According to the classical Skitovich-Darmois theorem the Gaussian distribution is characterized by the independence of two linear form ([2]). Heyde proved a closely related result where a condition of the independence of linear forms is replaced by the condition of the symmetry of one form given another ([1])

Large number of researches is devoted some analogs both the Skitovich-Darmois theorem and proved earlier the Bernstein theorem for different algebraic structures (see e.g. [3] where one can find some references).

Let X be a locally compact Abelian separable group,  $\operatorname{Aut}(X)$  be the set of topological automorphisms of X,  $\xi_j, \ j=1,2,...,n,\ n\geq 2$  be independent random variables taking on values in X and with distributions  $\mu_j$ . Consider  $L_1=\alpha_1\xi_1+\cdots+\alpha_n\xi_n$  and  $L_2=\beta_1\xi_1+\cdots+\beta_n\xi_n$ , where  $\alpha_j,\beta_j\in\operatorname{Aut}(X)$  such that  $\beta_i\alpha_i^{-1}\pm\beta_j\alpha_j^{-1}\in\operatorname{Aut}(X)$  for all  $i\neq j$  and assume that the conditional distribution of  $L_2$  given  $L_1$  is symmetric. In the talk we give a solution in the class of finite Abelian groups X the following

Problem. To give the complete description of distributions  $\mu_j$  of independent random variables  $\xi_j$  taking on values in X such that the conditional distribution of  $L_2$  given  $L_1$  is symmetric.

## References

- [1] Heyde, C.C. (1970). Characterization of the normal low by the symmetry of a certain conditional distribution // Sankhya. Ser. A. 32. P. 115–118.
- [2] Kagan, A.M., Linnik, Yu. V., and Rao, C.R. 1973. Characterization problems of mathematical statistics. New York: Wiley.
- [3] Neuenschwander, D., Schott, R. (1997) The Bernstein and Scitovich-Darmois characterization theorems for Gaussian distributions on groups, symmetric spaces, and quantum groups // Expo.Math. 15. P. 289-314.