nþ1Þbxx0

¼ bxx T
0 ð
bPPðt0Þ þ bNNðt0Þ bWWðt0Þ

�1bNNðt0Þ
T
Þbxx0

and the optimal Lagrange multiplier is � ¼ bWWðt0Þ
�1bNNðt0Þ

Tbxx0. Finally, the optimal control becomes

u ¼ �bRR�1
ðbBB T

ðbPPþ bNN bWWðt0Þ
�1bNNðt0Þ

Tbxx0eTnþ1Þ þ
bSSÞbxx

¼ �bRR�1
ðbPPbBBþ bSSÞTbxx� bRR�1bBB TbNN bWWðt0Þ

�1bNNðt0Þ
Tbxx0:

It is straightforward to show that Et0,x0

fbCCð�ÞbXXðtf Þg ¼ 0 when using this control, i.e. the con-

straint is satisfied. This proves that we have obtained

an optimal solution (Øksendal 1998). Considering

the optimal control problem from the ‘initial point’

ðt, xðtÞÞ gives the following feedback formulation of the

optimal control u ¼ �bRR�1
ððbPPþ bNN bWW�1bNNT

ÞbBBþ bSSÞTbXX.

We note that under the conditions of the proposition

there exist solutions �PP and bPP to the Riccati equations

that are involved in the proof. Indeed, the special struc-

ture of the system matrices implies that only the upper

left blocks of �PP and bPP satisfy nonlinear equations, which

are identical to the first equation in (6). The other blocks

corresponds to p and � in (6). Hence, the existence of
�PP and bPP follows from Remark 1. œ

Proof of Proposition 3: The dynamic programming

recursion is

JkðxÞ ¼min
u

Etk,x

�ðtkþ1

tk

½bXX TbQQk
bXX þ 2bXX TbSSkuþ uTbRRku�dt

þwkþ1j
bCC1,kþ1ð�kþ1Þ

bXXðtkþ1Þj
2
þ Jkþ1ðXðtkþ1ÞÞ

�

subject to

dbXX ¼ ðbAAkðtÞbXX þ bBBkðtÞuÞdt

þ bGGkðt,XÞdZ, bXXðtkÞ ¼bxx
Etk,xfbCC2,kþ1ð�kþ1Þ

bXXðtkþ1Þg ¼ 0

8>>><>>>:
JNðbxx Þ ¼ 0:

It follows from the discussion preceding the propo-

sition that

JN�1ðxÞ ¼ bxx T
ðbPPN�1ðtN�1Þ

þ bNNN�1ðtN�1Þ
bWWN�1ðtN�1Þ

�1bNNN�1ðtN�1Þ
T
Þbxx

where all variables are defined as in the proposition andbPPN�1ðtNÞ ¼ wN
bCC1,Nð�NÞ

TbCC1,Nð�NÞ. In the next recur-

sion we get an analogous result except that now the

boundary condition will bebPPN�2ðtN�1Þ ¼ wN�1
bCC1,N�1ð�N�1Þ

TbCC1,N�1ð�N�1Þ

þ bPPN�1ðtN�1Þ þ
bNNN�1ðtN�1Þ

� bWWN�1ðtN�1Þ
�1bNNN�1ðtN�1Þ

T:

It is now obvious that the recursion continues as in the
proposition statement. œ

Proof of Proposition 4: Lagrange relaxation of the
inequality constraints gives in our compact notation

J0ðx0Þ ¼ max
�0�0

min
u2Mðt0, tN Þ

Et0,x0

(XN�1

k¼0

�
wkþ1jC1, kþ1Xðtkþ1Þ

� �kþ1j
2
þ �Tkþ1

bCC2, kþ1ð�kþ1Þ
bXXðtkþ1Þ

þ

ðtkþ1

tk

bXXTbQQk
bXX þ 2bXXTbSSkuþ uTbRRku

h i
dt

�)
subject to dbXX ¼ ðbAAkðtÞbXX þ bBBkðtÞuÞ dt

þ Gkðt,XÞ dZ, t 2 ½tk, tkþ1�, bXXðt0Þ ¼ bxx0:
We use a dynamic programming iteration with
JNðxÞ ¼ 0. The derivation in the proof of Proposition 2
gives at t ¼ tN�1

JN�1ðx, �
N�1

Þ

¼ max
�N�0

bxx T
ðbPPN�1ðtN�1, �

N
Þ þ bNNN�1ðtN�1, �

N
Þ�Ne

T
nþ1

þ enþ1�
T
N
bNNN�1ðtN�1, �

N
Þ
T

� �TN bWWN�1ðtN�1Þ�Nenþ1e
T
nþ1Þbxx

¼: max
�N�1�0

bxx T �PPN�1ðtN�1, �
N�1

Þbxx:
In the next iteration we get

JN�2ðx,�
N�2

Þ

¼ max
�N�1�0

min
u2MðtN�2,tN�1Þ

EtN�2,x wN�1j
bCC1,N�1ð�N�1Þ

bXXðtN�1Þj
2

n
þ�TN�1

bCC2,N�1ð�N�1Þ
bXXðtN�1Þ

þ

ðtN�1

tN�2

bXXTbQQk
bXXþ2bXXTbSSkuþuTbRRku

h i
dt

þ max
�N�1�0

bXXðtN�1Þ
T �PPN�1ðtN�1,�

N�1
ÞbXXðtN�1Þ

o
¼max

�N�1
�0

�N�1�0

min
u2MðtN�2,tN�1Þ

EtN�2,x

�
wN�1j

bCC1,N�1ð�N�1Þ
bXXðtN�1Þj

2

þbXXðtN�1Þ
T �PPN�1ðtN�1,�

N�1
ÞbXXðtN�1Þ

þ�TN�1
bCC2,N�1ð�N�1Þ

bXXðtN�1Þ

þ

ðtN�1

tN�2

bXXTbQQk
bXXþ2bXXTbSSkuþuTbRRku

h i
dt

�
¼: max

�N�2�0
bxxT �PPN�2ðtN�2,�

N�2
Þbxx
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where

�PPN�2ðtN�2, �
N�2

Þ

¼ bPPN�2ðtN�2, �
N�1

Þ þ bNNN�2ðtN�2, �
N�1

Þ�N�1e
T
nþ1

þ enþ1�
T
N�1

bNNN�2ðtN�2, �
N�1

Þ
T

� �TN�1
bWWN�2ðtN�2Þ�N�1enþ1e

T
nþ1:

The second equality, where minu2MðtN�2, tN�1Þ
and

max�N�1 are permuted follows from the Karush-Kuhn–
Tucker theorem (Balakrishnan 1976). Indeed, the
optimization problem involves a convex cost and convex
constraints so the Lagrange function satisfies a saddle-
point condition, which implies that the min and the
max commutes. In the third equality we used the same
arguments as in the proof of Proposition 2. If we
continue the recursion we obtain (12).
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