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Discrete-Time System

Discrete-time system

discrete-time
signal G

discrete-time
signal

Discrete-time signal: sequence

Underlying “time”: discrete
Z+ := { 0, 1, 2, 3, . . .}
Z := { . . . , −2, −1, 0, 1, 2, . . .}

Taking values
Real vector
Complex vector

Notation: x[k]
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State-Space Model

u
input

u[k] ∈ Rm
G y

output

y[k] ∈ Rp

State-space model for

causal

finite-dimensional

linear, and

time-invariant

discrete-time systems:
[

x[k + 1]
y[k]

]

=

[

A B
C D

] [

x[k]
u[k]

]

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m
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Internal Stability

Solution to x[k + 1] = Ax[k] + Bu[k]:

x[k] = Akx[0] +
k−1
∑

i=0

Ak−1−iBu[i]

Theorem Fix u[k] ≡ 0

x[k]→ 0 (k→∞), ∀x[0]
⇔ eig(A) ⊂ D
⇔ ρ(A) < 1

Re1
D

Im

Note: ∃ various definitions of stability
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Stabilizability

Definition (A, B) is stabilizable

def
⇐⇒ ∃F ∈ Rm×n such that eig(A + BF) ⊂ D

Theorem SAE

(A, B) is stabilizable

rank
[

ZI − A B
]

= n, ∀
Z ∈ C \D

rank
[

ZI − A B
]

= n, ∀
Z ∈
{

Z : Z ∈ eig(A), Z < D
}
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Reachability and Controllability

Definition (A, B) is reachable

def
⇐⇒ Fix x[0] = 0. ∃`, {u[k]}`k=0 such that x[`] = x1, ∀x1

Definition (A, B) is controllable

def
⇐⇒ ∃`, {u[k]}`k=0 such that x[`] = 0, ∀x[0]

Continuous-time system: reachability⇔ controllability

Discrete-time system: reachability⇒ controllability

Discrete-time system with nonsingular A:
reachability⇔ controllability
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Detectability

Definition (A, B) is detectable

def
⇐⇒ ∃L ∈ Rn×p such that eig(A + LC) ⊂ D

Theorem SAE

(A, C) is detectable

rank
[

ZI − A
C

]

= n, ∀
Z ∈ C \D

rank
[

ZI − A
C

]

= n, ∀
Z ∈
{

Z : Z ∈ eig(A), Z < D
}
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Z-Transformation

Definition Given discrete-time signal f

f̂ [Z] = Z{ f }[Z] :=
∞
∑

k=0

f [k]Z−k

Example: discrete-time impulse δ[k] =
{

1, k = 0
0, o.e.

Z{δ}[Z] = 1

Property: Given x, y; y[k] = x[k − 1] (backward shift)

ŷ[Z] = Z−1x̂[Z]
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Transfer Function

u G y

ŷ[Z] = Ĝ[Z]û[Z]

Property: Given SS model
[

x[k + 1]
y[k]

]

=

[

A B
C D

] [

x[k]
u[k]

]

Transfer function is

Ĝ[Z] = C(ZI − A)−1B +D

Notation: Symbol with hat denotes tranfer function
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Frequency Response

u
u[k] = u0e jθk

G y
y[k] =???

Response to sinusoidal input u: u[k] = u0e jθk

y[k] = CAkx[0] + C
k−1
∑

`=0

Ak−1−`Bu0e jθ` +Du0e jθk

= Ĝ[e jθ]u0e jθk + CAk
(

x[0] − (e jθI − A)−1Bu0

)

where Ĝ[Z] = C(ZI − A)−1B +D

Claim: y[k] ≈ Ĝ[e jθ]u0e jθk if eig(A) ⊂ D and k >> 1

Frequency response: Ĝ[e jθ], θ ∈ [0, 2π)
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LQ Optimal Control Problem

Problem

Given:

x[k + 1] = Ax[k] + Bu[k], x[0] = x0

Find: u which minimizes

J :=
∞
∑

k=0

zT[k]z[k], z[k] := Cx[k] +Du[k]
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Discrete-Time ARE

Discrete-Time Algebraic Riccati Equation (DARE)

Given (A, B, M) ∈ Rn×n ×Rn×m ×R(n+m)×(n+m)

ATPA − P +Q − (ATPB + S)(BTPB + R)−1(BTPA + ST) = 0
[

Q S
ST R

]

:=M

Stabilizing Solution

P ∈ Rn×n is a stabilizing solution to DARE if

P is a solution to DARE

eig(A + BF) ⊂ D, F := −(BTPB + R)−1(BTPA + ST)
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Discrete-Time Lyapunov Equation

Discrete-Time Lyapunov Equation: A (square), Q = QT

ATXA − X +Q = 0

Lemma Suppose eig(A) ⊂ D

X =
∞
∑

i=0

(

AT
)i

QAi

Corollary Q ≥ 0 ⇒ X ≥ 0
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Properties of Stabilizing Solution (1/2)

Theorem Suppose ∃P: stabilizing solution to DARE

P is unique

P = PT

M ≥ 0 ⇒ P ≥ 0

Sketch of Proof:
(Symmetry) Substituting F into DARE

(A + BF)TP(A + BF) − P +Q + SF + FTST + FTRF = 0

This implies (A + BF)T(P − PT)(A + BF) − (P − PT) = 0
Noting eig(A + BF) ⊂ D, Lemma implies P − PT = 0
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Properties of Stabilizing Solution (2/2)

(Uniqueness) Let P1 = PT
1 , P2 = PT

2 : stabilizing solutions
Some manipulation implies

P1 − P2 = (A + BF1)T(P1 − P2)(A + BF2)

P1 − P2 =
(

(A + BF1)T
)n

(P1 − P2)(A + BF2)n

n→∞ implies P1 − P2 = 0

(SPD-ness) Manipulation implies

(A + BF)TP(A + BF) − P +
[

I FT
]

M
[

I
F

]

= 0

Invoking Lemma, M ≥ 0 implies P ≥ 0

Review of Discrete-Time Control Theory – p.18/23

Existence of Stabilizing Solution

Theorem Given (A, B, C, D) such that

(A, B): stabilizable
[

e jθI − A B
C D

]

: column full rank, ∀θ ∈ [0, 2π)

∃ stabilizing solution to

ATPA−P+CTC−(ATPB+CTD)(BTPB+DTD)−1(BTPA+DTC) = 0

Comment: Parallel proof to CARE is not available at present
One good way is to cast to CARE by bilinear transformation

(cf. Lecture #3)

Review of Discrete-Time Control Theory – p.19/23

LQ Optimal Control Problem

Problem

Given:

x[k + 1] = Ax[k] + Bu[k], x[0] = x0

Find: u which minimizes

J :=
∞
∑

k=0

zT[k]z[k], z[k] := Cx[k] +Du[k]
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LQ Optimal Control

Assumption Given (A, B, C, D) such that

(A, B): stabilizable
[

e jθI − A B
C D

]

: column full rank, ∀θ ∈ [0, 2π)

Theorem LQ optimal control is

u[k] = Fx[k], F := −(BTPB +DTD)−1(BTPA +DTC)

P is a stabilizing solution to DARE

ATPA−P+CTC−(ATPB+CTD)(BTPB+DTD)−1(BTPA+DTC) = 0
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Proof of Theorem (1/2)

Substitute DARE into J

(Cx[k] +Du[k])T(Cx[k] +Du[k])
= xT[k]CTCx[k] + xT[k]CTDu[k] + uT[k]DTCx[k] + uT[k]DTDu[k]

= xT[k]
(

P − ATPA + (ATPB + CTD)(BTPB +DTD)−1(BTPA +DTC)
)

x[k]

+ xT[k]CTDu[k] + uT[k]DTCx[k] + uT[k]DTDu[k]
= vT[k](BTPB +DTD)v[k] − uT[k]BTPBu[k]
− uT[k](BTPA +DTC)x[k] − xT[k](ATPB + CTD)u[k]
+ xT[k](P − ATPA)x[k] + xT[k]CTDu[k] + uT[k]DTCx[k]

where v[k] := u[k] + (BTPB +DTD)−1(BTPA +DTC)x[k]
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Proof of Theorem (2/2)

(Cx[k] +Du[k])T(Cx[k] +Du[k])
= vT[k](BTPB +DTD)v[k]
+ xT[k]Px[k] − (Ax[k] + Bu[k])TP(Ax[k] + Bu[k])

= vT[k](BTPB +DTD)v[k]
+ xT[k]Px[k] − xT[k + 1]Px[k + 1]

J =
∞
∑

k=0

(Cx[k] +Du[k])T(Cx[k] +Du[k])

=

∞
∑

k=0

vT[k](BTPB +DTD)v[k] + xT
0 Px0− lim

k→∞
xT[k]Px[k]
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