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Abstract

We introduce here new concepts of functional analysis: Hausdorff spectrum and Hausdorff limit
or H-limit of Hausdorff spectrum of locally convex spaces. Particular cases of regular H-limit are
projective and inductive limits of separated locally convex spaces. The class of H-spaces cpntains
Fréchet spaces and is stable under the operations of forming countable inductive and projective
limits, closed subspaces and factor-spaces. Besides, for H-space the strengthened variant of the
closed graph theorem holds true. Homological methods are used for proving of theorems of vanishing
at zero for first derivative of Hausdorff spectrum functor: Haus'(X) = 0.
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Introduction

The study which was carried out in [1-2] of the derivatives of the projective limit functor
acting from the category of countable inverse spectra with values in the category of locally
convex spaces made it possible to resolve universally homomorphism questions about a given
mapping in terms of the exactness of a certain complex in the abelian category of vector
spaces. Later in [3] a broad generalization of the concepts of direct and inverse spectra of
objects of an additive semiabelian category G (in the sense V.P.Palamodov) was introduced:
the concept of a Hausdorff spectrum, analogous to the Js;-operation in descriptive set theory.
This idea is characteristic even for algebraic topology, general algebra, category theory and
the theory of generalized functions. The construction of Hausdorff spectra X = { X, F, hys}
is achieved by successive standard extension of a small category of indices ). The category
‘H of Hausdorff spectra turns out to be additive and semiabelian under a suitable definition
of spectral mapping. In particular, H contains V. P. Palamodov’s category of countable
inverse spectra with values in the category TLC' of locally convex spaces [1]. The H-limit
of a Hausdorff spectrum in the category T'LC generalizes the concepts of projective and
inductive limits and is defined by the action of the functor Haus : X — T'LC. The class of
H-spaces is defined by the action of the functor Haus on the countable Hausdorff spectra
over the category of Banach spaces; the closed graph theorem holds for its objects [8] and
it contains the category of Fréchet spaces and the categories of spaces due to De Wilde [7],
D. A. Rajkov [5] and Suslin [6]. The H-limit of a Hausdorff spectrum of H-spaces is an
H-space [7]. It is shown in the present chapter that in the category there are many injective
objects and the right derivatives Haus’ (1 = 1,2,...) are defined, while the “algebraic”
functor Haus : #(L) — L over the abelian category L of vector spaces (over R or C) has
injective type, that is if

0> X—>)Y—>2Z

is an exact sequence of mappings of Hausdorff spectra with values in L, then the limit
sequence
0 — Haus(X) — Haus()}) — Haus(Z2)

is exact or acyclic in the terminology of V. P. Palamodov [2]. In particular, regularity of
the Hausdorff spectrum X of the nonseparated parts of ) guarantees the exactness of the



functor Haus : #(TLC) — TLC and the condition of vanishing at zero: Haus'(X) = 0.
The classical results of Malgrange and Ehrenpreis on the solvability of the unhomogeneous
equation p(D)D' = D', where p(D) is a linear differential operator with constant coefficients
in R" and D' = D'(S) is the space of generalized functions on a convex domain S C R", can
be extended to the case of sets S which are not necessarily open or closed. The space of test
functions on such sets S C R™ is an H-space (generally nonmetrizable), that is

D)= U N P(Ty), (1)
FeF selF

where {N;er Ts}rer forms a fundamental system of bicompact subsets of S and D(Ty)
is the Fréchet space of test functions with supports in the closed sets Ty, C R", where
S = UrerNser Ts- By means of homological methods a criterion is established for van-
ishing at zero, Haus'(X) = 0, for the functor Haus of a Hausdorff limit associated with
the representation (1), where X is the Hausdorff spectrum of the kernels of the operators
p(D) : D'(T,) — D'(Ty) (s € |F|). The condition Haus'(X) = 0 is equivalent to the
condition that the operator p(D) : D'(S) — D'(S) is an epimorphism.

Analogous theorems for Fréchet spaces were first proved by V. P. Palamodov [1-2].

1. We recall certain definitions and theorems which are used in this chapter and which
were brought into the discussion in [3-6].

Let 2 be a small category. By a directed class in the category we mean a subcategory
satisfying the following properties:

(i) no more than one morphism is defined between any two objects;

(ii) for any objects a, b there exists an object ¢ such that ¢ — ¢ and b — c.

Let A be some category and s denotes the object of category A (if Q@ € Q and a,b € Q

we will denote the corresponding morphisms of category €2 by a AN b). We shall call
the category B with objects S, where S is a subcategory of A, a standard extension of the
category A if the following conditions are satisfied:

1°. A is a complete subcategory of B;

2°. And morphism wgg : S" — S of the category B is defined by the collection of
morphisms w,y : ' — 5 (s —=+ s) of the category A such that

a) for every s' € S’ there exists s € S such that s’ —<5 s
Yy

, S s’
(b) if s == s, pf LR D, § —2% p, then there exists a morphism s — p' and the
following diagram is commutative:

S
p
T Wggr Wsg! T T Wpp'
s — ey —

We will establish the successive standard extensions of categories
Q(s) C B(T) C ©(F) — X(F) Cc D(F),

where T C (2 denotes directed classes of objects s € €1, coinsides as object of category B; F',
F C B denotes filter bases of sets T' € B, considered as objects of category ¥, and F, F C X



denotes directed classes of objects F' € ¥ of the dual category X°, considered as objects of
category D. We shall say that such classes F are admissible for Q; let us put |F| = Uper T,
|F| = Uper |F|, so that |[F| C Q and |F| C €. The most characteristic constructions
connected with Hausdorff spectra use in the role of the small category €2 = Ord I, where I
is a partially ordered set of indices, consedered as category.

A diagram explaining the nature of the indexing is given below:

Pic. 1

Example 1 (Standard extension of the category A). Let G and A be categories, T'(F)
the category of covariant functors F' : G — A with functorial morphism & : F; — F; defined
by the rule [2] which assigns to each object ¢ € G a morphism ®(g) : Fi(g) — Fz(g) of the
category A such that for any morphism w : ¢ — h of the category G the following diagram
is commutative

It is clear that each object s € A generates a covariant functor F;: g € G — s € A such
that A C T. Moreover, A is a complete subcategory of 7.

We will show that T provides a standard extension of the category A (by means of the
category G). Let F' € T and S C A be such that S = Uyee F(g) and for s, s € S the set of
morphisms Hom(s', s) = U, F(w), where w : ¢ — h and s’ = F(q), s = F'(h). Therefore the
category B is defined, where S is a subcategory of A and the morphisms wgg : S — S of
the category B are generated by the collection of functorial morphisms ® : F' — F', where
F' € T generates S’, while F' generates S according to the method indicated above.

If we take such a functorial morphism ® : F' — F, then the morphisms ®(g) : F'(g) —



F(g) (g € G) of the category A form a collection of morphisms wgy : 8 — s (s' = F'(g), s =
F(g)) such that (a) is satisfied. Condition (b) follows from consideration of the definition of
the functorial morphism.

Thus, B is a standard extension of the category A. If G = Ord I, where [ is a linearly
ordered set, then 7' = B(S).

Example 2 (Palamodov [1]). The categories of direct and inverse spectra over a semia-
belian category K are standard extensions of the category K.

Example 3 (Construction of an admissible class for 2). Let T be a separated topological
space and () a countable set. We shall call a set A C T an s-set if

A=U NT,

BeK t€B
where T} (t € Q) is a subset of 7" and K is the family of subsets B of the set {2 such that
(a) for each B € K the set Ts = Ny 1t is compact in 7,

(b) the sets T (B € K) form a fundamental system of compact subsets of A.

Proposition 1. Fvery separable metric space is an s-set.

Proof. Let A be a separable metric space with metric p. Let us consider in A the
collection of all open balls of radius less than some given € > 0. Since the space A is separable,
it is possible to select from this collection a sequence O;, (I; = 1,2,...) of open balls which
also covers A. Now let us form all possible finite unions of elements Oy, (I; =1,2,...). The
set, obtained is countable and it can be enumerated by means of the index n; = 1,2,....
This will be the sets A,, (n; € N).

Let us fix an arbitrary number n; and cover A,, by means of open balls of radius less
than €/2 which lie entirely in A,, (A4,, is an open set). Then, because of the separability of
the metric space A,, in the induced topology, there exists a sequence Oy, (lo =1,2,...) of
open spheres which also covers 4,,. We form all possible finite unions of elements O,,;, (lo =
1,2,...). This will be the sets Ay, (n2 € N).

Thus by induction we obtain a countable family of open sets A, n,. n, (M6, k=1,2,...);
moreover the inclusions A, D Ay, O ... hold and each set A, ,,. ,, is a finite union of
open balls Oyp,ny..n, 1, Of Tadius less than /251 (k € N).

Now let K be a compact subset of the space A. It is easy to see that K C Ay pny.n, (K=
1,2,...) for some sequence (n1,ns,...); moreover, we may assume without loss of generality
that K has nonempty intersection with each of the remaining sets A, ,,. ,, of open balls
of radius less than /27! (k = 1,2,...). Therefore, if z € N3, Apnny..m, » then we have
p(z,K) < ¢/2™ for all m = 1,2,... and, consequently, z € K. Thus K = {21 Aning..my - O

Let us put Q = {(ny,ng,...,ng) : ng,k = 1,2,...} and consider the family K of all
subsets B C (2 such that (;cp A; is a nonempty compact subset in A. It is clear that

A= U N A

BeK teB

and A is an s-set.

Proposition 2. Let A be a subset of the finite-dimensional space R". Then A is an s-set

and moreover
A= N, (2)

BeK teB



where the T, are compact subsets of R™.

Proof. In fact, by Proposition 1 and the separability of any subset of the finite-
dimensional space in the induced topology, the set A has the form

A= U N A

BeK teB

and is an s-set. But each set A; (t € Q) is bounded in R”, therefore if we denote the
corresponding closure by 7}, then Mg At = Niep 1t for each B € K and, consequently, the
identity (2) holds, where each set T; (¢ € §2) is compact. O

Thus, s-sets are a generalization on the one hand of compact spaces (and locally compact
spaces which are countable at infinity) and on the other of separable metric spaces. However,
s-sets will be of interest to us in connection with the possibility of constructing the associated
functor of a simple Hausdorff spectrum.

Let A be some s-set, so that

A= U ﬂ T},

BeK teB

where T, ¢ T, B € Q. We may assume without loss of generality that the family Q of
subsets T, (t € ) is closed with respect to finite intersections and unions (that is, there
exist corresponding surjections @, ¥, : d(Q) — €, where d(Q) is the set of finite subsets of

The set  will be partially ordered if we put ¢ < ¢t whenever T, C Ty ; let G = Ord Q.
Further, we may assume that each set B € K is directed in (Q, <).

Let I be the factor set of all possible complexes s = [t1, o, ..., t,], where t; € ||, t; = pr; s
(1 = 1,2,...,n,n € N), with respect to the equivalence relation on the set of ordered
n-tuples of elements of [K|: (t1,t,...,t,) ~ (¢),t5,...,1,) if and only if {ti,ts,...,t,} =
{th,t},...,t }. The set I becomes partially ordered if we put s < s, where s = [t1, 1, ..., 1],
s' = [t}, 1y, ..., t;,], whenever for each t; there exists ¢} such that t; <t;; let Q = Ord I.

By continuing the construction following the method of transformation of indices we
will construct an admissible class F for Q. For each s = [t,ts,...,t,] € |F| the subset
R, = U, T3, is defined and moreover if s’ < s then R; C Ry . Thus a contravariant functor
of the simple Hausdorff spectrum H(A) : |F| — G is defined and moreover

A=U NR. (3)

FeF seF

It is an essential point that I is a countable set and the family {N R,} is a fundamental
system of nonempty bicompact subsets of A.

Let G be some category. We shall call a covariant functor Hr : Q — G a Hausdorff
spectrum functor if Q = |F| for some admissible class F € D. If F = |F| then Hf is a
functor of the direct spectrum, while if 7 = {|F|} (that is, F consists of a single element
|F| = |F|) then Hg is a functor of the inverse spectrum.

If F is an admissible class for {2 and the functor

Fl—G

s— X,

(s' ﬂ) S) = (Xs — XS’)

(F' =5 F) = (X)sepr = (Xo)ver)

hg



is injective on objects and morphisms (in the set-theoretic sense), then there exists a directed
class

((Xs)s€|F\aQFF’)

of classes (X, hys)s,scir| (F' € F) which are directed in the dual category G° and which
satisfy the following conditions.

F,F'cF

hg . . . . /
1°. The morphism X; — X is chosen and fixed if and only if the morphism s’ Loy g
is chosen and then hy, : Xy — X is the only morphism.

2°. The diagram

h
X, sy X

s\ R
Xy

SIS”

is commutative for all s 2<% g 2y o

3% If (Xy)seip A, (Xs)seim|, then for each Xy (s' € [F']) there exists a unique
morphism hg, : X — Xy (s € |F|). The collection of morphisms hgs (s' € |F'|) defines the
morphism ¢z so that we shall write ¢gppp = (hgs)mp. Each set F' € F is a filter base of
subsets 7' C |F'| and moreover for each T' € F the class (X, hys)7 is directed in the category
Gge.

Definition 1. We shall call a class (X, hy)s,s7¢| 7| satisfying conditions 1°-3° a Hausdorff
spectrum over the category G and we shall denote it by {X;, F, hy}.

The direct and inverse spectra of a family of objects are particular cases of Hausdorff
spectra — it suffices to put F = |F|, hgs = g in the direct case and F = {|F|}, hys :
X, = Xy (s" = s), grp = 1 p| = 17 in the inverse case.

Under a suitable definition of spectral mapping (see the structure of the category D(F))
the set of Hausdorff spectra over G forms a category which we denote by SpectG. If
X = {Xs, F,hgs}, Y = {Yp, F', hy,} are objects from Spect G, then we shall say that
two Hausdorff spectrum mappings wyy : X — ) and w),, : X — ) are equivalent if for any
F € F there exists F* € F* such that the diagram

Yy
Wps /! Npp
X, Y-
w;)ls \ /‘hp*pl
Y,

is commutative for any p* € |F™|.

Now let us consider a new category #(G) whose objects are the objects of the category
Spect G, but the set Homy(X,)) is formed by the equivalence classes of mappings wxy :
X — ). We shall denote such classes by |lwxyl|-

For any objects X, ), Z € H the law of composition defines a bilinear mapping

Homy, (X, Y) x Homy (Y, Z) — Homy (X, Z)

(Homy (X, Y) is an abelian group).

Definition 2. Let X = { X, F, hys} be a Hausdorff spectrum over the category G. We
shall call an object Z of the category G a categorical H-limit of the Hausdorff spectrum X
over G if for any objects A, B € G and spectral mappings

A—*sx,B



there exists a unique sequence in G
A2,z %,pB

such that the diagram
X

a, b
A B (Lim)
Ny B
Z

is commutative in the category Spect G.

The concepts of projective and inductive limits over the category G are special cases of
categorical H-limits. For example, let X be the inverse spectrum of objects from G. Then
(Lim) holds and moreover any object X, from X can be taken for B € G with the identity
morphism by : Xy — X, forming the spectral mapping b° : X — X, (s € |F|). Thus the
following diagram is commutative

X

a, b
A X

Ny /B
z

where b = (b%), 8 = (6°), B°: Z — X, (s € |F|), b is the identity morphism of the category
Spect G. Therefore the diagram

X
a/
A 16
AN
z

is commutative for any object A € G.

The categorical H-limit of a Hausdorff spectrum (the functor Haus) exists in any semia-
belian category G with direct sums and products (for example, the category of vector spaces
L, the category T'LG of topological vector groups, the category T'LC of locally convex
spaces).

Let 2 be a countable set and X = {X;, F, hys} a regular Hausdorff spectrum in the
category T'LC'; such a spectrum is said to be countable. A continuous linear image in the

(_
category TLC of an H-limit X = limhyX, of Banach spaces X; (s € |F]) is called an

H-space. The class of H-spaces contj;ins the Fréchet spaces and is stable with respect to
the operations of passage to countable inductive and projective limits, closed subspaces and
factor spaces. Moreover, a strengthened variant of the closed graph theorem holds for H-
spaces. The class of H-spaces is the broadest of all the analogous classes known at this time,
namely those of Rajkov, De Wilde, Hakamura, Zabrejko-Smirnov. A countable separated
regular H-limit of a Hausdorff spectrum of H-spaces in the category TLC' is an H-space [7].

Throughout this chapter Hausdorff spectra are assumed to be countable unless the con-
trary is explicitly stated.

2. Let Haus : H(T'LC) — L be the covariant additive Hausdorff limit functor from the
semiabelian category H(TLC) to the abelian category L of vector spaces (over R or C). We



recall [11] that by an injective resolvent I of an object X € H(TLC) we mean any sequence
0—Z, %Il TN ,

formed by injective objects and exact in its members Zy, £ > 1, with keriy ~ X'. Any two
injective resolvents of the same object are homotopic to each other. Since there are many
injective objects in the category H(TLC) [ ], each object of this category has at least one
injective resolvent. The right derivatives of the Hausdorff limit functor Haus are defined by
the formula

Haus*(X) = H*(Haus(Z)) (k=0,1,...),

where X € H(TLC), T is any injective resolvent of X', Haus(Z) is the complex of morphisms
of the category L obtained by application of the functor Haus to each morphism of the
complex Z, and H*¥(Haus(Z)) (k = 0,1,2,...) are the homologies of the complex Haus(Z).
Each morphism & — Y of the category H(T'LC) is covered by a morphism Z — Y of the
injective resolvents of the objects X and ) (see [11], Chapter V, §1). From this follows
the existence of morphisms Haus*(X') — Haus*())) so that the objects of Haus*(X) do not
depend on the choice of injective resolvent. On the other hand the functor Haus has injective
type ([ ], page 88), therefore the canonical isomorphism of functors holds:

Haus ~ Haus® .
Proposition 3. For every free Hausdorff spectrum € € H(L)
Haus'(£) =0 (i=1,2,...).

Proof. Let & = {E,,G,iys} be a free Hausdorff spectrum over the category L with
generators E°. For each s we construct the injective resolvent for E*

0—=FE =I;—=1] —...

and form the free Hausdorff spectra Zy, Z;, ... with injective generators Ij, I7, ... respect-
ively. By Proposition 3.5 of [3] all the Hausdorff spectra Zy, Z;, ...are injective objects of
the category H(TLC), therefore the sequence of Hausdorff spectrum mappings

0=>EE—->Ty—IZ1— ...

is exact in the category #H(L). Thus the last sequence is an exact injective resolvent for the
Hausdorff spectrum €. From this follows the exactness in the category L of the sequence

0 — Haus(€) — Haus(Zy) — Haus(Zy) — ... .

Thus Haus*(£) =0 (i = 1,2,...). The proposition is proved. O

We now compute the derived functors Haus’ (i > 1) in the following way (see [2], [10]).
Let X = {X, F, hgs} be an arbitrary Hausdorff spectrum and £ the free Hausdorff spectrum
with generators X (s € |F|). Let us consider the sequence of Hausdorff spectrum mappings

0——X 25 £ 225 60, (D)

in which the components of the mapping wgx (i.e. the collection (wry, )re|p(r)| , Where sp € T
is the unique maximal element in 7" with respect to the direction relation) act according to
the formula

~

Wrsy * Tsp 7 (hs’sTmsT)s’eTa



while the Hausdorff spectrum mapping wge : € — &£ is formed by means of the morphisms
(T, is a cofinal right-filtering sequence)

~

wr=T, * (‘,L.S)SETn = (:I:s* - hs*sTnxsTn)s*ET*

forany T T, e F, F e F, Ty =0,T, 1 CT*CTy, 51, ¢ T* (n=1,2,...).

It is now clear that the sequence (D) is exact; following V. P. Palamodov [2] we shall call
the sequence (D) the canonical resolvent of the Hausdorff spectrum X.

Applying the functor Haus to the canonical resolvent (D) we obtain the sequence of

locally convex spaces
0 — Haus(X) - P [ X, — P Xs,
F F F F

where €D J] X; is the direct sum of the products of the X, (s € |F|) under the natural

F F
inductive limit topology; this sequence is acyclic and moreover exact from the left.

Proposition 4. Let Haus : H(T'LC) — L and let

0—X 25y 2% 7 50 (D)

be an exact sequence of Hausdorff spectra. Then the following exact connecting sequence is
defined in the category L (6° (i =1,2,...) are the connecting morphisms):

0——Haus(X)——Haus()) ——Haus(2)——Haus' (X)

—— ... —Haus" '(2) LN Haus'(X) Dyz, Haus"())

222, Haus'(2) B

Proof. Since by Proposition 1 we obtain Haus"(§) = 0 for 5 > 1), then clearly there are
isomorphisms of the vector spaces

Haus"(X) =0 (i >2), Haus'(X) = Coker Tgs .
Therefore the exact sequence of vector spaces
0 — Haus(X) — Haus(Y) — Haus(Z2)

— Haus'(X) — Haus'()) — Haus'(Z) = 0 (D")
corresponds to the exact sequence (D'). O

3. In [1] and [2] V. P. Palamodov established the very fundamental Theorems 11.1 and
11.2 giving necessary and sufficient conditions for the vanishing at zero Pro*(X') = 0 for the
functor Pro of the projective limit of a countable family of locally convex spaces. We aim
to establish analogous conditions for the vanishing at zero Haus'(X) = 0 for the Hausdorff
limit functor and for the not necessarily countable case.

We recall that in questions concerning the stability of the class of H-spaces with respect
to Hausdorff limits and also in the theorem about the representation of H-spaces by means
of Banach spaces the assumption of regularity of the Hausdorff spectrum was an important
condition. Here it will be necessary for us to impose the following condition. Let X =



{Xs, F, hgs}r be a Hausdorff spectrum of locally convex spaces and for each T € F let
VE C [1p X, be defined by

VFT = {iU = (fL's) € HXs Xy = ]Als’smsa Sy s' € T},
F

each of which is given the projective topology with respect to the preimages 7, '7, (s € T),
where 7 : [T Xs — X is the canonical projection. The corresponding base of neighbour-
hoods of zero for the projective topology generates the TVG ([1r X;,00r)) (T € F).

Let us form the TVG (TIp X, o(r)) with base of neighbourhoods of zero Vi (T € F).
The Hausdorff spectrum X is said to be regular if ([1r X, o)) satisfies the condition:
convergence of a net (a,),cp in the TVGs ([1x X, o)) (T € F) implies its convergence in
the TVG ([1p X, 0(r)). If every X, (s € |F|) has the indiscrete topology, then it is not
difficult to see that the first part of the condition for regularity is equivalent to completeness
of (HF XS, O'(F)).

Theorem 1. Let X be a reqular Hausdorff spectrum of nonseparated parts over the
category TLC. Then Haus'(X) = 0.

Proof. Taking into account (D) we see that it is enough to show that Cokerw = 0,

where
Weg ! @HXS —)@HXS
F F F F

and & is the free Hausdorff spectrum with generators X (s € |F|). This mapping takes each
element

.T:(...,0,...,91,&2,...1p1,ﬁ2,...,J...,:Yl,’)/g,...Z...,O,...)

~~

Fl F2 Fm
to the corresponding element
y=1(..,0,...,00 — hlSTl(l)aSTl(l), U asTl(l) — hsT1(1>sT2(1)asT2(1)’ e
Fl
ﬁl - hlsT1(2) ﬁSTl(z)a N S hlsTl(m) rYsTl(m)a IREE RN 07 . ) )
S Fm

and moreover it is clear that Weg (D £ 17 X;) is dense in @, [1r X5).

We shall show that @Wge is an epimorphism. Fot this it is enough to establish that for
each F' € F we have an epimorphism [[r X; — [[r X, defined by the restriction of @Wge. We
will carry out the proof for the case Haus(X) = 0 (in fact, if Haus(X) # 0, then for some
F e F, Npep VE # 0 and (UgglnXs(ﬂTeF VE) =0). Let (ys) € [Ip Xs; we find a sequence

(cs) € [1g X such that: o, — hSST Qs =7Ys, where s < s, ; T1 CTy C...; sy, 81, - 18
a cofinal sequence (n =1,2,...). To be specific let us put sy, = 1 and form the series (*)

Ysr, T hST05T1 Ysr, T hSTOSTl (h’STl STy ySTQ) ...+ h’STOSTl (- (hsTn STy 41 ySTn+1)) T

Since completeness of the TVG VZ C [Ig X, follows from the regularity of the Hausdorff
spectrum X, then (according to V. P. Palamodov) the filter topologies on the spaces, for
which the spaces {hsy Xy} (s' € |F|, s = s') form a base of neighbourhoods of zero, will also
be complete. Therefore the series (x) converges in the space X; with respect to the filter
topology; put

A A A

Q1 = Z (h‘STO sty © h‘STl spy ©--- 0 hSTn STn_H)(ySTn_H)



Now the series

A

Ysp, + PsgyspyYsp, + - -+ Ry s, (- (hsTnSTn+1y5Tn+1)) t.

converges in the space X, with respect to the filter topology; put

o0

~ ~ ~

Qsp, = Z(hST18T2 © h5T23T3 ©...0 hSTnSTn+1)(ySTn+1)
n=0

so that oy — iAzlsTl sy, = U1 (s7, = 1). Similarly, by induction and using the completeness of
the space X7, with respect to the filter topology, we obtain the identities

~

O!sTn — h’sTnsTn+1 asTn+1 = ySTn )
where
m ~ ~
aSTn = ];)(hSTnST,H_I ©...0 hSTn+k STn+k+1)(ySTn+k+l)

(n = 0,1,2,...). Now for s < sr, and s A s;,_, we can put as; = ys + izssTnasTn €
X, (n =1,2,...). Thus Wee((vs)seir|) = (¥s)seir) and, consequently, Cokerwgs = 0 and
Haus'(X) = 0. The theorem is proved. O

If Y is a regular Hausdorff spectrum over TLC and X is the Hausdorff spectrum of
nonseparated parts, then it is easy to see that X is also a regular spectrum. In fact, bearing
in mind the remark before the theorem, it is sufficient to establish the completeness of
(I1F X5, o(ry) ; this TVG is embedded in the corresponding TVG ([1x Y5, O'(IF)). If (ay)yep is
fundamental under o(g), then a, € a,, +VZ (VT € F, v > ~v(T), v > 7(T)) and because of

the closedness of V' in the latter TVG we obtain the inclusion (a* = li;)n a)

@ —a €VE (VT € F, 70 = A(T)),

which also implies the convergence of (a,) to a* in ([Tr X, o(r)).
Thus, in the enunciation of Theorem 1 regularity of the Hausdorff spectrum X can be
replaced by regularity of the Hausdorff spectrum Y.

Theorem 2. Let YV be a reqular Hausdorff spectrum, X the Hausdorff spectrum of

nonseparated parts of Y and
0-X—>Y—->)Y/X—=0

an exact sequence of Hausdorff spectra. Then the sequence
0 — Haus(X) — Haus(Y) — Haus(Y/X) — 0

15 exact in the category L.
Let us continue our consideration of the question of exactness of the functor Haus :
H(TLC) — L for an arbitrary exact sequence of Hausdorff spectra
0> X—>)Y—->2Z2-0.

From the proofs given above it is clear that a sufficient condition for the vanishing at zero
Haus'(X) = 0 is the completeness of the TVG ([Ip X, o(py) for each ' € F (see Proposition

7.1 of [3]), where Zp, is formed by the filtering VE with respect to T'. At the same time each



space V£ is endowed with the linear topology defined by the inverse image sup 7r5_17'5 (TeF)
T

(forming at the same time the TVG (IIp X;, 0(r))) so that the TVG ([1r X, o(r)) is not
in general metrizable. It turns out that completeness of the TVG ([1p X;,0(p)) is also a

necessary condition for the vanishing at zero Haus'(X) = 0.

Proposition 3. Let X = {X,,F, hgs} be a countable Hausdorff spectrum over the
category L. Then in order that Haus'(X) = 0 it is necessary and sufficient that the TVG
(ITr Xs, JZ“F)) is complete for each F € F.

Theorem 3. Let X = {X,, F, hys} be a countable Hausdorff spectrum over the category
L. Then in order that Haus'(X) = 0 it is necessary and sufficient that for each F € F it is
possible to define in [1p Xs a quasinorm u = purp > 0 such that

(i) the associated topological group (I1r X, T(*F)) is complete, Tp > 0wy,

(ii) ph is continuous on ([1p Xs, 0(w))-

Proof. Necessity. This follows from the argument before the theorem, since on putting
TR = JE“F) and

() = f: 2 dr, (),

where dr, (z) = 0 for x € Va* and dy, (z) = 1 for z € [[p X,\Va* (k € N), we obtain (i) and
(ii).

Sufficiency. Let Zp = 32, Va* and let the factor space [[p X,/Zp be endowed with the
images of the topologies JZ‘F) and 7, so that, if

dp(€) = inf pp(x) and dp(6) = inf 3 2 %dy (x)
TEE TEE =1

the MVG ([1¢ Xs/Zr, dF) is separated and complete and the MVG ([Tr Xs/Zp, dp) is sepa-
rated. Thus on the MVG ([Ip Xs/Zr,dr) the functional dp is countably semiadditive and

dp(§) = inf lim dp(&,) = inf
#(€) = jof lim dp (&) = inf uj(2)
is continuous on it. Hence by the lemma on a countably semiadditive functional [8] we obtain
dr = dj, and, consequently, the MVG ([1x X/ZF, dr) is complete. But this means that the
TVG ([T X5, ofF)) will be complete, which allows us to conclude on considering all F' € F
that Haus' (X)) = 0. The theorem is proved. O

In the case of a countable inverse spectrum, in particular, we obtain the first part of
Theorem 11.1.1 of [1]; in the case of a direct spectrum X the topology 7F is indiscrete for
each singleton set F' € F. Moreover, the famous lemma of V. P. Palamodov [1], which makes
up the main part of the proof, is a special case of the lemma about a countably semiadditive
functional [8].

In what follows %, denotes the filter topology on X (s € |F|), which is formed by the
spaces {hsy Xy} (s' € |F|). We note, however, that the product topology on [[ X, obtained
from the topologies 3. (s € [F|) does not in general coincide with the topology ofp.

Sufficient conditions for the vanishing at zero Haus'(X') = 0, which are more convenient
for applications, are given in the following proposition.



Theorem 4. Let X = {X;, F, hys} be a countable Hausdorff spectrum over the category
L. In order that Haus'(X) = 0 it is sufficient that for each s € |F| it is possible to define
in X5 a family of quasinorms {pg, } which determines a complete separated pseudotopological
vector space (X, pg,), preserves the continuity of the morphisms hys and is such that for
each s € |F|, F € F the following condition is satisfied:

(A) for some B, = B,(F) the functional pj;, is continuous in the filter topology (X, ¢%)-

In particular, in the case of an inverse spectrum X we obtain Theorem 5.1 of [2] and
moreover our assertion is even stronger in this case.

Theorem 5. Let X = {X,, F,hys} be a countable Hausdorff spectrum of separated
H-spaces over the category TLC. Then in order that Haus'(X) = 0 it is necessary and
sufficient that the spaces (X5, ¢%) (s € |F|) are complete TVGs for each F € F.

Proof. Necessity. Suppose that Haus'(X) = 0. Then by Proposition 3 the TVG
(g XS,UE‘F)) is complete for each F' € F; thus the spaces X, will be complete in their
respective filter topologies % (s € | F|), being factor spaces of a TVG of countable character.

Sufficiency. Let F € F, s € |F|. We recall that the H-space (X, 75) has the representa-

tion [6]
U Nx,
Py €Ps tEP;

where the X} (¢ € P;) are provided with a semimetric topology in such a way that the
associated TVG X(p ) in X; is a complete MVG which is continuously embedded in (X5, Ts);
let p;° be the corresponding quasinorm for X¢p . It follows from the closed graph theorem
for H-spaces that the family {p!*} determines a complete separated pseudotopological vector
space (X, pf*) which is continuously embedded in (X, 7). We will show that condition (A)
of Theorem 4 is satisfied.

From the contrary. Let us assume that (pf*)* is continuous in the filter topology ¢%, for
no P; € P,. This implies that for P, € P there exists ¢ = ¢(P;) > 0, ¢ € Q such that
iLSS*XS* 7 VG’EPS), where s* > s and

V={ee X, ()P) @) < (ReP).

In spite of the fact that the family P, has in general the cardinality of the continuum, among
the sets V*(‘P) there are no more than countably many distinct sets. Let these be the sets
Vv . From the representation of the H-space and the construction it follows that

€1 Vegr oo s
st U U )\‘/:;2—1
neN A>0

and, consequently, by the completeness of the TVG (Xj, ¢%) there exists ng € N such that
‘/'6’;02_1 is dense (in the topology ¢%) in some ball of the topology ¢%. However the Lebesgue
sets V* are symmetric and closed in the topology ¢, therefore there exists s§ € |F'| such
that hss X C V*0 = V* | which contradicts the choice of € = ¢(P;) (Ps € Ps).

The sufﬁc1ency now foollows from Theorem 4. The proposition is proved. O

In the case of an inverse spectrum of Fréchet spaces Theorem 5 extends the criteria
(F) and (R) of V. P. Palamodov’s Corollary 11.4 in [1]. We note that in Theorem 5 it
is separatedness of the pseudotopology which is actually required, therefore in general the
H-space may be nonseparated.

Theorem 6. Let X = {X,,F, hys} be a countable Hausdorff spectrum of H-spaces
over the category TLC with separated associated pseudotopology {(pf*)*} which preserves



the continuity of the morphisms hys. Then in order that Hausl(/'\f' ) = 0 it is necessary and
sufficient that for each s € |F| there exists a quasinorm ps*(F) (s € |F|) in X, such that

(A") (pF=)* is continuous in the filter topology ¢% and the system {pl*} preserves the
continuity of the morphisms hg..

In particular the theorem of Retakh [9] follows from Theorem 6.
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