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Trajectory planning for systems with a multiplicative stochastic uncertainty

ULF T. JONSSON{*, CLYDE MARTIN} and YISHAO ZHOU$

A trajectory planning problem for linear stochastic differential equations is considered in this paper. The aim is to control
the system such that the expected value of the output interpolates given points at given times while the variance and an
integral cost of the control effort are minimized. The solution is obtained by using the dynamic programming technique,
which allows for several possible generalizations. The results of this paper can be used for control of systems with a
multiplicative stochastic disturbance on the state vector and systems with a stochastic growth rate. This is frequently
the case in investment problems, biomathematics and control theory.

1. Introduction

The theory of control theoretic splines is concerned
with controlling the state or some measured quantity of
the state to given values at discrete times. That is, given
a system of the form

x =f(x) + ug1(x) + - + wrgi(x)
and
y=0Cx

where x € R" and y € R”, we look for a system of
controls that drive the output through or close to a
prescribed sequence of set points

() =ezi=1,...,N}.

We call the generated output function an interpolating
spline if it exactly interpolates these points, otherwise it
is called a smoothing spline. The term control theoretic
spline refers to the way the spline function is con-
structed, i.e. as the output of a dynamical system
driven by a control function. The dynamics can
either be a model of a system to be controlled or an
auxiliary model that helps to define the form of the
constructed spline function. Much of the literature
surveyed below considers the case when the dynamics
is linear and the spline function is generated as the
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solution of an optimal control problem. In this paper
we consider a version of this problem where there is a
multiplicative stochastic uncertainty in the dynamics. It
is then no longer possible to obtain exact interpolation
and instead we let the expected value interpolate the
given point at the same time as the variance and
the expected value of an integral quadratic cost along
the trajectory are minimized. By minimizing the vari-
ance at the interpolation points we minimize the effect
of uncertainty due to the diffusion term in the system
equation.

Interpolating splines have been important since the
1960s as a tool in numerical analysis. A quick review of
the literature shows a tremendous jump in the number
of papers related to splines around 1970 which corre-
sponds to the availability of computers for numerical
calculations. Smoothing splines were first used in the
1960s but it wasn’t until Grace Wahba did a systematic
development that they become important in statistics.
Wahba’s book (Wahba 1990) is an important reference
that is basic to understanding the myriad applications of
smoothing splines as a tool in non-parametric statistics.
The first appearance of control theoretic interpolating
splines was an application to trajectory planning for
aircraft in a seminal paper of Crouch and Jackson
(1990). Wahba’s development of smoothing splines
was very much in the spirit of control theoretic smooth-
ing splines but she was only interested in polynomial
splines. To our knowledge the first work on general
control theoretic smoothing splines was in Sun et al.
(2000). Control theoretic splines have been applied to
trajectory planning for aircraft (Crouch and Jackson
1990), to wildlife tracking (Egerstedt and Martin
2003), to trajectory planning for robots (Egerstedt
and Martin 2000) and, of course, to many problems
in curve estimation and to many different problems in
statistics.

Interpolating splines are useful when the data is
known to be exact and it is required for a curve to
exactly pass through a specific set of points. In most
applications exactness is not required and it suffices
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for the data to be close to the constructed curve.
Smoothing splines were designed for exactly this
purpose. In statistics the general object is to fit a curve
to data in such a manner that the error between the
data and the constructed curve has nice statistical prop-
erties, for example normally distributed. For control
theoretic splines the object was and is slightly different.
Here we want a trajectory that is close to the given
data points but we seek a trade-off between exactness
and cost. For example in aircraft applications, exactness
often comes at the price of large accelerations and hence
increases in fuel usage. In this paper we take a different
approach. We place the uncertainty in the dynamics
and require exactness in terms of expected value. So
both this approach and the approach of smoothing
splines have the effect of filtering the noisy data. For
many problems the approach of this paper is the most
natural.

While there is a great deal of literature on the prob-
lem of constructing splines using deterministic methods
there is little if any literature on the construction
of splines using stochastic dynamics. However, there
are many problems ranging from biological to economic
to trajectory planning where the dynamics can be
naturally considered as stochastic. This is the motivation
for writing this paper. In earlier work by Zhou and
Martin and other collaborators the problem of deter-
ministic splines was attacked by obtaining explicit
solutions to the output of the system and then
optimizing the cost over the control; see for example
the techniques in Martin et al. (2001). In this paper a
more powerful technique is used for the optimization—
dynamic programming. This is a necessary step to
finding the solution and allows one to use standard
techniques of solving the problem locally and showing
the explicit dependence of the solution on the Riccati
equation. It has the additional advantage in that it
directly leads to feedback solutions of the corresponding
control problem. We also solve the problem using
inequality constraints on the output and we present a
complete example of using the method for solving the
trajectory planning problem for a mobile robot. Here
the combined effect of surface irregularities, friction,
and other disturbances is modeled as a multiplicative
stochastic disturbance. Further examples and several
possible generalizations are discussed in the concluding
remarks.

2. Stochastic trajectory planning

We consider a trajectory planning problem where a
stochastic disturbance enters the differential equation.

As our basic problem we consider

Jo(xo)
N-1
= min Wip Var{CX (¢
wepin ; i1 Yar{CX (441)}

Iy
+ Elo0 ” |u|2dl}
0

dX = (AX + Bu)dt

. + G(X) dZ, X(l()) = Xp
subject to .
ECX ()} = gyt
k=0,...,N—1

(M
where wy > 0 and (A4, B) is a controllable pair. The last
term in the stochastic differential equation corresponds
to a multiplicative noise on the state vector defined by
an m-dimensional Brownian motion Z,. In other words,
Z, is a process with zero mean and independent incre-
ments, i.e. E{dZ,dZ} = 8(t — s)Id¢, where § denotes the
dirac function. We assume that G(x) is a linear function
on the form

G(x) = Z x;G;
i=1

where G, e R, In (1), E™ is the expectation
operator given that X(#)) =x, and Var{CX(z)} =
E™ {(CX (1) — E" ™ (CX(1)))).

We consider optimization over all Markov controls,
i.e. feedback controls on the form u(t, w) = u(t, X (¢, w)).
We let M(t,,ty) denote the set of Markov controls on
an interval (zy,1y). It can be shown that our optimal
solution is also optimal over all F, adapted processes,
where F, denotes the o algebra generated by Z; for s < ¢
(see, e.g. Dksendal 1998).

It turns out that there will be linear and constant
terms in the value function due to the variance term in
the objective function. It is therefore no essential
addition in complexity to consider a more general path
planning problem, where we allow the dynamics to be
time-varying and different from stage to stage. We also
consider integral costs that penalize the state vector.
This gives the following generalization of (1)

N—-1
JO(XO) = min E™Y Wis |C1 . 1X(t/ 1)
ue M(ty,ty) ;( + k+ e+

Ti1
_ﬂk+]|2+J G/c(la X: u)d[>}

175
dX = (A, ()X + By (t)u)di
+G(,X)dZ, tety, tiy]

subject to X(tg) = xy
E" Y Cy 1 X (1)} = 011,
k=0,....N—1

2
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where
o (t,x,u) = xTQk(t)x +2xTS (Du + u' R (1)
+2q(0)" x + 25 (D) u + 04(0)
and

n

G(t,x) =Y %Gy (1)

i=1

and where everything else is defined in a similar way as
in (1). Here Ay, By, Ok, ...,pr and Gy ; are piecewise
continuous functions of time and all pairs (A4,(¢), Bi(t))
are assumed to be completely controllable and the cost is
strictly convex, which is the case if for all 7 € [#;, #;41],
k=0,...,N—1, we have

R(H)>0 and [g’f(([’))T fe’;((?)} 0. ()

Note that if C;=C,=C and «a =8, then
E™{|CX (1) — B’} = Var{CX (1,)}.
Let us define the cost-to-go functions

N-
= ' o X ‘ , )= By P
Ji(x) _ue/\r/lll(ltBtN)E {Z(WH—l'Cl,H—lX(tH-I) Bil

i=k

liv)
+J oi(t, X, u)dt) }
1

dX = (A,()X + Bi(tyu)dt + G(1, X)dZ,

. te [liv Zi+1]n X([k) =X
subject to o
ECy i1 X (L)} = gy
i=k,....,N—1
)
JN(X) =0.

Due to the Markov property of the stochastic differen-
tial equation we can use dynamic programming to
solve (1). We next state two propositions and then the
main result that solves (1). The first states the dynamic
programming recursion.

Proposition 1: The optimal cost satisfies the following

dynamic programming equation

J(x)= min
K ue Mt 1141)

liet1
Et"’x” o (t, X, u)dt

173

A Wit |t X(t)) = Bt I + Jk+1(X(lk+1))}

dX = (A ()X + By (Hu)ds
G X)AZ, X(1) = x

E"Co 1 X (1k41)} = gy

subject to

Proof: The proof is based on a standard dynamic
programming argument and is given in the appendix
for completeness. Ll

The next proposition states the solution to the sto-
chastic optimal control problem in (5) below. It shows
that Ji(x) is a quadratic function which is instrumental
in solving the dynamic programming iteration. Let

.]/
V(xg,a, ty,t;)= min E“ 8| o(t, X (1), u(f))dt
' ue M(ty,tr) t

+X(szQoX(rf)+2quX(t,~>+@o}

dX = (A()X + B()u)dt+ G(t,X)dZ,

subject to X(t9) =Xy

E"™{CX (1)} =a
)
where
o(t, x,u) = x  Q(0)x + 2x" S()u + u" R(t)u
+2q(t) ' x +2r(t) 'u + o(t)
and where Q, R and S satisfy the conditions in (3).
Proposition 2: We have
V(xo,a, o, ty)
= g P(1)Xo + 2p(to) ' xo + plto)

+ (N(19)" o + m(1)) " W(to) ™ (N (1o)X + m(1g))

where

P+ AP+ PA+Q+ (P
=(PB+S)R'(PB+S)", P(t;) =0,
N+(A—BR'(PB+S)TN=0, N()=C"

p+(A—BR'(PB+S) p+g

=(PB+ SR 'r, plty) =qo
W+N'BR'B'N=0, W()=0
m=N"BR'(B'p+r), mt)=—a

pre=@+Bp) R+Bp), pl)= 0o
(6)
and where I1(P) is a linear matrix function with elements
1(P), ;= %tr(GzPGl). The optimal control is
' =—R ' PB+S)'X—R'B"Nv—R'Bp+r)
with v = —W(15) " (N(t) " xo + m(ty)).
Proof: The proof is done by Lagrangian relaxation

of the linear constraint. See the appendix for the
complete details. O
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Remark 1: If Q, R and S satisfy condition (3), then the
linearly perturbed Riccati equation in (6) has an abso-
lutely continuous unique positive semidefinite solution
(Wonham 1968). All other differential equations in (6)
are linear with bounded piecewise continuous coeffi-
cients, which ensure existence of unique absolutely con-
tinuous solutions. Note also that we have W (¢) > 0 for
t € [ty,1;) by the complete controllability of the pair
(A(1), B(1)).

Remark 2: If the stochastic term in (1) and (2) is
removed then we obtain a deterministic trajectory plan-
ning problem. The solution to the deterministic problem
is obtained by omitting the term [I(P) in the Riccati
equation above.

In order to obtain a compact notation we introduce

5 [ qo] A:[Q q] §:[S}
o _quQo’Q ¢ ol r
p-[? f’] ﬁ—[N} W—w. R=R
_-pT p s - mT > - > -
i=[* % 3=[%] éw-=ic
—_0 0:|a —I:Oi|9 (Ol)—[ —Ol]
. [Gtx)] .= [HP) 0
G(t,x)__ . } H(P)_[ . o]
7

If we finally let X = [X" 1]" and % =[x} 1]" then the
optimization problem (5) can be written

V(xo, o, ty, tr)

/N ~ ~
— min E’O’X"” [XTOX +2X"Su+u" Ru)ds
ueM(ty, ty) f

+ )?(tf)Téo)?(zf>}
dX = (A(HX + B(u)dr + G(1, X)dZ,
X(tg) =%y

subject to

E"(C@)X(1,)} =0
(3)

and the optimal solution can be written
V(xos 1o, 1) = %8| Plto) + Nao) W (10)™ )" [
where

P+A"P+PA+Q+I1(P)

N+A-BR'PB+S)'N=0, N(1)=C"

W+N"BR'B'™N=0, W(,)=0.

The optimal control is
w=—R Y PB+8)'x—R'B'NW(1y) 'N(ty) %
There is an equivalent feedback form given as u* =
—RY(P+NWI'NHB+9'X.
We can now state the solution of the general stochas-
tic trajectory planning problem in (2).

Proposition 3: Consider the optimal control problem
in (2), where the condition (3) holds. The optimal
Markov control in each time interval [t,t.1] is (all
variables are defined analogously with (7))

U (1) = = Re(t) " (P(0) Bi(1) + Si(0) " X (1)
— Ru(t) ' B " N Wi(1) " Ni(10) "X (1)

where fork=N—1,...,0

;;k + AL P+ Py + Oy + I1(PY)
= (PcBy + SR (PB, + 50"
ﬁk + (4, — BR; (P B, + S)")'N, =0,
ﬁk(tkﬂ) = 62,k+1(ak+l)T
Wk +N{B.R'BIN. =0, W(tx;1)=0

and where Py_i(ty) = wyCy v(By) Ci.v(By) and for
k=N-2,N—=3,...,0

Pi(tis1)=Pi1(tiy ) + Nt Gy DWia ()™

. T ~ A
X Nip1 (1) +Wiet1 Cr 1 Bier 1) C i1 (Bieg1)-

The cost-to-go is
S 5 o -1 T~
) = %[ Puta) + Ne(t) W)™ NG |

Proof: By dynamic programming. See details in the
appendix. [

The formulation of Proposition 3 in the compact
notation (7) gives appealing formulas but in a numerical
implementation it is more efficient to perform computa-
tions using a system on the form (6). For the basic
trajectory planning in (1) this reduces to the following
result.

Corollary 1:  Consider the optimal control problem in (1),
where the pair (A, B) is controllable. The optimal Markov
control in each time interval [t;, t,,] is

u*(t) = —R'BTPL()X(t) — R™'B'N(H)v, — R™'BTpi(1)
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with vy = =W (1) "(N(1) X (1) + myi (1)), where
P+ AP, + P A+1(P,)=P,BR'B"P,
Ny +(4—BR'B"P)'N, =0,

pe+(A—BR'B"P) p =0
) . ©)
Wi+ N¢BR'B'N, =0
my, = N\BR™'Bp,
px = pi BR™'B' py

where II(Py) is a linear matrix function with elements
H(P),, = % tr(Gf PG)) and the boundary conditions are

Pi(tis1) = Prii(fie) + Nyt (e ) Wi ()™
X Ni1(trs) "+ wi CTC

Prtir1) = Pt (tesn) + N1 (s ) Wi (i) ™!
X My 1 (Trg1) + Wi CTO‘kH

Prties1) = Pt (tsr) + My (G ) Wi (t) ™!

T
X My 1 (1) + Wi 1 0 1 Qe

and Ni(ty1) = C' my(ts1) = =y and Witgy1) = 0.
The optimal cost-to-go is

Ji(x) = xT Pe(t)x + 2p(t) "X + p(t) + (N (1) x
+ my () Wit) ™ (N (t) " x + my (1),

3. Path planning for mobile robot

We consider the problem of steering a robot from
rest at an initial condition (-5, 1) to rest at the final
position (—1, 5) in such a way that it stays inside the
corridor in the upper left part of figure 1. The dynamic
model of a mobile robot with the centre of the wheel axis
as a reference point will be non-linear and non-
holonomic. However, by moving the reference point to
an off-axis point it is possible to feedback linearize the
dynamics (see e.g. Laumond 1998). We use a feedback
linearization of a unicycle model derived in Lawton et al.
(2000)

y=u-+e.

Here we have added a noise signal e that takes into
account friction, irregularities in the floor, and other
error sources. If we let the components of the noise
be modelled as dE; = y;dW,;, where a W is a two-
dimensional Brownian motion, then the robot dynamics
can be modelled by the stochastic system

dX = (AX + Bu)dt + G(X)dW
Y =CX

where
0 1 0 O 0 0
0 0 0 O 1 0
A == ) B == )
0 0 0 1 0 0
0 0 0 O 0 1
0 0
1 0 X2 0
C= , G(x)=
| 0 0 0O O
0 X4

Let us use the design equation

min £ {wl CXB3) = oy + 15| CoX(6) — s

6
+J |u|2dt}
0
subject to

dX = (AX + Bu)dr+ G(X)dW, X(0) = x
{ E"GX3)) = E"{C3X(6)) = a3
(10)

where

1
0
0
0

The idea behind the optimization problem is to divide
the control problem into two stages. First, we steer the
robot to the switching surface C,x = a, in such a way
that the expected deviation from the point Cjx = ¢ is
small. Then in the next stage we steer to the final
position x = @3 in such a way that the variance of the
deviation from this point is small. The integral cost is
introduced to keep the expected control energy small.
With the weights w; =7 and w, = 1 we get the result
in figure 1. We see from the lower plot that the expected
path of the robot stays well inside the corridor as
desired. It is possible to push the trajectory further
toward the middle of the corridor by adding an integral
cost Eo’x"{jg glCx — yo(1)]>dt}, where ¢ > 0 and y,(?) is
some nominal trajectory near the middle of the corridor.
The corresponding optimization problem still belongs to
the problem class considered in this paper.
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O Initial position
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Figure 1.

-5 -4 -3 -2 -1 0
Al

The upper left figure shows the initial and final positions for the robot. The upper right figure shows one realization of

the optimal path of the robot and the lower right figure shows the corresponding control signals, where u; corresponds to the
solid line and u, is the dashed line. The weights w; = 7 and w, = 1 were used in the optimization problem (10). Finally,
the lower right figure shows an estimate of the expected path obtained by averaging over 100 stochastic simulations.

4. Interpolation with inequality constraints

In this section we consider the case with interpola-
tion constraints on the form

o < E"C X (1)} < @y

This means that we consider

Jo(xo)
N-1 )
= min E©Y Wit |Cr k1 X (2 -
e {;( let 1 Crir1 X (Geg1) = Bresa |
Iit1
+J ok(t,X,u)dt>
Iy
dX = (A(D)X + Bu(u)di + Gy(1, X)dZ,
: telti,tin], X(t) =xq
subject to

Ay S EVC o X (411)) < @y
k=0,....N—1.
(11)

The assumptions on the system matrices are the same as
in the previous section. In the next result we use the
compact notation of the previous section with the excep-
tion that

~ Gy —o
cz,k(ak):[_gj] ak"]

We also use the notation A, = [XAT, A4]" for the Lagrange
multipliers corresponding to the interpolation inequal-
ities and let AN = ¢ and AF = A} ... )\LI]T.

Proposition 4: For k=N —1,N—2,...,0 let
ﬁk +Zgﬁk +ﬁk2k + Qk +ﬁk(ﬁk)
= (P(Bi + SOR; (P B + 5"
Ny + (4, — BLR;(PcB + SN "N, = 0,
ﬁk(lk+1,/\k+1) = Coppilayyn)”

W.+NTIBR{'BIN, =0, Wi(ty,)=0
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where ﬁN—l(tNa E WNa,N(ﬂN)Ta,N(.BN) and
Pyt A5
= Pttt ¥ + Wit €1t Bir) " Cin (Bisn)
Pi(ty, A1)
= Pi(t ) + e M Ni(t, 45F1)
+ Nt Y e = A Wit easieny

and where e,.; =[0 --- 0 1] € R"™. Note that P, and
]Vk depend quadratically, respectively linearly, on Ak
while W), is independent of \. The optimal cost function
is obtained as the solution to the following quadratic
optimization problem

max £9 Py(t, 2)%- (12)
I =[O s the maximizing argument

in (12) then the optimal control in each time interval
[tk, tiy1] is given as

(1) = RN (0(Pi(t, 2%)Bi(0) + Si(0) T X (1)
where
Pi(t) = Pr(t, %) + €1 (W) " Ni(2,17)
+ Ni (1, k*)TAZHeL] — (AITH)T Wk(I)AZHen-HeLI .

Proof: See the appendix. U

5. Concluding remarks

In this paper we considered and solved the trajectory
planning problem in (1) and some generalizations of it.
Such problems occur in a variety of settings and
there are many important application areas in which
the techniques of this paper are relevant. We have
already mentioned applications in trajectory planning
for robots and aircrafts. Other possible applications
are in population studies, and investment problems.
We considered a simple example of a model for housing
investments with variable interest rates in Jonsson et al.
(2002).

There are many possible generalizations of this
work. An important area is to consider problems that
are of mixed types. In the simplest such examples we can
assume that some data must be interpolated and some
must be smoothed. These problems can be attacked
using the methods of this paper. The potential applica-
tions of the techniques presented in this paper to
problems in economics and finance are enormous. In
this area it is interesting to consider generalizations to
models where the stochastic uncertainty multiplies the
control signal (Lim and Zhou 1999). Another extension
is to consider the construction of splines when the
dynamics are governed by two point boundary value
problems (see, e.g. Adams ez al. (1984 a,b) and Krener

(1978) for techniques and examples). An interesting
problem that remains open is to solve the problem
when there is a constraint such as

E(y(0) =0

for 0 <t < T where T is the final time. This particular
problem was solved by Zhou et al. (2001) in the deter-
ministic case. Both in the deterministic and the stochas-
tic cases the problem remains open for solving the
problem with constraints such as f(7) < E(y(¢)) < g(?)
for a <t < b. This current paper represents an impor-
tant first step in extending control theoretic splines to
the stochastic setting where these problems exist.
Dynamic programming is a powerful tool and fits the
needs of stochastic splines very well as is demonstrated
in this paper.
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Appendix

Proof of Proposition 1: Let J*(x) denote the optimal
cost-to-go function in (4). We will show that it satisfies
the stated dynamic programming iteration. Obviously,
we have Jy(x) =Jy(x)=0. Assume by induction
that J;, (x) = Jiy41(x). For compactness of notation
we introduce new notation for the cost function
and constraints. First, let &, = (@, ..., ay_1,ay) and
By = By ---»Bn_1,By). Then we lett

Co(tt, By1)

[r1+l
2
= J 0,(t, X, u) At + w1 |Cy 1 X (441) — Busil

Iy

N-l Lt
C”(M, Bn+l) = Z (J Uk([a X’ Ll)df

k=n Ik

+ Wit [Cr 1 X (trg1) — B |2>

un(xa O_ln-H)
dX = (4, X + Bru)dt
+ G (X)dZ, telt, il
=ue M(,ty): X(t,)=x
Et"’x{cz,kﬂx(lkﬂ)} = Uy,
k=n,...N—1

tIn the definition of C,(u,B,y1) and C,(u,B,1) we
implicitly assume that X(7) satisfies the stochastic differential
equations in the definition of U,(x,w,;) and U,(x, &, ),
respectively.
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and finally U,,(x, «,,) is defined similarly but only on
the time interval [7,, 7,,1]. We have

Nl L1
Ji(x)= min E™* op(t, X, u)dt
=, min }j(j (0 X )

k=n 173

+ Wit |Cr i1 X (1) — Bier |2> }

Etm xcn(ua /§n+1)

= min
ue U, (x,0,41)

= min
up €Uy (X, 0ty 1)

E . Ben)

+ min
Uy €U 1 (X (Ly41) Upg2)

E{Cur, B

E["’x{cn+l(u23 Bn+2) | X([”Jrl)} }

= min
up €Uy (X, oty 1)

min Elm: XD [0 U, B }
€Uy 1 (X (41), Cny2) { ”+1( ? ﬂn+2)}

= min Etmx{cn(u, ﬂn+l) +J:+1(X(ln+l))}

ueUy,(x, 0,41)

= min
ue U, (X, a,11)

= Ju(x)

Etn,x{cn(u’ Bui1) + J”"'I(X(I"H))}

where the Markov property was used in the third
equality and the induction hypothesis in the fourth.
Il

Proof of Proposition 2: We use the compact notation
introduced in (7) and (8) after the proposition. If we
apply the Lagrange multiplier rule to (8) then we obtain

V(Xo, o, tO’ lf)

= max min

U o~ o~ PN
E’O’x‘]“ XTOX +2X"Su
L ueMlty, 1) 0

+u" Ruldr + X (1,)" 00 X (1) + 2)?6(@)?(3)}

subject to  dX = (A()NX + B(tyu)dt + G(1, X)dZ,

X(1)) = %.

The solution to the inner optimization can be obtained
from the Hamilton—Jacobi—Bellman equation (HJBE)

14
—— =min {X Qx + 2% Su+u"Ru
ot ueR”

+_A (A% + Bu) +5 ZZ Uaxax}

V(x,1p) = 1003+ 22 C(e)%

where

o))
k=1 =1 if

n
T
= E XX GGy
k=1

where Gy; is the ith row of G;. With the value function
V(X, 1) =X "P(1)X we get

222 ”axax

Z > xx (G PGy = X TH(P)R.

/c =1

If we plug V(X,1) =X P(t)x into the HIBE we get the
optimal control u = —R _l(PB + S) X, and that the
following Riccati equation must hold

P+ AP+ PA+0Q+II(P)=(PB+S)R"(PB+ 35"

0o + eny1h TC+

with boundary condition P(lf)
€ R"™'. The opti-

6Tke;+1, where e, ; =[0 --- 0 1]"
mal cost becomes

V(xo. 0t . ) = max XeP(h, 19)p. (13)

To perform the optimization with respect to A we need
to obtain an explicit expression of P as a function of A.
It turns out that we can use

13 = i;—’— ﬁ)\, 6;_,_1 + B,H_])\.T]VT — )\.T V/I;)»enﬂe‘;_,_l
where P, N and W are given in (7). This follows since
5 B 5, T T, \T
B(y) = B(y) + N(tpheras + e, N(1y)
-t W(Z/-)Aen+] Cnti
= Qg+ euir C+Clieny,
and
P=—A"P—PA-Q-1(P)+(PB+5R'(PB+5)
—(A—BR'B"P+S") Nl
— e, \'NT(A—-BR '(B"P+5"))
— ATﬁTﬁﬁ_] ETﬁke,H_] 6:5_;,_1
=—A"P—PA-Q0-1(P)+(PB+8)R'(PB+S)"
which follows since
ZT(en-H)LTﬁT +27 WkenﬂeLl) =0
§T(€n+1ATﬁT +27 W)‘enJrleZH) =0.
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The optimization in (13) thus becomes
max g (P(to) + N(to)hey 1 + eua AT N(10)"

— AW (t)hens1€n11)%0

= X0 (P(ty) + N(10) W (2o) "' N(10) )Ry

and the optimal Lagrange multiplier is A = I/IA/(IO)_l
N(15)'%,. Finally, the optimal control becomes

u=—R " BTP+NW(ty) "N(tp) Zpel, ) + Sx
=R 'Y PB+8)'x— R 'B"NW(t,) ' N(1)"%.

It is straightforward to show that E™™
{6(01))/(\((,-)} =0 when using this control, i.e. the con-
straint is satisfied. This proves that we have obtained
an optimal solution (WJksendal 1998). Considering
the optimal control problem from the ‘initial point’
(2, x(7)) gives the following feedback formulation of the
optimal control u = —R_l((I?+ ]VW_IZVT)§+ :S’\)Tj’\
We note that under the conditions of the proposition
there exist solutions P and P to the Riccati equations
that are involved in the proof. Indeed, the special struc-
ture of the system matrices implies that only the upper
left blocks of P and P satisfy nonlinear equations, which
are identical to the first equation in (6). The other blocks
corresponds to p and p in (6). Hence, the existence of
P and P follows from Remark 1. ]

Proof of Proposition 3: The dynamic programming
recursion is

li1

Jk(x) = min Elk"x{J [)/(\ Q\k)/(\+2yT§ku+ uTﬁku]dl

Ik

+ Wig |6l,k+l(:3k+l)/?(tk+l)|2 + Jk+1(X(fk+1))}
dX = (A.(HX + Bu(Hu)dt
+G(t,X)dZ, X(1,)=%

E"”x{az,kﬂ(Olk+1)1?(lk+1)} =0

subject to

It follows from the discussion preceding the propo-
sition that

Tno1(x) =X (Py_i(ty-1)
+ Nyoi ()W ()™ Ny ity ) DHE
where all variables are defined as in the proposition and

i’\N,l(tN)zwNal,N(,BN)Tal’N(ﬂN). In the next recur-
sion we get an analogous result except that now the

boundary condition will be
Py oty ) = wy_1C1 v 1(By-1)"Crv—1(By_1)
+ Py_i(ty—1) + Ny_i(ty-1)
x Wy_1(ty_) "Ny 1(ty_)"

It is now obvious that the recursion continues as in the
proposition statement. ]

Proof of Proposition 4: Lagrange relaxation of the
inequality constraints gives in our compact notation

N-
Et“’x“{ Z <Wk+l |C1 k1 X (Trg1)

k=0

Jo(xg) = max min
030 20>0 ueMl(ty, ty)

— Bl + )‘1-5+1C2,k+1(ak+1)j;(tk+l)
lie+1 PN A -
i

subject to  dX = (A(HX + B, (H)u)dt
+ Gk(l’ X) dZ’ re [Zka tk-H]a j;(l()) = SC\().

We wuse a dynamic programming iteration with
Jn(x) = 0. The derivation in the proof of Proposition 2
gives at t = ty_;

Ty_1(x, AN

PRt ~ -
= max x (Pyoi(tn—1, M) + Ny i (v, A )dyensn
NZ

+ ep i AvNy_ (ty_1, AT

T 177 T ~
— ANWyi(tvmDAN e 1€n41)X

=: max fTPN,I([N,I,)»Nil)SC\.
AWN=1=0

In the next iteration we get
JN—Z(X’)"N_Z)

. IN_2.X =~ v, 2
=max; i )E N X{WN—I [Crv—1(Bn—1)X (ty-1)I
N—-1Z N-25!N-1

+an 1 Conr(an- DX (ty_1)
INCUE PN e

+J [XTQkX+2XTSku+uTRku]dt
IN-2

+ max Koy )" Py (v, X))

AN-T150
. IN_25 =~ v, 2
=max  min  EN Y{WN—l|Cl,N—l(,31\/—1)XUN—1)|
WNlzoue M(ty_a,ty_1)
AN-120

+X(ty ) Py i (ty 1 2N DX (y 1)
+an 1 Conr(an DX (ty_1)
In_1 PN PN ~
+J [XTQ,(X+2XTS,Cu+uTRku]dl}
IN-2

=: max 2T13N,2(fN72,)\.N_2)5C\

)L'V_ZZO
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where

5 -2

Py oty 2, A7)
= N-ly |, & N-1 T

= Pyn_o(ty-2, 2" ) + Ny o(tn—a, A7 )An_1€pp1
T o N—INT

+ e iAo Ny o(ty_2, A7)
— AN Wty D)y 1€np1nsi-

The second equality, where min, ey, ,. ) and
max,~-1 are permuted follows from the Karush-Kuhn—
Tucker theorem (Balakrishnan 1976). Indeed, the
optimization problem involves a convex cost and convex
constraints so the Lagrange function satisfies a saddle-
point condition, which implies that the min and the
max commutes. In the third equality we used the same
arguments as in the proof of Proposition 2. If we
continue the recursion we obtain (12).
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