01. Teodor J. Stepien Pedagogical Academy , Cracow Poland

PROOF OF WEAK CONSISTENCY OF PEANO'S ARITHMETIC SYSTEM

Abstract At first we introduce a definition of weak consistency of deductive systems by the well-known interpretation. Hence we can prove that **Peano's Arithmetic System** is consistent in traditional sense.

1. Terminology

Let C, N, A, K, E denote connectives of implication , negation , disjunction, conjuction and equivalence respectively. $P_n^k(t_1,...,t_k)$ are atomic formulas. By $At_0 = \{p_1^1, p_2^1, ..., p_1^2, p_2^2, ..., p_1^k, p_2^k,\}$ we denote the set of all propositional variables. Hence S_0 is the set of all well-formed formulas, those are built in the usual manner from propositional variables by means of logical connectives . Sp denotes the set of all well-formed formulas of Peano's Arithmetic System. $vf(\alpha)(\alpha \in Sp)$ denotes the set of all free variables occurring α . Hence $\overline{Sp} = \{\alpha \in Sp : vf(\alpha) = \emptyset\}$. R_{Sp} denotes the set of all rules over Sp (see [1]). For any $X \subseteq Sp$, $R \subseteq R_{Sp}$, Cn(R,X)is the smallest subset of Sp containing X and closed under the rules of R. The couple $\langle R, X \rangle$ is called a system, whenever $X \subseteq Sp$ and $R \subseteq R_{Sp}$. r_o denotes modus ponens and r_+ denotes the generalization rule. $R_{o+} = \{r_o, r_+\}$. We use $\Rightarrow, \Leftrightarrow, \land, \lor, \forall, \exists$ as metalogical symbols. L_2 and A_r denote the set of all logical axioms and the set of all specific axioms in **Peano's Arithmetic System** respectively. Hence $\langle R_{o+}, L_2 \cup A_r \rangle$ is Peano's Arithmetic System.

We define the function $i: Sp \to S_0$ as follows:

(a)
$$i(P_n^k(t_1,...,t_k)) = p_n^k(p_n^k \in At_0)$$
,

- (b) $i(N\alpha) = Ni(\alpha)$,
- (c) $i(F\alpha\beta) = i(\alpha)Fi(\beta)$,
- (d) $i(\wedge x\alpha) = i(\vee x\alpha) = i(\alpha)$,

where $\alpha, \beta \in Sp$ and $F \in \{C, A, K, E\}$.

Definition 1.
$$\langle R, X \rangle \in Cns^T \Leftrightarrow \Leftrightarrow (\forall \alpha \in \overline{Sp})[\alpha \notin Cn(R, X) \vee N\alpha \notin Cn(R, X)]$$
.

At last \mathcal{M}_0 denotes here the fixed logical matrix, where 0 is the fixed nondistinguished element of the matrix \mathcal{M}_0 (for details see [2]). Thus,

Definition 2.
$$\langle R_{o+}, L_2 \cup X \rangle \in Cns^w \Leftrightarrow \Leftrightarrow (\forall \alpha \in Sp)(\forall \beta \in X)[\alpha \in Cn(R_{o+}, L_2 \cup \{\beta\}) \Rightarrow \Rightarrow (\forall v : At_0 \to |\mathcal{M}_0|) h^v(i(C\beta\alpha)) \neq 0],$$

where
$$X \subseteq Sp$$
, $\beta = K...K\alpha_1...\alpha_k$ and $\alpha_1, ..., \alpha_k \in \overline{Sp}$.

2. THE MAIN RESULT

LEMMA .
$$\langle R_{o+}, L_2 \cup A_r \rangle \in Cns^w \Rightarrow \langle R_{o+}, L_2 \cup A_r \rangle \in Cns^T$$
.

Proof. Elementary and Combinatorical.

THEOREM . $\langle R_{o+}, L_2 \cup A_r \rangle \in Cns^T$.

Proof by LEMMA. (Elementary and Combinatorical, cf. [3]).

References:

[1] . Pogorzelski , W . , The classical calculus of quantifiers , PWN , Warszawa 1981 .

[2]. Pogorzelski , W. and Wojtylak , P. , Elements of the theory of completeness in Propositional Logic , Silesian University (1982) .

[3]. Von Neuman, J. , Die formalistische Grundlegung der Mathematik ,
, Erkenntis" t
2(1931) .

1991 Mathematics Subject Classification: 03B10, 03B30

Key words: a weak consistency, the traditional consistency