GENERAL INCLUSION RELATIONS FOR ABSOLUTE SUMMABILITY

EKREM SAVAŞ

In a recent paper the author [?] obtained necessary conditions for a series summable $|A_k|$, $1 < k \leq s < \infty$, to imply that the series is summable $|B_s|$ where A and B are lower triangular matrices. In this paper we obtain sufficient conditions for a series summable $|A_k|$, $1 < k \leq s < \infty$, to imply that the series is summable $|B_s|$. Using these results we obtain a number of corollaries.

Let T be a lower triangular matrix, $\{s_n\}$ a sequence. Then

$$ T_n := \sum_{\nu=0}^{n} t_{n\nu} s_\nu. $$

A series $\sum a_n$ is said to be summable $|T|_k$, $k \geq 1$ if

$$ \sum_{n=1}^{\infty} n^{k-1} |T_n - T_{n-1}|^k < \infty. $$

(1)

We may associate with T two lower triangular matrices \mathbf{T} and \hat{T} as follows:

$$ \hat{t}_{n\nu} = \sum_{r=\nu}^{n} t_{nr}, \quad n, \nu = 0, 1, 2, \ldots, $$

and

$$ \hat{t}_{n\nu} = \hat{t}_{n\nu} - \hat{t}_{n-1,\nu}, \quad n = 1, 2, 3, \ldots. $$

With $s_n := \sum_{i=0}^{n} a_i$.

1991 Mathematics Subject Classification. Primary: 40G99; Secondary: 40G05, 40D15.

Key words and phrases. absolute summability, weighted mean matrix, Cesáro matrix.

This research was completed while the second author was a Fulbright scholar at Indiana University, Bloomington, IN, U.S.A., during the Spring semester of 2004.
\[y_n := \sum_{i=0}^{n} t_{ni} s_i = \sum_{i=0}^{n} t_{ni} \sum_{\nu=0}^{i} a_{\nu} \]
\[= \sum_{\nu=0}^{n} a_{\nu} \sum_{i=\nu}^{n} t_{ni} = \sum_{\nu=0}^{n} \tilde{t}_{n\nu} a_{\nu} \]

and

\[Y_n := y_n - y_{n-1} = \sum_{\nu=0}^{n} (\tilde{t}_{n\nu} - \tilde{t}_{n-1,\nu} a_{\nu}) = \sum_{\nu=0}^{n} \tilde{t}_{n\nu} a_{\nu}. \]

We shall call \(T \) a triangle if \(T \) is lower triangular and \(t_{nn} \neq 0 \) for each \(n \). The notation \(\Delta_{\nu} \hat{a}_{n\nu} \) means \(\hat{a}_{n\nu} - \hat{a}_{n,\nu+1} \).

Theorem 1. Let \(1 < k \leq s < \infty \). Let \(A \) and \(B \) be triangles satisfying

(i) \(|b_{nn}| \leq O\left(\nu^{1/s-1/k}\right) \),

(ii) \((n|X_n|)^{s-k} = O(1) \),

(iii) \(|a_{nn} - a_{n+1,n}| = O(|a_{nn}a_{n+1,n+1}|) \),

(iv) \(\sum_{\nu=0}^{n-1} |\Delta_{\nu} (\hat{b}_{n\nu})| = O(|b_{nn}|) \),

(v) \(\sum_{n=\nu+1}^{\infty} (n|b_{nn}|)^{s-1} |\Delta_{\nu} (\hat{b}_{n\nu})| = O(\nu^{s-1}|b_{nu}|^s) \),

(vi) \(\sum_{\nu=0}^{\infty} |b_{nu}|^s |\hat{b}_{n,\nu+1}| = O(|b_{nn}|) \),

(vii) \(\sum_{n=\nu+1}^{\infty} (n|b_{nn}|)^{s-1} |\hat{b}_{n,\nu+1}| = O((\nu|b_{nu}|)^{s-1}) \),

and

(viii) \(\sum_{n=1}^{\infty} n^{s-1} \left| \sum_{\nu=2}^{n} \hat{b}_{nu} \sum_{i=0}^{\nu-2} \hat{a}'_{\nu i} X_i \right|^s = O(1) \).

Then if \(\sum a_n \) is summable \(|A|_k \), it is summable \(|B|_s \).

References

DEPARTMENT OF MATHEMATICS, YÜZÜNCÜ YIL UNIVERSITY, VAN, TURKEY

E-mail address: ekremsavas@yahoo.com