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1 Overview

My work is in:
• Analytic number theory and its applications in mathematical physics, especially quantum chaos.
• Nodal lines and zeros of random functions.
• Probability, stochastic processes and random fields.

2 Detailed description

2.1 Lattice counting problems

During my PhD studies, I worked on a problem in analytic number theory related to a recently
developed field, usually referred as quantum chaos. Quantum chaos is an interdisciplinary branch of
physics which is a meeting point of mathematical physics, number theory and other disciplines.

One of the outstanding problems in this subject concerning the statistics of energy levels of quan-
tum systems in which one studies the counting function for the number of levels in a random energy
window. In the case of the free motion of a particle on the torus, this equals the number of integer
points in an annulus. The latter is a classical problem in number theory, called the Gauss circle
problem.

In some regimes, one finds a nonuniversal distribution. For some other regimes, it has been
conjectured by Bleher and Lebowitz that its distribution is Gaussian. In this research, I proved the
conjecture for irrational tori with some additional “generic” properties. The technique I apply is a
mixture of number theory and analysis.

One of the obstacles in my approach is the existence of so-called “close pairs” of lattice points, which
correspond to small values of a quadratic form. To bound the rate of occurrence of this phenomenon,
I use a recent result due to Eskin-Margulis-Mozes, where they prove a quantitative version of the
Oppenheim conjecture, an important conjecture in number theory on the distribution of values of
quadratic forms. To suit my situation I proved a uniform version of their result.

In the future I wish to continue working in this field. Despite our efforts, the conjecture of Bleher
and Lebowitz is still open. It would be very challenging to prove this conjecture in full generality or
at least find some other examples of systems where it holds.

2.2 Nodal lines on manifolds and generic billiards

Nodal patterns (first described by Ernest Chladni in 18th century) appear in many problems in engi-
neering, physics and natural sciences: they describe the sets that remain stationary during vibrations,
hence their importance in such diverse areas as musical instruments, mechanical structures, earth-
quake study and other areas. They also arise in the study of wave propagation, and in astrophysics;
this is a very active and rapidly developing research area. Let M be a compact surface (for example
S2, the two dimensional unit sphere), and φ :M→ R be a real valued function. The nodal line of φ
is its zero set {x ∈M : φ(x) = 0}.

Many fundamental PDEs in mathematics and physics (such as heat and wave equations) are
studied using separation of variables, that involves expansions in series of eigenfunctions of Laplace-
type operators (e.g. Fourier series), thus the study of spectra and eigenfunctions of the Laplacian are
of fundamental importance in mathematics and physics. It is known that the spectrum {λj}0≤j<∞
of the negative Laplacian −∆ is a discrete infinite subset of R, so that λj → ∞. Let φj be the
eigenfunction corresponding to λj .
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It is particularly interesting to study the behavior of high energy eigenfunctions (that correspond
to highly excited membranes), including their nodal lines. A basic question concerns the length lj of
the nodal line of φj . S.T. Yau conjectured that that the length is commensurable with the square
root of the eigenvalue i.e. that there exist constants cM, CM > 0 so that

cM
√
λj < lj < CM

√
λj .

Yau’s conjecture was resolved by Donnely and Fefferman for real-analytic surfaces, but is open in
general.

Together with Zeév Rudnick, I studied the length of the nodal lines on the torus T = R2/Z2 in
more detail. Here, the multiplicities of the eigenvalues allow us to introduce a notion of Gaussian
random eigenfunction and study the distribution of the length of their nodal sets. Our results imply,
in particular, that for a “typical” eigenfunction φj ,

length
(
{φj = 0}

)
∼ c
√
λj

for some explicitly given c. Our technique is a mixture of probability and the theory of stochastic
processes, and number theory. One of the key ingredients is the arithmetic of quadratic forms.

The sphere S2 ⊂ R3 is another example of a surface with highly degenerate Laplace spectrum
allowing us to endow the eigenspaces with Gaussian measure. The eigenvalues behave much more
regularly than on arithmetic tori, but the curved metric on the sphere presents additional difficulties.
Recently, I studied the nodal length of random eigenfunctions on the sphere. In a work in progress
I was able to establish precise asymptotic expression for the variance of the nodal length, a very
significant advance in this area.

The logarithmic asymptotics for the variance I found was a major surprise, contradicting the linear
prediction by some experts in this field. This behaviour is however consistent with Michael Berry’s
predictions for the same quantity in chaotic dynamical systems (which do not include the sphere). For
the spherical case, as well as in Berry’s original research, one observes a new phenomenon we refer to
as “Berry’s cancelation phenomenon”, which is responsible for the variance being smaller than what
a natural conjecture would be.

Back to the torus, in a work in progress with Manjunath Krishnapur, we were able to observe
“Berry’s cancelation phenomenon” as well, and formulate a conjecture for precise asymptotic form
of the variance for “generic” sequence of energy levels (which is different than in the spherical case);
it is plausible that we will be able to prove it in the near future. Our results show that “Berry’s
cancelation phenomenon” is of more general nature, which we would like to study and understand
more in the future. Following this recent progress, it seems possible to study the nodal length on
“generic” surfaces. In a work in progress I study that for “generic” surfaces, together with John Toth.
It seems plausible that the variance is “generically” logarithmic.

In the case of a billiard, one is interested in the number of intersections of the nodal lines with
the boundary. In applications, one is often interested not only in eigenfunctions (”pure states”), but
also in their linear combinations (”wavepackets”). In a joint research with John Toth, I considered
random combinations

φ(x) =
N∑

n=1

anφj(x)

of eigenfunctions, where an are standard Gaussian i.i.d. We were able to compute precise asymptotics
for the expected number of intersections of the nodal line with the boundary of the billiard.

In the future I would like to study the distribution of random nodal lines in more detail.

2.3 Zeros of random trigonometric polynomials

As a model for the higher dimensional case, together with Andrew Granville, I considered the 1-
dimensional case. Here we are interested in the number of zeros of a “random function”, where the
latter notion needs to be defined precisely.

The most natural example of ensemble of random functions, originally studied by Littlewood and
Offord, and Kac, is of algebraic polynomials

PN (x) = a0 + a1x+ . . . aNx
N
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of large degree N , with Gaussian i.i.d coefficients an. They proved that with “high” probability,
the distribution of the number of roots of PN is concentrated around const · logN . Maslova proved
that the distribution of the number of zeros of polynomials tends to Gaussian, with expectation and
variance proportional to logN , consistent with the earlier observation.

In our research, we considered the trigonometric polynomials

TN (t) =
N∑

n=1

(
an cos (nt) + bn sin (nt)

)
with an and bn standard Gaussian i.i.d. The distribution of zeros of the trigonometric polynomials
occurs in a variety of problems in science and engineering, such as nuclear physics (in particular,
random matrix theory), statistical mechanics, quantum mechanics, theory of noise etc.

It is known that the expected value of the number of zeros of TN is asymptotic to 2√
3
N . Qualls

and later Farahmand gave various upper bounds for the variance. Bogomolny, Bohigas and Leboeuf
predicted that the variance is asymptotic to cN for some constant c ≈ 0.558 . . .. We confirmed
their prediction, and moreover established a central limit theorem for the number of zeros of TN . To
obtain our results we apply techniques from probability theory and stochastic processes, and harmonic
analysis.

In the future I wish to continue studying the distribution of zeros of random functions for other
ensembles. Our recent success gives rise to a hope that we may be able to generalize the results
obtained.
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