ABSTRACT. In the classical summability setting rates of summation have been introduced in several ways (see, e.g., [10], [21], [22]). The concept of statistical rates of convergence, for nonvanishing two null sequences, is studied in [13]. Unfortunately no single definition seems to have become the “standard” for the comparison of rates of summability transforms. The situation becomes even more uncharted when one considers rates of A_i statistical convergence. For this reason various ways of defining rates of convergence in the A_i statistical sense are introduced in [6].

In the present paper, using the concepts of [6], we study rates of A_i statistical convergence of sequences of positive linear operators mapping the weighted space $C_{\frac{1}{1}}$ into the weighted space $B_{\frac{1}{2}}$ where $\frac{1}{1}$ and $\frac{1}{2}$ are weight functions satisfying the condition
\[
\lim_{|x| \to \infty} \frac{\frac{1}{2}(x)}{\frac{1}{2}(x)} = 0;
\]
and
\[
B_{\frac{1}{2}} := \{ f : f : \mathbb{R} \to \mathbb{R}, |f(x)| \leq M_f \frac{1}{2}(x) \text{ for all } x \in \mathbb{R} \},
\]
and
\[
C_{\frac{1}{k}} := \{ f : f \in B_{\frac{1}{k}}, f \text{ is continuous on } \mathbb{R} \},
\]
(here M_f is a constant depending on f).

Note that the classical Korovkin type approximation theory may be found in [1], [4], [20] while its further extensions studied via A_i statistical convergence may be viewed in [6], [7], [15].

Recall that the sequence (x_n) is said to be A_i statistically convergent to L if, for every $\varepsilon > 0$;
\[
\lim_{n \to \infty} \frac{1}{|x_n|} \sum_{j} a_{nj} = 0
\]
where $A = (a_{ij})$ is a non-negative regular matrix (see, e.g., [2], [3], [9], [23]). The case in which $A = C_1$: the Cesáro matrix, A_i statistical convergence reduces to statistical convergence [8], [11], [12].

1991 Mathematics Subject Classification. Primary 41A25, 41A36, 47B38; Secondary 40A05.

Key words and phrases. A_i density, A_i statistical convergence, sequence of positive linear operators, weight function, weighted space, modulus of continuity, the Korovkin theorem.

Section Number. 10 (Functional Analysis).
References

O. Duman
Department of Mathematics, Faculty of Science, Ankara University, Tandoğan 06100, Ankara, TURKEY.
E-mail Address: oduman@science.ankara.edu.tr

C. Orhan
Department of Mathematics, Faculty of Science, Ankara University, Tandoğan 06100, Ankara, TURKEY.
E-mail Address: orhan@science.ankara.edu.tr