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Discrete-Time System

| B

Discrete-time system

discrete-time G discrete-time
signal signal

Discrete-time signal: sequence
m Underlying “time”: discrete
Z,:=1{0,1,2,3,...}
Z={...,-2,-1,0,1,2,...}
m Taking values
Real vector
Complex vector

L m Notation: x[k] J
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State-Space Model

B

State-space model for

m causal
m finite-dimensional input output
m linear, and u G Y

ulk] € R™

m time-invariant y[k] € RP

discrete-time systems:
xlk+1] | | A B || «[k]
ylk] | [ C D || ulk]

AeR™, BeR™, CeR", DeR"™

]
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Internal Stability Stabilizability

Solution to x[k +1] = Ax{k] + Bu[k]: Definition | (A, B) is stabilizable
k-1
x[k] = A*[0] + ) © A¥1Buli] &L, Ip ¢ R such that eig(A + BF) ¢ ID
i=0
Theorem | SAE
Theorem | Fix u[k] =0 m (A, B) is stabilizable

x[k] >0 (k— o), Yx[0]
& eig(A)cD
& pA)<1

lrank[zI—A B]:n, "zeC\D

lrank[zl—A B]zn, Yzelz: z € eig(A), z ¢ D}

LNote: 1 various definitions of stability

L |
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Reachability and Controllability Detectability
Definition | (A, B) is reachable Definition | (A, B) is detectable
&L Fix x[0] = 0. ¢, {ulk]}!_, such that x[¢] = x1, 'x, &L, 31 e R™% such that eig(A + LC) ¢ D
Definition | (A, B) is controllable Theorem | SAE
&L 3¢, {ulk))!_, such that x[¢] = 0, Yx[0] = (4, C) is detectable

I-A
. . o o m rank < =n, 'zeC\D
m Continuous-time system: reachability & controllability C

m Discrete-time system: reachability = controllability

m Discrete-time system with nonsingular A: C

reachability & controllability
L _ L _
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lrank[zl_A]:n, Yzelz: z € eig(A), z ¢ D}
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Z-Transformation

Definition | Given discrete-time signal f

flzl = Zifilzl = ) flkdz™
k=0

1, k=0

m Example: discrete-time impulse [k] = { 0. oe

Ziollz] =1
m Property: Given x, y; y[k] = x[k — 1] (backward shift)

Izl = z7'2[z]

]
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Transfer Function

u G Yy

9lz] = Glzlilz]
Property: Given SS model
[x[k+1] ]:[A B H x[k] ]
ylk] C D || ulk]
Transfer function is
Glz] =C(zI - A)'B+D

Notation: Symbol with hat denotes tranfer le‘J,rlcti_on

B

]
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Frequency Response

B

u G Y
ulk] = upel y[k] =277

m Response to sinusoidal input u: u[k] = uge/%*
k-1 ' '
CAX[0] + C ) A1~ Buge/™ + Duge/®
=0

Gle/uge!™ + CA® (x[0] - (/T — A)~'Buy)

ylk]

where G[z] = C(zI-A)'B+D
m Claim: y[k] ~ G[e/?]uge/% if eig(A) c D and k > 1
= Frequency response: G[e/], 6 € [0, 2m) B
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LQ Optimal Control Problem

Problem

m Given:
x[k + 1] = Ax[k] + Bul[k], x[0] = xg

m Find: u which minimizes

J:= i 2T[klzlk],  z[k] := Cx[k] + Du[k]

k=0

]
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Discrete-Time ARE

| B

Discrete-Time Algebraic Riccati Equation (DARE)

Given (A’ B, M) € RN % RIXM ¢ R (n+m)x(n+m)

ATPA-P+Q—-(ATPB+S)(B"PB+R)Y(B"PA+5") =0
B

ST R]:M

Stabilizing Solution

P € R™" is a stabilizing solution to DARE if
m P is a solution to DARE
= eig(A+BF)cID, F:=—(B"PB+R)™}(B"PA +S") ]
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Discrete-Time Lyapunov Equation

Discrete-Time Lyapunov Equation: A (square), Q = Q'

ATXA-X+Q=0

Lemma | Suppose eig(A) c D

x= (a7 ox
i=0

A

Corollary | Q=0 = X=>0

B

]
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Properties of Stabilizing Solution (1/2) Properties of Stabilizing Solution (2/2)

Theorem | Suppose *P: stabilizing solution to DARE (Uniqueness) Let P1 = P}, P, = P}: stabilizing solutions
Some manipulation implies

m P is unique T
mpopT Py — P> = (A + BFy)'(P1 — P2)(A + BF»)
e M0 o P20 Py~ P, =((A+BF)") (P, - Py)(A + BEy)"
Sketch of Proof: 1= oo Implies P1 = P, =0
(Symmetry) Substituting F into DARE (SPD-ness) Manipulation implies
I
(A+BF)P(A+BF)—P+Q+SF+F'ST+FRF=0 (A+BF)'P(A+BF)-P+| 1 F' ]M[ r ] =0

This implies (A + BF)'(P - PT)(A + BF) = (P—P") = 0 Invoking Lemma, M > 0 implies P > 0

LNoting eig(A + BF) c D, Lemma implies P — PT = 0 J L J
Existence of Stabilizing Solution LQ Optimal Control Problem
Theorem | Given (A, B, C, D) such that Problem
m (A, B): stabilizable m Given:
o7
n [ ¢/ IC A g ]: column full rank, Y6 < [0, 27) x[k +1] = Ax[k] + Bu[k], x[0] = xo
o ) m Find: u which minimizes
7 stabilizing solution to
ATPA-P+C'C—(ATPB+C"D)(B"PB+D'D) " (B"PA+D'C) = 0 J = Z z'[Klz[k],  z[k] := Cx[k] + Dulk]
k=0

Comment: Parallel proof to CARE is not available at present
One good way is to cast to CARE by bilinear transformation

L(cf. Lecture #3) J L J
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LQ Optimal Control

Assumption

Given (A, B, C, D) such that

m (A, B): stabilizable

[efQI—A
| |
C

Theorem

ZBD ]: column full rank, Y0 € [0, 2m)

LQ optimal control is

ulk] = Fx[k], F:=—-(B'"PB+ D'D)Y(B'PA + D'C)

P is a stabilizing solution to DARE

LATPA—P+CTC—(ATPB+CTD)(BTPB+DTD)‘1(BTPA+DTC) =0 |
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Proof of Theorem (1/2)

| B

Substitute DARE into |

(Cx[k] + Du[k])(Cx[k] + Du[k])
= x'[K]CTCx[k] + x"[K]ICTDu[k] + u" [k]D"Cx[k] + u [k]D"Dulk]
= xT[k](P — ATPA + (ATPB + CTD)(BTPB + D"D)"}(BTPA + DTC))x[k]
+ X' [K]ICTDu[k] + u"[K]D"Cx[k] + u"[k]D" Du[k]
= o' [k](B"PB + D"D)v[k] — u"[k]B" PBu[k]
—u'[k](BTPA + D'C)x[k] — x"[k](ATPB + C"D)u[k]
+ x'[K](P — ATPA)x[k] + x"[k]CT Du[k] + u"[k]D" Cx[k]

where v[k] := u[k] + (B"PB + D'D)"(B"PA + D"C)x[k]

L |
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Proof of Theorem (2/2)

B

(Cx[k] + Du[k])T(Cx[k] + Du[k])

o' [kK](B"PB + D'D)vl[k]

+ x"[k]Px[k] — (Ax[k] + Bu[k])"P(Ax[k] + Bu[k])

o' [KI(BTPB + D" D)o[k]
[

+ xT[KIPx[K] — xT[k + 1]Px[k + 1]

[ 101

o~
I

0

(Cx[k] + Dulk])T(Cx[K] + Du[k])

o' [k](BTPB + D'D)v[k] + x} Pxo— lim x[k]Px[k]

k—o0

]
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