In 1917 Mirimanov constructed the *cumulative collection of sets* V_{α} for all ordinals α such that $V_0 \equiv \emptyset$, $V_{\alpha+1} = V_{\alpha} \cup \mathcal{P}(V_{\alpha})$, $V_{\alpha} = \cup [V_{\beta} | \beta \in \alpha]$ for limit ordinals α .

After introducing by Zermelo, Serpinski, and Tarsky (1930) the notion of (strongly) inaccessible cardinal Zermelo (1930) and Shepherdson (1951) proved that a set U is a supertransitive standard model of NBG iff $U = V_{\varkappa+1}$ for some inaccessible cardinal \varkappa , where U is called supertransitive iff $\forall x \in U \forall y ((y \in x \Rightarrow y \in U) \land (y \subset x \Rightarrow y \in U))$.

Tarsky (1938) introduced the notion of a Tarsky set U such that $x \in U \Rightarrow x \subset U$, $x \in U \Rightarrow \mathcal{P}(x) \in U$, $(x \subset U \land \forall f (f \in U^x \Rightarrow rng f \neq U) \Rightarrow x \in U$.

Tarsky (1938) proved that the set V_{\varkappa} for every inaccessible cardinal \varkappa is a Tarsky set, but the converse was not proved. We prove that for a set U the following assertions are equivalent:

- 1) $U = V_{\varkappa}$ for some inaccessible cardinal \varkappa ;
- 2) $\mathcal{P}(U)$ is a supertransitive standard model of NBG;
- 3) U is an uncountable Tarsky set.

The theorem of Zermelo–Shepherdson gives the canonical form of super-transitive standard models of NBG in ZF. But Montague and Vaught (1959) proved that for every inaccessible cardinal \varkappa there exists an ordinal $\theta < \varkappa$, such that θ is not inaccessible and V_{θ} is a supertransitive standard model of ZF.

Every formula $\varphi(x, y; \vec{p})$ for every set A assigns the scheme correspondence $[\varphi(x, y; \vec{p})|A] \equiv \{z \in A * A | \exists x, y \in A(z = \langle x, y \rangle \land \varphi^A(x, y; \vec{p}))\}$. An ordinal \varkappa will be called scheme-regular if $\forall \vec{p} \in V_{\varkappa} \forall \alpha (\alpha \in \varkappa \land ([\varphi(x, y; \vec{p})|V_{\varkappa}] : \alpha \rightarrow \varkappa \Rightarrow \cup rng [\varphi(x, y; \vec{p})|V_{\varkappa}] \in \varkappa)$ for any formula φ of ZF.

An ordinal $\varkappa > \omega$ will be called *scheme-inaccessible* if \varkappa is scheme-regular and $\forall \alpha (\alpha \in \varkappa \Rightarrow |\mathcal{P}(\alpha)| \in \varkappa)$.

Every formula $\sigma(x; \vec{u})$ for every set A assigns the scheme subset $\langle \sigma(x; \vec{u}) | A \rangle \equiv \{x \in A | \sigma^A(x; \vec{u}) \}$ of A. A set U will be called a scheme Tarsky set if $x \in U \Rightarrow (x \subset U \land \mathcal{P}(x) \in U \land \cup x \in U), \ \omega \in U, \ |U| \in U, \ \forall \vec{p}, \vec{u} \in U \forall \varepsilon (([\varphi(x,y;\vec{p})|U]: \langle \sigma(x;\vec{u})|U \rangle \mapsto \varepsilon) \land \varepsilon \in |U| \Rightarrow \langle \sigma(x;\vec{u})|U \rangle \in U)$ for any formulas φ , σ of ZF.

We prove that for a set U the following assertions are equivalent:

- 1) $U = V_{\varkappa}$ for some scheme-inaccessible cardinal \varkappa ;
- 2) U is a supertransitive standard model of ZF;
- 3) U is a scheme Tarsky set.