Abstract. The C^* -algebra of a locally compact groupoid was introduced by Jean Renault in [2]. The construction extends the case of a group: the space of continuous functions with compact support on groupoid is made into a *-algebra and endowed with the smallest C^* -norm making its representations continuous. For this *-algebra the multiplication is convolution. For defining the convolution on a locally compact groupoid, one needs an analogue of Haar measure on locally compact groups. This analogue is a system of measures, called Haar system. Unlike the case of locally compact group, Haar system on groupoid need not exists, and if it does, it will not usually be unique. A well-known result (Theorem 2.8 [1]) states that the C^* -algebras associate with two different Haar systems on a locally compact second countable groupoid are strongly Morita equivalent. In the case of a transitive groupoid the C^* -algebras associated with two Haar systems are *-isomorphic (Theorem 3.1 [1]). It is not known if this is true in general. We shall associate to a locally compact groupoid a C^* -algebra which is independent of the Haar system up to a *-isomorphism. We shall prove that for locally transitive groupoids and for totally intransitive groupoids (group bundles) this new C^* -algebra coincide with the usual C^* -algebra defined by Renault. Also, for principal proper groupoids, we shall prove that this C^* -algebra contains the usual C^* -algebra. ## References - [1] P. Muhly, J. Renault and D. Williams, Equivalence and isomorphism for groupoid C*-algebras, J. Operator Theory 17(1987), 3-22. - [2] J. Renault, A groupoid approach to C*- algebras, Lecture Notes in Math., Springer-Verlag, 793, 1980.