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Abstract: Let (W, u, H) be an abstract Wiener space assume two v;, i = 1,2 proba-
bilities on (W, B(W)) . We give some conditions for the Wasserstein distance between
v1 and v with respect to the Cameron-Martin space

du(vi,12) = \/inf/ |z — y|3,dB(z, y)
B Jwxw

to be finite, where the infimum is taken on the set of probability measures 5 on W x W
whose first and second marginals are v; and vo. In this case we prove the existence of
a unique (cyclically monotone) map 7' = Iy + &, with £ : W — H, such that 7" maps
V1 to v9. Moreover, if vy < p 2, then T is stochastically invertible, i.e., there exists
S : W — W such that SoT = Iyy v; a.s. and T oS = Iy 19 a.s. If, in addition, vy, = u,
then there exists a 1-convex function ¢ in the Gaussian Sobolev space IDs 1, such that
& = V¢. These results imply that the quasi-invariant transformations of the Wiener
space with finite Wasserstein distance from g can be written as the composition of a
transport map 7" and a rotation, i.e., a measure preserving map. We give also 1-convex
sub-solutions and Ito-type solutions of the Monge-Ampeére equation on W. 3

1 Introduction

In 1781, Gaspard Monge has published his celebrated memoire about the most eco-
nomical way of earth-moving [23]. The configurations of excavated earth and remblai
were modelized as two measures of equal mass, say p and v, that Monge had supposed
absolutely continuous with respect to the volume measure. Later Ampere has studied
an analogous question about the electricity current in a media with varying conductiv-
ity. In modern language of measure theory we can express the problem in the following
terms: let W be a Polish space on which are given two positive measures p and v, of
finite, equal mass. Let c(x,y) be a cost function on W x W, which is, usually, assumed

Lef. Theorem 6.1 for the precise hypothesis about v, and vs.

2In fact this hypothesis is too strong, cf. Theorem 6.1.
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positive. Does there exist a map 7' : W — W such that Tp = v and T' minimizes the
integral

| el T@)dpta)
w

between all such maps? The problem has been further studied by Appell [3, 4] and
by Kantorovitch [19]. Kantarovitch has succeeded to transform this highly nonlinear
problem of Monge into a linear problem by replacing the search for T" with the search
of a measure v on W x W with marginals p and v such that the integral

/ c(x,y)dy(z,y)
W xW

is the minimum of all the integrals

/ c(x,y)dp(z,y)
WxW

where 8 runs over the set of measures on W x W whose marginals are p and v. Since
then the problem adressed above is called the Monge problem and the quest of the
optimal measure is called the Monge-Kantorovitch problem.

Historically, the problem of Monge was stated with W = IR" and with the Eu-
clidean cost c(z,y) = |z — y|. The case of the quadratic cost c¢(z,y) = |z — y|? has
come later. Even in this case, it is by no means obvious that the Monge problem is
equivalent to the Monge-Kantorovitch problem. Nevertheless, suppose that the latter
has a solution v whose support lies in the graph of a map 7T, then this graph yields also
a solution of the Monge problem. Many authors have attempted to find such a measure
(cf. [6, 19, 21, 26]). Recently Brenier [6] and McCann [21] have proved the existence
and the uniqueness of it when p is absolutely continuous with respect to the Lebesgue
measure. They have also shown that this measure was supported by the graph of a
mapping, so that the Monge problem was also solved.

In this paper we study the Monge-Kantorovitch and the Monge problems in the
frame of an abstract Wiener space with a singular quadratic cost. In other words, let
W be a separable Fréchet space with its Borel sigma algebra B(W) and assume that
there is a separable Hilbert space H which is injected densely and continuously into
W, hence in general the topology of H is stronger than the topology induced by W.
The cost function ¢ : W x W — R4 U {oo} is defined as

C(:an) = |:E - y|12LI7

we suppose that c¢(z,y) = oo if z — y does not belong to H. Clearly, this choice of the
function ¢ is not arbitrary, in fact it is closely related to Ito Calculus, hence also to the
problems originating from Physics, quantum chemistry, large deviations, etc. Since for
all the interesting measures on W, the Cameron-Martin space is a negligeable set, the
cost function will be infinity very frequently. Let ¥(p, ) denote the set of probability
measures on W x W with given marginals p and v. It is a convex, compact set under the
weak topology (X, C,(W x W)). As explained above, the problem of Monge consists



of finding a measurable map T : W — W, called the optimal transport of p to v, i.e.,
Tp = v * which minimizes the cost

- /W & — U (@) 3dp(z).,

among all the maps U : W — W such that Up = v. The Monge-Kantorovitch problem
will consist of finding a measure on W x W, which minimizes the function § — J(0),
defined by

J(0) :/wa‘x—y’ildﬁ(:c,y), (1.1)

where 6 runs over X(p, v). Note that inf{J(0) : 8 € X(p,v)} is the square of Wasserstein
metric dg(p,v) with respect to the Cameron-Martin space H.

Any solution v of the Monge-Kantorovitch problem will give a solution to the Monge
problem provided that its support is included in the graph of a map. Hence our work
consists of realizing this program. Although in the finite dimensional case this problem
is well-studied in the path-breaking papers of Brenier [6] and McCann [21, 22| things
do not come up easily in our setting and the difficulty is due to the fact that the cost
function is not continuous with respect to the Fréchet topology of W, for instance the
weak convergence of the probability measures does not imply the convergence of the
integrals of the cost function. In other words the function |z — y|% takes the value plus
infinity “very often”. On the other hand the results we obtain seem to have important
applications to several problems of stochastic analysis.

The most notable results of this paper can be stated as follows: assume that
dp(p,v) < oo and that along a sequence of finite dimensional projections increasing to
the identity of H and having continuous extensions to W, the measure p disintegrates
“nicely”. Then the problem of Monge-Kantorovitch and the problem of Monge have
unique solutions for the singular cost function c¢(z,y) = |x — y|12qa the solution of the
Monge problem is of the form T = Iy + £, where £ is an H-valued random variable,
such that the map T is cylindrically cylically monotone. If the target measure v has
also a similar property, then the solution of the Monge problem is “almost surely invert-
ible” and its inverse is the solution of the reverse problem of Monge. If, furthermore,
p is equal to the Wiener measure and if v is absolutely continuous with respect to p,
then £ above is of the form V¢, where ¢ is in the Gaussian Sobolev space D21 and it
is a 1-convex function [15]. Finally, we give the strong sub-solutions and the Ito-type
solutions of the Monge-Ampere equation. We shall explain the applications of these
results while enumerating the contents of the paper.

In Section 2, we explain some basic results about the functional analysis constructed
on the Wiener space (cf., for instance [14, 30]) and the probabilistic theory of convex
functions recently developed in [15]. For the paper to be more self-contained, we have
also added the most relevant results about the finite dimensional problems of Monge
and of Monge-Kantorovitch. Section 3 is devoted to the derivation of some inequalities
which control the Wasserstein distance. In particular, with the help of the Girsanov
theorem, we give a very simple proof of an inequality, initially discovered by Talagrand

4We denote the push-forward of p by T, i.e., the image of p under T, by Tp.



([27]); the ease to prove this result gives already an idea about the efficiency of the
infinite dimensional techniques for the Monge-Kantorovitch problem®. We indicate
some simple consequences of this inequality to control the measure of subsets of the
Wiener space in terms of the second moment of their gauge functionals defined with
respect to the Cameron-Martin distance. These inequalities are quite useful in the
theory of large deviations. Using a different representation of the target measure,
namely by constructing a flow of diffeomorphisms of the Wiener space (cf. Chapter V
of [31]) which maps the Wiener measure to the target measure, we obtain also a new
control of the Kantorovitch-Rubinstein metric of order one. The method we employ for
this inequality generalizes directly to a more general class of measures, namely those
for which one can define a reasonable divergence operator.

In Section 4, we solve directly the original problem of Monge when the first measure
is the Wiener measure and the second one is given with a density, in such a way that the
Wasserstein distance between these two measures is finite. We prove the existence and
the uniqueness of a transformation of W of the form T' = Iy +V ¢, where ¢ is a 1-convex
function in the Gaussian Sobolev space IDg; such that the measure v = (Iyy x T)p
is the unique solution of the problem of Monge-Kantorovitch. This result gives a new
insight to the question of representing an integrable, positive random variable whose
expectation is unity, as the Radon-Nikodym derivative of the image of the Wiener
measure under a map which is a perturbation of identity, a problem which has been
studied by X. Fernique and by one of us with M. Zakai (cf., [12, 13, 31]). In [31],
Chapter II, it is shown that such random variables are dense in I[&’ +(p) (the lower
index 1 means that the expectations are equal to one), here we prove that this set
of random variables contains the elements L of IL%’ 4 () such that the Wasserstein
distance between the measure Ldp and the Wiener measure dy is finite. In fact even if
this distance is infinite, we show that there is a solution to this problem if we enlarge
W slightly by taking IN x W.

Section 5 is devoted to the immediate implications of the existence and the unique-
ness of the solutions of Monge-Kantorovitch and Monge problems constructed in Section
4. Indeed the uniqueness implies at once that the absolutely continuous transforma-
tions of the Wiener space, at finite (Wasserstein) distance, have a unique decomposition
in the sense that they can be written as the composition of a measure preserving map
in the form of a perturbation of identity with another one which is the perturbation
of identity by the Sobolev derivative of a 1-convex function. This means in particular
that the class of 1-convex functions is as basic as the class of adapted processes in the
setting of Wiener space.

In Section 6 we prove the existence and uniqueness of solutions of the Monge-
Kantorovitch and Monge problems for general measures which are at finite Wasserstein
distance from each other. The fundamental hypothesis we use is that the regular con-
ditional probabilities which are obtained by the disintegration of one of the measures
along the orthogonals of a sequence of regular, finite dimensional projections vanish
on the sets of co-dimension one. In particular, this hypothesis is satisfied if the mea-
sure under question is absolutely continuous with respect to the Wiener measure. The

5In Section 7 we shall see another illustration of this phenomena.



method we use in this section is totally different from the one of Section 4; it is based
on the notion of cyclic monotonicity of the supports of the regular conditional prob-
abilities obtained through some specific disintegrations of the optimal measures. The
importance of cyclic monotonicity has first been remarked by McCann and used abun-
dantly in [21] and in [17] for the finite dimensional case. Here the things are much more
complicated due to the singularity of the cost function, in particular, contrary to the
finite dimensional case, the cyclic monotonicity is not compatible with the weak con-
vergence of probability measures. A curious reader may ask why we did not treat first
the general case and then attack the subject of Section 4. The answer is twofold: even
if we had done so, we would have needed similar calculations as in Section 4 in order
to show the Sobolev regularity of the transport map, hence concerning the volume, the
order that we have chosen does not change anything. Secondly, the construction used
in Section 4 has an interest of its own since it explains interesting relations between the
transport map and its inverse and the optimal measure in a more concrete situation,
in this sense this construction is rather complementary to the material of Section 6.

Section 7 studies the Monge-Ampere equation for measures which are absolutely
continuous with respect to the Wiener measure. First we briefly indicate the notion
of second order Alexandroff derivative and the Alexandroff version of the Ornstein-
Uhlenbeck operator applied to a 1-convex function in the finite dimensional case. With
the help of these observations, we write the corresponding Jacobian using the modi-
fied Carleman-Fredholm determinant which is natural in the infinite dimensional case
(cf., [31]). Afterwards we attack the infinite dimensional case by proving that the
absolutely continuous part of the Ornstein-Uhlenbeck operator applied to the finite
rank conditional expectations of the transport function is a submartingale which con-
verges almost surely. Hence the only difficulty lies in the calculation of the limit of the
Carleman-Fredholm determinants. Here we have a major difficulty which originates
from the pathology of the Radon-Nikodym derivatives of vector measures with respect
to a scalar measure as explained in [28]: in fact even if the second order Sobolev deriva-
tive of a Wiener function is a vector measure with values in the space of Hilbert-Schmidt
operators, its absolutely continuous part has no reason to take values in the space of
Hilbert-Schmidt operators. Hence the Carleman-Fredholm determinant may not exist,
however due to the 1-convexity, all the determinants of the approximating sequence
take values in the interval [0, 1]. Consequently we can construct the subsolutions with
the help of Fatou’s lemma.

Last but not least, in section 7.1, we prove that all these difficulties can be overcome
thanks to the natural renormalization of the Ito stochastic calculus. In fact using the
Ito representation theorem and the Wiener space analysis extended to the distributions,
cf. [29], we can give the explicit solution of the Monge-Ampere equation. This is a
remarkable result in the sense that such techniques do not exist in the finite dimensional
case.



2 Preliminaries and notations

Let W be a separable Fréchet space equipped with a Gaussian measure p of zero
mean whose support is the whole space. The corresponding Cameron-Martin space is
denoted by H. Recall that the injection H — W is compact and its adjoint is the
natural injection W* — H* C L?(p). The triple (W, u, H) is called an abstract Wiener
space. Recall that W = H if and only if W is finite dimensional. A subspace F' of H is
called regular if the corresponding orthogonal projection 7z has a continuous extension
to W, denoted again by the same letter. It is well-known that there exists an increasing
sequence of regular subspaces (F,,,n > 1), called total, such that U,, F}, is dense in H and
in W. Let V,, = o(ng,) be the o-algebra generated by 7z, ©, then for any f € LP(u),
the martingale sequence (E[f|V,],n > 1) converges to f (strongly if p < oo) in LP(u).
Observe that the function f,, = E[f|V,] can be identified with a function on the finite
dimensional abstract Wiener space (Fy,, tin, Fy,), where p, = mppu. A typical example
for (F,,,n > 1) can be constructed with the help of a sequence (e,,n > 1) C W* (i.e.,
the continuous dual of W), whose image in H forms a complete, orthonormal basis of
H (cf.[18]). In this case F), is the subspace generated by {ei,...,en}.

Since the translations of p by elements of H induce measures equivalent to p, the
Gateaux derivative in H direction of the random variables is a closable operator on
LP(u)-spaces and this closure will be denoted by V cf., for example [14, 30]. The
corresponding Sobolev spaces (the equivalence classes) of the real random variables
will be denoted as ID,, ., where k € IN is the order of differentiability and p > 1 is the
order of integrability. If the random variables take values in some separable Hilbert
space, say ®, then we shall define similarly the corresponding Sobolev spaces and they
are denoted ID, 1 (®), p > 1, k € IN. Since V : D, — D, ,—1(H) is a continuous and
linear operator its adjoint is a well-defined operator which we represent by . In the
case of classical Wiener space, i.e., when W = Cy(IR, ]Rd), then ¢ coincides with the
Ito integral of the Lebesgue density of the adapted elements of ID,, ,(H) (cf.[30]).

For any t > 0 and measurable f : W — IR, we note by

Puf@) = [ 5 (et + Vi) ).

it is well-known that (P,,t € IR4) is a hypercontractive semigroup on LP(u),p >
1, which is called the Ornstein-Uhlenbeck semigroup (cf.[14, 30]). Its infinitesimal
generator is denoted by —£ and we call £ the Ornstein-Uhlenbeck operator (sometimes
called the number operator by the physicists). The norms defined by

18]l = T+ L) Loy (2.2)

are equivalent to the norms defined by the iterates of the Sobolev derivative V. This
observation permits us to identify the duals of the space D, (®);p > 1,k € IN by
D, _x(®'), with g ! = 1 — p~!, where the latter space is defined by replacing k in
(2.2) with —Fk, this gives us the distribution spaces on the Wiener space W (in fact
we can take as k any real number). An easy calculation shows that, formally, j o V =

6For typographical reasons, in the sequel we shall denote 7z by .



L, and this permits us to extend the divergence and the derivative operators to the
distributions as linear, continuous operators. In fact § : IDg ,(H ® ®) — Dy ;1 (®P) and
V :Dyy(®) — Dy p—1(H ® ®) continuously, for any ¢ > 1 and k € IR, where H ® ®
denotes the completed Hilbert-Schmidt tensor product (cf., for instance [30]).

Let us recall some facts from convex analysis. Given the Hilbert space K, a subset
S of K x K is called cyclically monotone if any finite subset {(z1,v1),..., (zn,yn)} of
S satisfies the following algebraic condition:

(y1, 9 — 1) + (Y2, 23 —x2) + -+ (Yyn—1, 2N —xN-1) + (yn, 21 —2N) <0,

where (-, -) denotes the inner product of K. It turns out that S is cyclically monotone

if and only if for all N > 2
N

Z<yi7$a(i) —x;) <0,

i=1
for any permutation o of {1,..., N} and for any finite subset {(z;,y;): i=1,...,N}
of S. Note that S is cyclically monotone if and only if any translate of it is cyclically
monotone. By a theorem of Rockafellar, any cyclically monotone set is contained in the
graph of the subdifferential of a convex function in the sense of convex analysis ([25])
and even if the function may not be unique its subdifferential is unique. We shall also
call a mapping F': K — K cyclically monotone if

N

> (F(2:), 200 — 1) <0,

=1

for any permutation o of {1,..., N} and for any finite subset {z; : ¢ = 1,..., N} of
K. Note that, this condition, for N = 2 implies in particular that the mapping F' is
monotone.

Let now (W, u, H) be an abstract Wiener space; a measurable function f : W —
IR U {00} is called 1-convex if the map

1
h— f(x+h)+ E\hﬁq = F(x,h)

is convex on the Cameron-Martin space H with values in L°(y). Note that this notion is
compatible with the p-equivalence classes of random variables thanks to the Cameron-
Martin theorem. It is proven in [15] that this definition is equivalent the following
condition: Let (m,,n > 1) be a sequence of regular, finite dimensional, orthogonal
projections of H, increasing to the identity map Iy. Denote also by m, its continuous
extension to W and define 7;- = Iyy — m,. For x € W, let x,, = 7,z and 2z, = 7.

Then f is 1-convex if and only if
1
Tn — i‘xnﬁ{ + f(on + xﬂ[)

is ;- pu-almost surely convex for every n > 1.



2.1 Monge and Monge-Kantorovitch problems in finite di-
mension: A concise survey

For the sake of simplicity, we shall represent respectively “le déblai” and “ le remblai”
with the measures having positive densities with respect to the Lebesgue measure of
R™: p(dzx) = f(z)dr and v(dy) = g(y)dy. It is assumed that p(IR™) = v(IR™) = M
and in general the constant M is assumed to be one. Let ¢(z,y) be the cost function
defined on IR™ x IR™, which is in general positive. In this situation the problem of
Monge is to find a mapping T : IR™ — IR" which transports “le déblai” p to the “le
remblai” v and which minimizes the overall cost

inf / el Ul@)pldr) = / el T(@)plde)
— [ e T@)f @),

where the infimum is taken between all the measurable maps U of IR™ such that
Up = v. The transport or the Monge-Ampere equation is the following identity, which
is a consequence of the Jacobi formula:

f(@) = goT(@)|Jr(z)l,

where Jr is the Jacobian of T' provided that the derivative of T has a meaning. In this
latter case T is said to be a (strong) solution of the Monge-Ampere equation for (f,g).
We shall explain only the case where ¢(x,y) = |z —y|?, where |-| denotes the Euclidean
norm of IR™.

Let X(p, v) be the set of probability measures on IR™ x IR™, whose first and second
marginals are respectively p and v. Clearly ¥(p,v) is a convex, compact set in the
weak topology of measures. For 6 € ¥(p,v), we define

J(0) = / |z —y|? 0(dx, dy) < co.
R™xIR™

The problem of Monge-Kantorovitch (PMK) consists of finding a measure v € X(p,v)
which minimizes J with J(v) < co. In case J(vy) = 0o, the problem is called degenerate.
Evidently the PMK is not equivalent to the problem of Monge, however each solution
of PMK, whose support is contained in the graph of a mapping 7" will provide a
solution of the problem of Monge. Rachev [24] has proven that under some specific
conditions, PMK has a unique solution. Sudakov [26] had already discovered that
for certain cost functions the solution of PMK was supported by graphs of certain
mappings T : R™ — IR™ which are automatically the solutions of the Monge problem.
The following results are important for further understanding of the subject:

Proposition 2.1 (McCann) Suppose that v € X(p,v) has its support in the subgra-
dient OF = {(z,y) € R™ xIR™: y € 0F(x)} of some convex function F. If p vanishes
on the sets of Hausdorff dimension (m— 1), then F is proper, OF (z) is p-almost surely
univalent and OF (z) = VF(x) p-a.s. Moreover we have

vy=IxVF)p.

8



Finally, such a convex function F is unique upto an additive constant, hence VF is
UNIquUe.

Let us remark that in this proposition we may have J(y) = co. In the finite dimensional
case, since the quadratic cost function is continuous, to construct such measures - is
easy as it can be seen from the next statement:

Proposition 2.2 (McCann) Assume that (v, k > 1) C M1(IR"™ x R™) have cycli-
cally monotone supports and that the sequence converges weakly to a probability ~y.
Then the support of v is also cyclically monotone. In particular, for any two proba-
bility measures p and v, on R"™ there exists a v € X(p,v) with cyclically monotone
support.

In the case v is optimal with J(v) < oo, we also have (cf. [1, 17]):

Proposition 2.3 If vy € X(p,v) is optimal (with J(v) < o0), then the support of =y is
cyclically monotone.

Hence combining Propositions 2.1, 2.2 and 2.3 and using the strict convexity and the
linearity of the cost function, we obtain at once the existence and the uniquness of the
solutions of PMK and of the problem of Monge. Let us give a final result, whose proof
is rather immediate, which we shall use in the sequel:

Proposition 2.4 Assume that the measure p satisfies the hypothesis of Proposition 2.1
and let F' be the proper, convex function constructed through the propositions above,
denote by F* its Legendre-Fenchel transformation (i.e.,its conver conjugate) and let
v € X(p,v) be the solution of PMK which is given by v = (I x VF)p. Then we have

F(x) + F*(y) > (z,y)r™

for any x,y € R™ and
F(z) + F*(y) = (z,y)mm

vy-almost surely.

3 Some Inequalities

Definition 3.1 Assume that & and n are two probability measures on (W, B(W)). We
shall denote by X(€,1n) the set of all the probability measures 3 on W x W such that
m B =& and w3 =n, where 7;, i = 1,2 denote the projections of W x W onto W.

Definition 3.2 Let £ and n be two probabilities on (W,B(W)). We say that a prob-
ability v € X(&,n) is a solution of the Monge-Kantorovitch problem associated to the

couple (&,m), if
J(v) = /W . |z — yl3dy(z,y) = inf{/w . |z —yHdB(z,y) : B € E(S,n)} :

We shall denote the Wasserstein distance between € and n, which is the positive square-
root of this infimum, by dg(&,n).



Remark: Since the set of probability measures on W x W is weakly compact and since
the integrand in the definition is lower semi-continuous and strictly convex, the infimum
in the definition is always attained even if the functional J is identically infinity.

The following result, which has already been published in [16] (cf. also [10]) is an
extension of an inequality due to Talagrand [27] and it gives a sufficient condition for
the Wasserstein distance to be finite:

Theorem 3.1 Let L € ILlogIL(u) be a positive random variable with E[L] = 1 and let
v be the measure dv = Ldu. We then have

d% (v, ;) < 2E[LlogL]. (3.3)
Proof: Without loss of generality, we may suppose that W is equipped with a filtration
of sigma algebras in such a way that it becomes a classical Wiener space as W =
Co(Ry,RY) (cf. [31], Chapter 2.6). Let (W;,t > 0) be the associated canonical Wiener

process. Assume first that L is a strictly positive and bounded random variable. We
can represent it as

L= exp [_/ (ity, dVV) — 2|u|H] ,
0
where u = fo ugds is an H-valued, adapted random variable. Define 7,, as

Tn(x) = inf {t cR, : /Ot |is(x)|?ds > n} .

T, 18 a stopping time with respect to the canonical filtration (F,t € IR4.) of the Wiener
process (W, t € Ry) and lim, 7, = oo almost surely. Define u” as

t
() = [ oo (GDis(a)is.
Let U,, : W — W be the map U, (x) = x + u"(x), then the Girsanov theorem says that

(t,z) = Uy(x)(t) = z(t) + fot U2ds is a Wiener process under the measure L, du, where
L, = E[L|F.,]. Therefore

° 1
E[L,logL,] = E [Ln {—/ (u?, dWy) — 2|u"|§{}]
0
1 n|2
= §E[Lnfu 7]
1 n
= §E[L|U ﬁ{]‘
Define now the measure 3, on W x W as

/ £ (@ 9Bz, ) = / F(Un (), ) Ln () dia().
WxW w

10



Then the first marginal of 3, is u and the second one is L,.u. Consequently

inf {/ |z — y|%dl : m6 = p, T = Ln.u}
WxWwW

[ 10nta) = oy Lud
w
= 2FE[L,logL,].

IA

Hence we obtain
d2(Ly.pu, 1) = J () < 2E[Ly log L]

where 7, is a solution of the Monge-Kantorovitch problem in (L., pt). Let now 7 be
any cluster point of the sequence (y,,n > 1), since v — J() is lower semi-continuous
with respect to the weak topology of probability measures, we have

J(3) < liminf J(3)
< sup2F|[Ly,log L]
< 2nE[L log L],
since v € X(L.pu, p), it follows that
d% (L., 1) < 2E[Llog L] .

For the general case we stop the martingale F[L|F;] appropriately to obtain a bounded
density Ly, then replace it by P/, L, to obtain the strict positivity, where (P, > 0)
denotes the Ornstein-Uhlenbeck semigroup. From Jensen’s inequality,

E[Pyp Ly log Py L] < E[Llog L],
therefore, using the same reasoning as above
dip(L-p,p) < liminf dy (P Lpi, 1)
< 2E[LlogL],

and this completes the proof. L]

Corollary 3.1 Assume that v; (i = 1,2) have Radon-Nikodym densities L; (i = 1,2)
with respect to the Wiener measure p which are in ILlog IL(u). Then

dy(v1,19) < 00.
Proof: This is a simple consequence of the triangle inequality (cf. [5]):

du(v1,12) < dp(vi,p) +du(ve, 1) .

Let us give a simple application of the above result along the lines of [20]:

11



Corollary 3.2 Assume that A € B(W) is any set of positive Wiener measure. Define
the H-gauge function of A as

ga(z) =inf(|hlg: he (A—x)NH).

Then we have

1
Elg%] < 2log ——,
ol = 208 L

1(A) < exp {—E[;ﬁ‘]} :

For e >0, let A. be the H-neighbourhood of A defined as

i other words

Ac ={x e W: qa(x) < e},

then

Consequently, if A and B are H-separated, i.e., if A- N B =), then

3

u(A) 4(B) < exp (—4) |

Remark: We already know that, from the 0 — 1-law, ¢4 is almost surely finite and it
satisfies |qa(z + h) — qa(x)| < |h|u, hence Elexp A¢%4] < oo for any A < 1/2 (cf. [31]).
In fact all these assertions can also be proved with the technique used below.

Proof: Let v4 be the measure defined by

1
dva = ——=14du.
1(A)

Let v4 be the solution of the Monge-Kantorovitch problem, it is easy to see that the
support of 4 is included in W x A, hence

|z —ylg > inf{|x — z|g : 2z € A} = qa(x),

va-almost surely. This implies in particular that g4 is almost surely finite. It follows
now from the inequality (3.3)

Elqi] < —2log u(A),

hence the proof of the first inequality follows. For the second let B = A¢ and let y4p
be the solution of the Monge-Kantorovitch problem corresponding to v4,vg. Then we
have from the triangle inequality of Corollary 3.1,

di(va,vp) < —4log u(A)u(B) .

Moreover the support of the measure y4p is in A X B, hence v4p-almost surely |z —
y|g > € and the proof follows. OJ

12



For Rubinstein’s distance defined by

dl(y,,u):inf{/ |z —y|lp db : 962(;1,1/)}
WxWwW
we have the following control:

Theorem 3.2 Let L € IL! (u) with E[L] = 1. Then we have
di(Lop,p) < E[|(I+£)7'VL|,] . (3.4)

Remark 3.1 In the inequality (3.4), we do not need to assume that L is in some
positively indezed Sobolev space since (I + L)™' is a smoothing (pseudo-differential)
operator. In fact we may even assume that it is in some 1D, _1.

Proof: To prove the theorem we shall use a technique developed in [8]. Using the
conditioning with respect to the sigma algebra V,, = o{dei,...,de,}, where (e;,7 > 1)
is a complete, orthonormal basis of H, we reduce the problem to the finite dimensional
case. Moreover, we can assume that L is a smooth, strictly positive function on IR".
Define now o = (I + £) 'V L and

o(x)

7=

for t € [0,1]. Let (¢s¢(x),s <t € [0,1]) be the flow of diffeomorphisms defined by the
following differential equation:

Gsp(r) =2 / (s (x))dT.

From standart results (cf. [31], Chapter V), it follows that x — ¢, (x) is Gaussian
under the probability Ag;.u, where

At = exp/ (007)(¢s,r(x))dT

is the Radon-Nikodym density of QSS_tl u with respect to . Define

H(t,x) = As(x) {t + (1 —t)L o ¢ps ()} .

It is easy to see that
d
dt
for t € (s,1). Hence the map t — H(t,x) is constant, this implies that

Hq(t,z) =0

Asi(z) =s+ (1 —s)L(x).

13



We have, as in the proof of Theorem 3.1,
di(L.p, ) < Ellgo,1(x) — z[mAo,1]

< 8 [0s [ outonstonlt]
= 5[ [ fotonso o), ai
_ E:/Ol\atw;f(m))\}]dt}

_ g _/01 yat(x)\HAt,ldt]
= Elolul,

and the proof is complete. L]

4 Construction of the transport map for the
Gauss measure

In this section we give the construction of the transport map in the Gaussian case. We
begin with the following lemma:

Lemma 4.1 Let (W,u, H) be an abstract Wiener space, assume that f : W — IR
is a measurable function such that it is Gateaux differentiable in the direction of the
Cameron-Martin space H, i.e., there exists some Vf: W — H such that

1
f(z+h) :f(x)+/0 (Vf(z+Th),h)gdr,

p-almost surely, for any h € H. If |V f|g € L?(u), then f belongs to the Sobolev space
ID271.

Proof: Since |V|f||lg < |V f|g, we can assume that f is positive. Moreover, for any
n € IN, the function f, = min(f,n) has also a Gateaux derivative such that |V f, |z <
|V flg p-almost surely. It follows from the Poincaré inequality that the sequence (f,, —
E[fn],n > 1) is bounded in L?(u), hence it is also bounded in L°(y). Since f is
almost surely finite, the sequence (f,,n > 1) is bounded in L°(y), consequently the
deterministic sequence (E[f,],n > 1) is also bounded in L%(u). This means that
sup,, E[fn] < oo, hence the monotone convergence theorem implies that E[f] < oo and
the proof is complete. L]

Theorem 4.1 Let v be the measure dv = Ldu, where L is a positive random variable,
with E[L] = 1. Assume that dg(u,v) < oo (for instance L € ILloglL(u)). Then
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there exists a 1-convex function ¢ € D1, unique upto a constant, such that the map
T = Iy + V¢ is the unique solution of the problem of Monge. Moreover, its graph
supports the unique solution of the Monge-Kantorovitch problem ~y. Consequently

Uw x T)p =~

In particular T maps  to v and T is almost surely invertible, i.e., there erists some
T~ such that T™'v = p and that

1 = p{z: T oT(z)=a}
= I/{yEW:Tonl(y):y}.

Proof: Let (m,,n > 1) be a sequence of regular, finite dimensional orthogonal pro-
jections of H increasing to . Denote their continuous extensions to W by the same
letters. For x € W, we define 7T7J{$ = a:f; = x — mo. Let v, be the measure m,v. Since
v is absolutely continuous with respect to pu, v, is absolutely continuous with respect
to iy = mu and

dv,

dpn

where V,, is the sigma algebra o(m,) and the conditional expectation is taken with
respect to pu. On the space H,, the Monge-Kantorovitch problem, which consists of
finding the probability measure which realizes the following infimum

d%{(um Vn) = inf {J(/B) : 5 € Ml(Hn X Hn) 7plﬁ = ,U'mp2/8 = Vn}

oy, = E[L|V,] =: Ly,

where

J(8) = /H e yPdd(a).

has a unique solution =, and where p;, i = 1,2 denote the projections (x1,z2) —
xi, 1 = 1,2 from H, x H, to H, and M;(H, x H,) denotes the set of probability
measures on H, x H,,. The measure v, may be regarded as a measure on W x W
by taking its image under the injection H, x H, — W x W which we shall denote
again by 7y. It results from the finite dimensional results of Brenier [6] and of McCann
[21], summarized in Section 2.1, that there are two convex continuous functions (hence
~n-almost everywhere differentiable) ®,, and ¥,, on H,, such that

() + Vn(y) > (z,9)u

for all z,y € H,, and that
() + Un(y) = (2, 9)u

Yn-almost everywhere. Hence the support of v, is included in the graph of the derivative
V&, of &,, hence V&, u, = v, and the inverse of V&, is equal to VV,,. Let

onlr) = Bale) — lelh
Ualy) = Waly) — Sl

15



Then ¢,, and ¥, are 1-convex functions and they satisfy the following relations:

1
On(@) +¥n(y) + 5l —ylfr > 0, (4.5)
for all x,y € H, and
1
On(@) + ¥n(y) + 5le —ylf = 0, (4.6)

Yn-almost everywhere. From what we have said above, it follows that v,,-almost surely
y =x + V¢, (), consequently

I (1) = B[Vl (4.7)

Let g, : W x W — H,, x Hy, be defined as g, (z,y) = (mpz, my). If v is any solution of
the Monge-Kantorovitch problem, then g,y € (g, v), hence

J(1) < J(gny) < J(7) = d3(,v). (4.8)

Combining the relation (4.7) with the inequality (4.8), we obtain the following bound

sup J (V) sup d; (tn, Vn)
n n
= sup E[|Vé,|3]

dir(p,v) = J (7). (4.9)

IN

For m < n, gmyn € X(tm, Vm), hence we should have
Tom) = [ e~ T (,1)
WxW
< / |Tm® — Ty Frdym(z, )
WxW
< / ‘ﬂ—nw - Wny‘%[an(xa y)
WxW

= / |z — y|Hdyn(z,y)
W xW
= J(ryn) )

where the third equality follows from the fact that we have denoted the ~, on H, x H,
and its image in W x W by the same letter. Let now v be a weak cluster point of
the sequence of measures (y,,n > 1) 7, where the word “ weak” refers to the weak
convergence of measures on W x W. Since (z,y) — |x — y|g is lower semi-continuous,

"We caution the reader that -, is not the projection of v on W,, x W,,.
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we have

J() = /Ww—yﬁ{dv(x,y)

< lim inf/ |z — y|%[d7n(xa Y)
W xW

= liminf J(vy,)

< sup J(’Yn)

< J(y) =dy(p,v),

from the relation (4.9). Consequently
J(y) =lm J () . (4.10)

Again from (4.9), if we replace ¢, with ¢, — E[¢,] and 1), with ¢, + E[¢,] we obtain
a bounded sequence (¢,n > 1) in Dy 1, in particular it is bounded in the space L?(y)
if we inject it into latter by ¢, (z) — ¢n(x) ® 1(y). Consider now the sequence of the
positive, lower semi-continuous functions (Fy,,n > 1) defined on W x W as

Fa(,9) = bale) +6al0) + 5l — ol

We have, from the relation (4.6)

1
| Rewnen = [ i [ v+ 510)
1

= )~ ) —0.

Consequently the sequence (Fy,,n > 1) converges to zero in L!(v), therefore it is uni-
formly integrable. Since (¢,,n > 1) is uniformly integrable as explained above and
since |r — y|? has a finite expectation with respect to 7, it follows that (i, n > 1) is
also uniformly integrable in L'(y) hence also in L'(v). Let ¢’ be a weak cluster point
of (¢n,n > 1), then there exists a sequence (¢),,n > 1) whose elements are the convex
combinations of some elements of (¢, k > n) such that (¢,,n > 1) converges in the
norm topology of IDy; and p-almost everywhere. Therefore the sequence (¢, n > 1),
constructed from (¢, k > n), converges in L'(v) and v-almost surely. Define ¢ and )
as

o(x) = limsup ()

Y(y) = lim sup V()

hence we have

Gla,y) = 0(2) + ¥(v) + 5o — ol 2 0
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for all (z,y) € W x W, also the equality holds y-almost everywhere. Let now h be any
element of H, since x — y is in H for y-almost all (z,y) € W x W, we have

|+ h = yl3 = |z — yl3 + [hlF +2(hx —y)n
~v-almost surely. Consequently
1
(@ +h) = ¢(x) = —(h,x —y)u — S|hly
~v-almost surely and this implies that
y=z+ Vo(x)

v-almost everywhere. Define now the map 7': W — W as T'(z) = = + V¢(x), then
| tewnen = [ f@T@ey
Wxw Wxw
- / f(@, T(2))du(x),
w

for any f € Cyp(W x W), consequently (Iy x T')u = v, in particular Ty = v.
Let us notice that any weak cluster point of (¢,,n > 1), say ¢, satisfies

Vo) =y—u

~v-almost surely, hence p-almost surely we have ¢ = ¢. This implies that (pp,n > 1)
has a unique cluster point ¢, consequently the sequence (¢,,n > 1) converges weakly
in Dy ; to ¢. Besides we have

lim / Vénldp = Tim J(7)
n W n

= J)

= [ st
WxW

- / IV ofZdp,
w

hence (¢,,n > 1) converges to ¢ in the norm topology of IDy . Let us recapitulate
what we have done till here: we have taken an arbitrary optimal v € ¥(u,v) and an
arbitrary cluster point ¢ of (¢,,n > 1) and we have proved that « is carried by the
graph of T' = Iy + V¢. This implies that v and ¢ are unique and that the sequence
(n,n > 1) has a unique cluster point ~.

Certainly (1, n > 1) converges also in the norm topology of L!(v). Moreover, from
the finite dimensional situation, we have V¢, (x) + Vi, (y) = 0 y,-almost everywhere.
Hence

E,[|V¢ulh] = E[[VénlH)

this implies the boundedness of (V4,,n > 1) in L?(v, H) (i.e., H-valued functions). To
complete the proof we have to show that, for some measurable, H-valued map, say 7, it
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holds that = y + n(y) vy-almost surely. For this let F' be a finite dimensional, regular
subspace of H and denote by wr the projection operator onto F' which is continuously
extended to W, put ﬂ}% = Iy —7p. Wehave W = FOF*, with F+ = ker 1y = 75(W).
Define the measures vp = mr(v) and v = 7 (v). From the construction of 9, we
know that, for any v € F'*, the partial map u — 9 (u + v) is 1-convex on F. Let also
A={yeW: ¢(y) < oo}, then A is a Borel set with v(A) = 1 and it is easy to see
that, for Z/f,:—almost all v € F-, one has

v(Alrg =v) > 0.

It then follows from Lemma 3.4 of [15], and from the fact that the regular conditional
probability v(- |73 = v) is absolutely continuous with respect to the Lebesgue measure
of F, that u — ®(u + v) is v(-|rF = v)-almost everywhere differentiable on F' for
Vl%—almost all v € F-. Tt then follows that, v-almost surely, 1 is differentiable in the
directions of F', i.e., there exists Vg € F v-almost surely. Since we also have

1
Yy +k) = v(y) = (= =y k) = Skl
we obtain, y-almost surely

(Ve(y), kg = (z -y, k)u,

for any k € F'. Consequently

VrY(y) =mp(z —y)

~v-almost surely. Let now (F,,n > 1) be a total, increasing sequence of regular subspaces
of H, we have a sequence (V,,%),n > 1) bounded in L?(v) hence also bounded in L?(7).
Moreover V,9(y) = mp,x — mpy y-almost surely. Since (m,(z — y),n > 1) converges in
L?(v,H), (Va1,n > 1) converges in the norm topology of L?(y, H). Let us denote this
limit by 7, then we have z = y + n(y) y-almost surely. Note that, since m,n = V,1,
we can even write in a weak sense that n = V. If we define T (y) = y +n(y), we see
that

1 = v{(z,y) EWXW:TOT_l(y):y
x

}
= Y{(z,y) eWxW: T oT(z) =z}

)

and this completes the proof of the theorem. L]

Remark 4.1 Assume that the operator V is closable with respect to v, then we have
n = V. In particular, if v and u are equivalent, then we have

T~' = Iy + Vo,

where ¥ is a 1-convex function.
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Remark 4.2 Assume that L € 1L (u), with E[L] = 1 and let (D, k € IN) be a
measurable partition of W such that on each Dy, L is bounded. Define dv = Ldu and
v = v(-|Dg). It follows from Theorem 3.1, that dg(u,vy) < oco. Let then Ty be the
map constructed in Theorem 4.1 satisfying Tpp = vi. Define n(dk) as the probability
distribution on IN given by n ({k}) = v(Dg), k € IN. Then we have

/ f(y)dv(y) = / £ (T () (e (k)
w W xIN

A similar result is given in [13], the difference with that above lies in the fact that we
have a more precise information about the probability space on which T is defined.

5 Polar factorization of the absolutely continu-
ous transformations of the Wiener space

Assume that V = Iy +v : W — W be an absolutely continuous transformation
and let L € IL}F(M) be the Radon-Nikodym derivative of Vi with respect to p. Let
T = Iy + V¢ be the transport map such that T'w = L.u. Then it is easy to see that
the map s = T~! o V is a rotation, i.e., su = u (cf. [31]) and it can be represented as
s = Iy + «a. In particular we have

a+Voos=w. (5.11)

Since ¢ is a 1-convex map, we have h — %|h|%{ + ¢(x + h) is almost surely convex [15].
Let s’ = Iy + o be another rotation with o/ : W — H. By the 1-convexity of ¢, we
have

1 1
Sl +90s = JJali + 605+ (a+Voosa' —a) .

p-almost surely. Taking the expectation of both sides, using the fact that s and s’
preserve the Wiener measure p and the identity (5.11), we obtain

1 1
B |3 lolh ~ ()] < B |Jlo'y - (0.0

Hence we have proven the existence part of the following

Proposition 5.1 Let Ry denote the subset of L?(u, H) whose elements n are defined
by the property that v — x + n(x) is a rotation, i.e., it preserves the Wiener measure.
Then there exists a unique element o of Re which is defined by the relation (5.11),
minimizing the functional

n— My(n) =E Bn\% — (v, n)H] :

Proof: To show the uniqueness, assume that n € Ro be another map minimizing M,,.
Let 8 be the measure on W x W, defined as

/ f(w,y)dﬁ(x,y)z/ f(x+n(x),V(e))dy.
WxW w
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Then the first marginal of 3 is p and the second marginal is L.u. Since v = (I x T
is the unique solution of the Monge-Kantorovitch problem, we should have

/m—m%w@ww>/m—y%mwww:mww%.
However we have

/‘ |z — y|}dB(z,y) = v —nl%]
WxW

|0l%] + 2M, (n)
|U|H] + 2M, ()
v — O‘|H]
IV os|z]
V|3 ]
|z — ylHdy(z,y)
WxWwW
= J()

and this gives a contradiction to the uniqueness of ~. L]

[
[
[
[
[
[

E
E
E
E
E
E

The following theorem, whose proof is rather easy, gives a better understanding of
the structure of absolutely continuous transformations of the Wiener measure:

Theorem 5.1 Assume that U : W — W be a measurable map and L € ILlogIL(u)
a positive random variable with E[L] = 1. Assume that the measure v = L - 1 is a
Girsanov measure for U, i.e., that one has

E[f oU L] = EIf),

for any f € Co(W). Then there exists a unique map T = Iyw + V¢ with ¢ € Dy is
1-convex, and a measure preserving transformation R : W — W such that U oT = R
p-almost surely and U = Ro T~' v-almost surely.

Proof: By Theorem 4.1 there is a unique map 1" = Iy + V¢, with ¢ € IDy 1, 1-convex
such that T" transports p to v. Since Uv = pu, we have

E[foUL] = FE[foUoT]
= E[f].

Therefore 2 — U o T/(x) preserves the measure u. The rest is obvious since 77! exists
v-almost surely. L]

Another version of Theorem 5.1 can be stated as follows:
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Theorem 5.2 Assume that Z : W — W is a measurable map such that Zp < u, with
dp(Zp, p) < oo. Then Z can be decomposed as

Z=Tos,

where T is the unique transport map of the Monge-Kantorovitch problem for ¥(u, Zu)
and s is a rotation.

Proof: Let L be the Radon-Nikodym derivative of Zu with respect to u. We have,
from Theorem 4.1,

Elf] = ElfoT ' oT]
= E[foT'I]
= E[foT 'oZ],

for any f € Cy(W). Hence T~! o Z = s is a rotation. Since T is uniquely defined, s is
also uniquely defined. L]

Although the following result is a translation of the results of this section, it is
interesting from the point of view of stochastic differential equations:

Theorem 5.3 Let (W, u, H) be the standard Wiener space onIR?, i.e., W = Cy(IR4, IRY).
Assume that there exists a probability P < p which is the weak solution of the stochastic
differential equation

dyy = dW; + b(t, y)dt,
such that dg (P, ) < co. Then there exists a process (T;,t € Ry) which is a pathwise
solution of some stochastic differential equation whose law is equal to P.

Proof: Let T be the transport map constructed in Theorem 4.1 corresponding to
dP/dy. Then it has an inverse T~! such that u{T~!'o T(z) = } = 1. Let ¢ be
the 1-convex function such that T = Iy + V¢ and denote by (Ds¢,s € IRy) the
representation of V¢ in L2(IR;,ds). Define Tj(z) as the trajectory T'(z) evaluated at
t € IR4. Then it is easy to see that (T3,¢t € IRy ) satifies the stochastic differential
equation

t
Ti(x) = Wi(x) —i—/o I(s,T(z))ds , t € Ry,

where Wy(z) = 2(t) and I(s,2) = Ds¢ o T (). [

6 Construction and uniqueness of the transport
map in the general case

In this section we call optimal every probability measure® v on W x W such that
J(v) < oo and that J(y) < J(0) for every other probability # having the same marginals

8In fact the results of this section are essentially true for bounded, positive measures.
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as those of 7. We recall that a finite dimensional subspace F' of W is called regular if
the corresponding projection is continuous. Similarly a finite dimensional projection of
H is called regular if it has a continuous extension to W.

We begin with the following lemma which answers all kind of questions of measur-
ability that we may encounter in the sequel:

Lemma 6.1 Consider two uncountable Polish spaces X and T. Lett — v be a Borel
family of probabilities on X and let F be a separable sub-o-algebra of the Borel o-algebra
B of X. Then there exists a Borel kernel

Mﬂ@zéﬂwM@@%

such that, for any bounded Borel function f on X, the following properties hold true:
i) (t,z) — Ny f(x) is Borel measurable on T x X.

ii) For any t € T, Nif is an F-measurable version of the conditional expectation
Ey[f1F].

Proof: Assume first that F is finite, hence it is generated by a finite partition { Ay, ..., Ag}.
In this case it suffices to take

k

Nif(z) = %({41-) </A fd%> 1a,(x) ( with 0 = 8) :

i=1

For the general case, take an increasing sequence (F,,n > 1) of finite sub-o-algebras
whose union generates F. Without loss of generality we can assume that (X, B) is the
Cantor set (Kuratowski Theorem, cf., [9]). Then for every clopen set (i.e., a set which
is closed and open at the same time) G and any t € T', the sequence (N{'1lg,n > 1)
converges y;-almost everywhere. Define

He(t,2) = limsup [N} 1 (x) — N]"Lo(2)].

m,n— o0
Hg is a Borel function on 7' x X which vanishes ;-almost all z € X, moreover, for
any t € T, x — Hg(t,z) is F-measurable. As there exist only countably many clopen

sets in X, the function
H(ta .Cl?) = Sup HG(t7 .CL‘)
G

inherits all the measurability properties. Let 6 be any probability on X, for any clopen
G, define
Nilg(z) = lim, N{'1lg(z) if H(t,z) =0,
= 0(G) if H(t,z)>0.

Hence, for any ¢t € T, we get an additive measure on the Boolean algebra of clopen sets
of X. Since such a measure is o-additive and extends uniquely as a o-additive measure
on B, the proof is complete. L]

23



Remark 6.1 1. In fact due to the Theorem of Lusin, the map (¢,2) — Ny(z, dy)
is also measurable as a measure-valued map.

2. This result holds in fact for Lusin spaces since they are Borel isomorphic to the
Cantor set.

3. The particular case where ' = M;(X), i.e., the space of probability measures
on X under the weak topology and ¢ — ~; being the identity map, is particularly
important for the sequel. In this case we obtain a kernel N such that (z,7) —
N, f(x) is measurable and N, f is an F-measurable version of E,[f|F].

Lemma 6.2 Let p and v be two probability measures on W such that
du(p,v) < o0

and let v € X(p,v) be an optimal measure, i.e., J(v) = d%(p,v), where J is given
by (1.1). Assume that F is a regular finite dimensional subspace of W with the cor-
responding projection wp from W to F and let ﬂ'l% = Iw — 7 . Define pr as the
projection from W x W onto F with pr(z,y) = mpzx and let pf(x,y) = nxx. Consider
the Borel disintegration

10 = [ atlatntet)
= [ Gt
FL

along the projection of W x W on F*, where p* is the measure W#p, v(- |zt) denotes
the regular conditional probability (- ]pi: =a1) and vt is the measure pi:’y. Then, p*
and - -almost surely v(-|zt) is optimal on (z+ + F) x W.

Proof: Let pj, p2 be the projections of W x W defined as pi(z,y) = 7p(z) and
p2(x,y) = mr(y). Note first the following obvious identity:

py(-|zt) = p(- |27),
pt and y*-almost surely. Define the sets B C F+ x My (F x F) and C as
B = {(z,0): 0€S(p(-|z"),p(-zh))}
C = {(@",0)eB: JO) < J(|2)},

where M (F x F') denotes the set of probability measures on F' x F. Let K be the
projection of C on F-. Since B and C are Borel measurable, Kis a Souslin set, hence it
is pt-measurable. The selection theorem (cf. [9]) implies the existence of a measurable
map

L
T — 0,1

from K to My(F x F) such that, p--almost surely, (z+,6,.) € C. Define
00) = [ 60O+ [ ACletiap ),
K Ke
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Then 0 € ¥(p,v) and we have
10) = [ T @)+ [ It et

< [ Ittt @+ [ I6e )t e
= JO),

hence we obtain J(6) < J(y) which is a contradiction to the optimality of ~. U

Lemma 6.3 Assume that the hypothesis of Lemma 6.2 holds and let F' be any reqular
finite dimensional subspace of W. Denote by mp the projection operator associated to
it and let Trf; = Iy —np. If ﬂ#p-almost surely, the reqular conditional probability
p(-|mE = x1) vanishes on the subsets of ¥+ + F whose Hausdorff dimension are at
most equal to dim(F) — 1, then there exists a map Tr : F x F+ — I such that

Y ({(x,y) EWXW: mpy = TF(WFQJ,W#JU)}> =1.

Proof: Let C,. be the support of the regular conditional probability (- |zt) in
(z+ 4+ F) x W. We know from Lemma 6.2 that the measure (- |z*) is optimal in
Y(m1y(- |ot), my(- Jat)), with J(y(-|2t)) < oo for pt-almost everywhere 2. From
Theorem 2.3 of [17] and from [1], the set C,1 is cyclically monotone, moreover, C, 1
is a subset of (z* + F) x H, hence the cyclic monotonicity of it implies that the set

K, CF xF, defined as

K. ={(u,mpv) € F x F: (zF +u,v) € Cpr}

is cyclically monotone in F' x F. Therefore K, is included in the subdifferential of
a convex function defined on F. Since, by hypothesis, the first marginal of (- |z1),
i.e., p(-|zt) vanishes on the subsets of 2 + F' of co-dimension one, the subdifferential
under question, denoted as Up(u,z") is p(- |z+)-almost surely univalent (cf. [2, 21]).
This implies that

v(- Jzt) ({(u,v) € Cp1: mpv = Up(u, acﬂ}) =1,

pr-almost surely. Let
K:BJ_’U = {U ew: (u,v) S Kxj_} .

Then K. ,, consists of a single point for almost all u with respect to p(- |zt). Let
N = {(u,a:J‘) € Fx FL: Card(K,.,) > 1} ,

note that IV is a Souslin set, hence it is universally measurable. Let o be the measure
which is defined as the image of p under the projection z — (wpx, 771#33) We then have

o(N) = /F Nt /F 1y (o, 2 p(dufat)
= 0.
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Hence (u,a2t) — K, ., = {y} is p and y-almost surely well-defined and it suffices to

denote this map by T to obtain the proof. L]

Theorem 6.1 Suppose that p and v are two probability measures on W such that
du(p,v) < co.

Let (mp,n > 1) be a total increasing sequence of reqular projections (of H, converging to
the identity map of H ). Suppose that, for anyn > 1, the reqular conditional probabilities
p(- |k = x5) wanish ;- p-almost surely on the subsets of x;- + 7, (W) with Hausdor(f
dimension (n — 1). Then there ezists a unique solution of the Monge-Kantorovitch
problem, denoted by v € X(p,v) and vy is supported by the graph of a Borel map T :
W — W of the form T = Iy + £ with & € H almost surely. Moreover T = Iy + £ is
the unique solution of the Monge problem and for all n > 1, wrp-almost all x;-, the
map u — u + &{(u + SU,J{) is cyclically monotone on 7,(W). Finally, if, for any n > 1,
mrv-almost surely, v(-|m- = y*) also vanishes on the (n — 1)-Hausdorff dimensional
subsets of x4+ m,(W), then T is invertible, i.e, there exists S : W — W of the form
S = Ly +n such that n € H satisfies a similar cyclic monotonicity property as & and
that

1 = v{(x,y) e WxW:ToS(y) =y}
@ y) eWxW:SoT(x) =z}

In particular we have
dh(p,v) = / | — ylFrdy(z,y)
Wxw
= / 1S(y) — yl7dv(y).-
w

Remark 6.2 For the measures p which are absolutely continuous with respect to the
Wiener measure i, the second hypothesis is satisfied, i.e., the measure p(-|m- = x;+)
vanishes on the subsets of Hausdorff dimension (n — 1).

Proof: Let v be any optimal measure, i.e., J(v) = d%(p,v) and let (F,,n > 1) be
the increasing sequence of regular subspaces associated to (m,,n > 1), whose union is
dense in W. From Lemma 6.3, for any F,, there exists a map T,, such that m,y =
T, (mpz, mikx) for y-almost all (z,y), where ;- = Iy — m,. Write T}, as I, + &,, where
I, denotes the identity map on F,,. Then we have the following representation:

Wny = an + fn(ﬂ'nxa WTJL_{'E) )
~v-almost surely. Since

TnY — Tt = Tu(y — )

= &u(mp, Trf{x)

26



and since y — x € H ~-almost surely, (m,y — mpz,n > 1) converges ~y-almost surely.
Consequently (&,,n > 1) converges ~, hence p almost surely to a measurable £. Con-
sequently we obtain

T, y) eWxW:y=a+¢(2)}) =1.

Since J(7v) < oo, & takes its values almost surely in the Cameron-Martin space H. The
cyclic monotonicity of £ is obvious. To prove the uniqueness, assume that we have
two optimal solutions v; and 72 with the same marginals and J(y1) = J(72). Since
B — J(B) is linear, the measure defined as v = (71 + 72) is also optimal and it has
also the same marginals p and v. Consequently, it is also supported by the graph of a
map T'. Note that v; and v are absolutely continuous with respect to =, let Li(z,y)
be the Radon-Nikodym density of 41 with respect to 7. For any f € Cy(W), we then
have

/Wfd,o B /waf(x)d%(x’y)
:/ f(x)Ly(x,y)dy(z,y)
WxW

- / F (@)L (r, T(2))dp(x)
w

Therefore we should have p-almost surely, Li(z,T(z)) = 1, hence also L1 = 1 almost
everywhere v and this implies that v = 3 = 2. This shows the uniqueness of the
solution of PMK. To show the uniqueness of the solution of the problem of Monge,
assume that there are 77 and T which solve both the Monge problem. Then ~;, ¢ = 1,2
defined by (I xT;)p, i = 1,2, are both the solutions of PMK, hence v; = 73, this implies
that f o 11 = f o1 p-almost surely for any positive, Borel function f on W, hence
Ty = T p-almost surely. To prove the last part of the theorem, we can construct
symmetrically the map S such that (S x I)v =~. We then have

1 = y{(z,y): y=T(z)}
= H(z,y): 2=Sy)},

hence the intersection of these two sets is again of full v-measure, in other words we
have

1 = YH(z,y) e WxW: SoT(z) =x}
p{r e W: SoT(x)=x}
H(z,y) e WX W ToS(y) =y}
= vlyeW: ToS(y) =y},

and this completes the proof. L]
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Corollary 6.1 Assume that p is equivalent to the Wiener measure u, then for any
hi,...,hn € H and for any permutation 7 of {1,..., N}, we have, with the notations
of Theorem 6.1,

N
' (hi +&(x + i), hrgy — hi)H <0

=1

p-almost surely.

Proof: Again with the notations of the theorem, p,ﬁ—almost surely, the graph of the
map zx — Tk + (g, ) is cyclically monotone on Fy. Hence, for the case h; € F,
foralli=1,...,N and n < k, we have

(hi + i + &(ap + hi,xﬁ), hr@y — hi)H <0.
=1

Since ) (k, hr(;y — hi)u = 0, we also have

N

Z (hi + & (xg + hi,l’é'), hr(i) - hi)H <0.
=1

We know that & (z + hi, z30) converges to &(x + h;) p-almost surely. Moreover h —
&(x + h) is continuous from H to LY(p) and the proof follows. U

Remark 6.3 We could have defined a notion of cyclical monotonicity of & (or of n)
relative to a sequence of orthogonal projections (mp,m > 1) of H, increasing to the
identity Iy of H and relative to the measure p by saying that & is (wp,n > 1)-1-p-
cyclically monotone if the map u — u-+&(u+x;-) is cyclically monotone on F, = m,(H)
for mtp-almost all z;- and for any n > 1. Although this notion seems interesting, we
have avoided this option in order not to make the paper too technical.

7 The Monge-Ampere equation

In this section we study the Monge-Ampere equation on the infinite dimensional Wiener
space. Recall that, in the finite dimensional case, this equation consists, for two given
positive functions f and g, whose Lebesgue integrals are equal to one, of finding a
transformation 7" such that

goT\|Jr| =T, (7.12)

where Jp denotes the Jacobian of T. Of course in general, such T is not unique,
however, if we want it to be also the solution of the Monge problem, hence of the form
T =1+ V¢, then we can have the uniqueness. In the infinite dimensional case, the
main difficulty stems from the absence of the Lebesgue measure. The good candidate
to replace it is the Gauss measure, however the Jacobian term should be arranged in a
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more practical form. This can be done (cf. for further explanation [31]) by taking the
Gaussian Jacobian

Ar = deto(I + V2¢) exp {—qu - ;|v¢\2} .

In this expression as well as in the sequel, the notation deto(I + A) denotes the
modified Carleman-Fredholm determinant of the operator Iy + A on a Hilbert space
H. If A is an operator of finite rank, then it is defined as

n

dety (I + A) = [J(1 + L)e ",
=1

where (I;, i < n) denotes the eigenvalues of A counted respecting their multiplicity.
In fact this determinant has an analytic extension to the space of Hilbert-Schmidt
operators on a separable Hilbert space, cf. [11] and Appendix A.2 of [31]. Consequently
the modified Carleman-Fredholm determinant exists for the Hilbert-Schmidt operators
while the ordinary determinant does not, since the existence of the latter requires
the existence of the trace of A. Hence the modified Carleman-Fredholm determinant
is particularly useful when one deals with the absolute continuity properties of the
image of a Gaussian measure under non-linear transformations in the setting of infinite
dimensional Banach spaces (cf., [31] for further information). Note also that, since
6 o V is equal to the Ornstein-Uhlenbeck operator £, our new Jacobian takes the form

A = dety(I + V2¢) exp {-&p - ;V¢\2} .

There are some other difficulties concerning the second order differentiability of ¢. In
finite dimension, in order to avoid this difficulty, we use the notion of Alexandrov
differentiability as explained below: Assume again that W = IR™ and take a density
L € ILloglL(p). Let ¢ € IDy; be the 1-convex function such that T = I + V¢
maps 4 to L - p. Let S = I + Vi be its inverse with ¢» € Dy;. Let now V¢
be the second Alexandrov derivative of ¢, i.e., the Radon-Nikodym derivative of the
absolutely continuous part of the vector measure V2¢ with respect to the Gaussian
measure j on IR™. Since ¢ is 1-convex, it follows that V2¢ > —Ign in the sense of the
distributions, consequently V2¢ > —IR» u-almost surely. Define also the Alexandrov
version L,¢ of L¢ as the Radon-Nikodym derivative of the absolutely continuous part
of the distribution L¢. In finite dimensional situation, there is an explicit expression

for Ly, as
Lod(z) = (Vo(x),x)Rrr — trace (VZgZ)) .

Let A be the Gaussian Jacobian
1
A = dety (Ign + V2¢) exp {—anb — 2|v¢|ﬁ{n} .
It follows from the change of variables formula given in Corollary 4.3 of [22], that, for
any f € Cb(IRn)v
E[foT A= E [f 1pa(a)]
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where M is the set of non-degeneracy of Ign + V29,

a(r) = Glol? + o(a)

and 0® denotes the subdifferential of the convex function ®. Hence A appears to be a
good candidate for the Jacobian for the Gaussian case.

Let us note that, in case L > 0 almost surely, T" has a global inverse S, i.e.,
SoT =ToS = Irr p-almost surely and p(0®(M)) = u(S~1(M)). Assume now that
A > 0 almost surely, i.e., that u(M) = 1. Then, for any f € Cy(IR™), we have

A
E[foT] = E[fOTAoTloT}

1
= E [f AoTllacb(M)]
= E[fL],

where T~1 denotes the left inverse of 7" whose existence is guaranteed by Theorem 4.1.
Since T'(z) € 0®(M ) almost surely, it follows from the above calculations

%:LOT7

almost surely. Hence T is the solution in the Alexandrov sense of the Monge-Ampere
equation with f =1 and g = L with the notations of the equation (7.12).

Before proceeding to infinite dimensions let us give some preliminaries about the
linear interpolations of the transport map 7": let t € [0, 1), the map x — %|x|%{—|—t¢(az) =
&, (z) is strictly convex and a simple calculation implies that the mapping Ty = I +tV¢
is (1 — t)-monotone (cf. [31], Chapter 6), consequently it has a left inverse denoted by
S;. Let us denote by W, the Legendre transformation of ®;:

Wily) = sup {(z,y) = u()} -

A simple calculation shows that

|z jz/?

wt) = sw|@-0fen - 5w -5 - ow}]

lyl*
< (=17 +1(y).
Since W is the Legendre transformation of ®y(x) = |z|?/2 + ¢(x) and since L €
ILlogL(p), it is finite on a convex set of full measure, hence it is finite everywhere.
Consequently W(y) < oo for any y € IR". Since a finite, convex function is almost
everywhere differentiable, VW, exists almost everywhere on and it is equal almost
everywhere on T;(M;) to the left inverse Tt_l, where M; is the set of non-degeneracy of
Irn + tV2¢. Note that p(M;) = 1. The strict convexity implies that 7, " is Lipschitz
with a Lipschitz constant ﬁ Let now A4 be the Gaussian Jacobian

t2
Ay = dety (IIR” + tVZ(ﬁ) exp {—tﬁa¢ - 2\V¢]12Rn} .
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Since the domain of ¢ is the whole space IR", A; > 0 almost surely, hence, as we have
explained above, it follows from the change of variables formula of [22] that T;u is
absolutely continuous with respect to 1 and that

1

— =L;oT;,

A t 04y
p-almost surely.
Let us come back to the infinite dimensional case: we first give an inequality which
can be proven with the help of the finite dimensional observations that we have made
above:

Theorem 7.1 Assume that (W, u, H) is an abstract Wiener space, assume that K, L €
IL}F(M) with K > 0 almost surely and denote by T : W — W the transfer map T =
Iw + V¢, which maps the measure Kdu to the measure Ldu. Then the following
inequality holds:

%E[ch)ﬁ{] < E[-log K +log Lo T]. (7.13)
Proof: Let us define k as k = K o T~!, then for any f € Cy(W), we have
| tL@dne) = | foT@K @
w w
= [ FeT@koT@dn(s).
w

hence
Ty =

=~

b
It then follows from the inequality 3.3 that

SE(Vel] < B {L log L}

k k
LoT
B E{IngoT]

= E[-logK +logLoT].
O

To solve the Monge-Ampere equation in the infinite dimensional case we shall try to pass
to the limit from finite to infinite dimensions. To do so we need some preparations which
are explained along the following lines. Suppose that ¢ € Dy is a 1-convex Wiener
functional. Let V;, be the sigma algebra generated by {deq,...,de,}, where (e,, n > 1)
is an orthonormal basis of the Cameron-Martin space H. Then ¢,, = E[¢|V,,] is again
1-convex [15], hence L¢,, is a measure. However the sequence (L¢,, n > 1) converges
to L¢ only in ID’. Consequently, there is no reason for the limit L£¢ to be a measure.
In case this happens, we shall denote the Radon-Nikodym density with respect to w,
of the absolutely continuous part of this measure by L,¢.
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Lemma 7.1 Let ¢ € Dy be 1-convex and let V,, be defined as above and define F;,, =
E[¢|Vy,]. Then the sequence (Lo Fy,n > 1) is a submartingale, where L, F,, denotes the
u-absolutely continuous part of the measure LF,.

Proof: Note that, due to the 1-convexity, we have L F,, > LF, for any n € IN. Let
Xn = LyF, and f € ID be a positive, V,,-measurable test function. Since LE[¢|V},] =
E[L$|V,,], we have

ElXni1 fl = (LFuia, f)
<£Fnaf>7

where (-, -) denotes the duality bracket for the dual pair (ID’, D). Consequently

for any positive, V,,-measurable test function f, it follows that the absolutely continuous
part of LF}, is also dominated by the same conditional expectation and this proves the
submartingale property. L]

Lemma 7.2 Assume that L € ILlogIL(p) is a positive random wvariable whose ex-
pectation is one. Assume further that it is lower bounded by a constant a > 0. Let
T = Iy + V¢ be the transport map such that Ty = L. and let T~ = Iy 4+ V). Then
LY is a Radon measure on (W, B(W)). If L is upper bounded by b > 0, then L¢ is also
a Radon measure on (W, B(W)).

Proof: Let L, = E[L|V,], then L, > a almost surely. Let T,, = Iy + V¢, be the
transport map which satisfies Tyt = L, . and let T);! = Iy + Vb, be its inverse. We
have

1
L, = detg (IH + ngn) €Xp _ann - §|v¢n|%{

By the hypothesis —log L,, < —loga. Since v, is 1-convex, it follows from the finite
dimensional results that dets (I H+ Vgg/zn) € [0,1] almost surely. Therefore we have

£a¢n S - log a,
moreover L1, < L4, as distributions, consequently
£¢n < - IOg a

as distributions, for any n > 1. Since lim,, £, = £ in ID’, we obtain L) < —loga,
hence —loga— L1 > 0 as a distribution, hence £ is a Radon measure on W, c.f.; [14],
[30]. This proves the first claim. Note that whenever L is upperbounded, A =1/LoT
is lowerbounded, hence the proof of the second claim is similar to that of the first one.

O
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Theorem 7.2 Assume that L is a strictly positive bounded random variable with E[L] =
1. Let ¢ € Doy be the 1-convexr Wiener functional such that

T=5Iy+V¢

is the transport map realizing the measure L. and let S = Iy + Vi be its inverse.
Define F,, = E[p|V,], then the submartingale (Lo Fy,n > 1) converges almost surely to
Lao. Let AN(¢) be the random variable defined as

AM¢) = lim inf A,

= (lim i%f dety (I + Van)> exp {—Ea¢ - % |V¢]]2g}

where
2 1 2
Ap = dety (Iy + VoFy) exp§ —LoFy, — 3 [VEaltr o -

Then it holds true that
E[f o T A\(¢)] < E[f] (7.14)

for any f € CF (W), in particular N(¢) < 2= almost surely. If E]\(¢)] = 1, then the
inequality in (7.14) becomes an equality and we also have

1

Ao =TT

Proof: Let us remark that, due to the 1-convexity, 0 < deto (IH + Van) < 1, hence
the liminf exists. Now, Lemma 7.2 implies that L¢ is a Radon measure. Let F;, =
E[¢|V,], then we know from Lemma 7.1 that (£,F,,n > 1) is a submartingale. Let
Lt¢ denote the positive part of the measure L. Since LT¢ > Lo, we have also
E[Lt¢|V,] > E[L$|V,] = LF,. This implies that E[LT¢|V,] > LI F,. Hence we find
that
sup E[L} F,] < o0
n

and this condition implies that the submartingale (L£,F,,n > 1) converges almost
surely. We shall now identify the limit of this submartingale. Let £;G be the singular
part of the measure LG for a Wiener function G such that £G is a measure. We have

E[£¢|Vn] = E[£a¢|Vn] + E[£s¢|Vn]
= EaFn + Lan )

hence
‘CaFn — E[£a¢|Vn] + E[£3¢|V"]a

almost surely, where E[Ls¢|V,,], denotes the absolutely continuous part of the measure
E[Ls¢|V,]. Note that, from the Theorem of Jessen (cf., for example Theorem 1.2.1 of
[31]), lim,, E[L}¢|Vy,]a = 0 and lim, E[L; ¢|V,]a = 0 almost surely, hence we have

Nm LoF) = Lo,
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u-almost surely. To complete the proof, an application of Fatou’s lemma implies that

E[foTA¢)] < E[f]
1

= E[fOTLOT] ,

for any f € C;f (W). Since T is invertible, it follows that

1

A(qb)g LoT

almost surely. Therefore, in the case E[A(¢)] = 1, we have

and this completes the proof. L]

The following result gives the existence of the subsolutions of the Monge-Ampere equa-
tion:

Corollary 7.1 Assume that K, L are two positive random variables with values in a
bounded interval [a,b] C (0,00) such that E[K| = E[L] = 1. Let T = Iw + V¢,
¢ € Dy, be the transport map pushing Kdu to Ldp, i.e, T(Kdu) = Ldu. We then
have

LoTA@) <K,

wu-almost surely. In particular, if E[]A(¢)] = 1, then T is the solution of the Monge-
Ampére equation.

Proof: Since a > 0,
dl'p L
dpe  KoT

Hence, Theorem 7.14 implies that

IN
SHESE

E[foTLoTA¢) < E[fL
= E[foTK],

consequently
LoTA(¢) <K,

the rest of the claim is now obvious. U
The following result is important for the interpolation of measures (cf. [22]):

Theorem 7.3 Assume that L is a positive random variable of class IlogIL(u) such
that E[L] = 1. Let ¢ € Dy be the 1-convex function corresponding to the transport
map T = Iy + V¢. Define Ty = Iy + tV ¢, where t € [0,1]. Then, for any t € [0,1],
Ty is absolutely continuous with respect to the Wiener measure (.
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Proof: Let ¢, be defined as the transport map corresponding to L,, = E[P; /nLn|Vn]
and define T}, as Iy + V¢,. For t € [0,1), let T),; = Iy + tV¢,. It follows from
the finite dimensional results which are summarized in the beginning of this section
that T, ;v is absolutely continuous with respect to pu. Let L,; be the corresponding
Radon-Nikodym density and define A, ; as

t?
An,t = dets (IH + tvczl(bn) €xp {_tﬁa(bn - 2’V¢n’12’{} :

Moreover, for any ¢ € [0, 1),
(I +tVign)h h), >0, (7.15)

p-almost surely for any 0 # h € H. Since ¢, is of finite rank, 7.15 implies that A, ; > 0
p-almost surely and we have shown at the beginning of this section

1
Apyp=——
ot Ln,t o Tn,t

p-almost surely. An easy calculation shows that ¢ — logdeto(I + tvggbn) is a non-
increasing function. Since Lq¢, > Ly, we have E[Lyp,] > 0. Consequently

E [Lt,n log Lt,n] = E [log Ly o Tn,t]
= —E[logAty]

t2
= FE {— log dety (I +tV2¢y) + tLady + 2|V¢nlfq]

1
< FE [— log dets (IH + V2¢n) + Lagn + 2N¢n’%{}
= FE|[LylogL,]
< BlLlogL],

by Jensen’s inequality. Therefore

sup E[Ly+log Ly ¢] < 00

and this implies that the sequence (L ¢, n > 1) is uniformly integrable for any ¢ € [0, 1].
Consequently it has a subsequence which converges weakly in L'(u) to some L;. Since,
from Theorem 4.1, lim,, ¢, = ¢ in Dy 1, where ¢ is the transport map associated to L,
for any f € Cy(W), we have

BlfoT)] = mE[foTy,]
= lilgn E[f Ly, 4]
= E[f L],
hence the theorem is proved. L]
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7.1 The solution of the Monge-Ampeére equation via Ito-
renormalization

As we have already seen, the strong solution of the Monge-Ampere equation corre-
sponding to the probability densities K and L, consists of finding amap T : W — W
such that

LoTJ(T)=K

almost surely, where J(T') is a kind of Jacobian to be written in terms of 7. In
Corollary 7.1, we have shown the existence of some \(¢) which gives an inequality
instead of the equality. The reason for this difficulty originates from the lack of the
regularity of the function ¢ € IDy;. In fact, in order to calculate the Carleman-
Fredholm determinant, we need generally that ¢ € ID, 2> for some p > 1, or at least,
that the absolutely continuous part of the vector measure V2¢ is with values in the
space of Hilbert-Schmidt operators on the Cameron-Martin space H. Although in
the finite dimensional case there are some regularity results about the transport map
(cf., [7]), in the infinite dimensional case such techniques do not work. However, as
we shall show in this section, all these difficulties can be circumvented using
the miraculous renormalization of the Ito calculus. In fact assume that K and
L satisfy the hypothesis of the corollary. First let us indicate that we can assume
W = Cy([0,1],IR) (cf., [31], Chapter II, to see how one can pass from an abstract
Wiener space to the standard one) and in this case the Cameron-Martin space H
becomes H'([0, 1]), which is the space of absolutely continuous functions on [0, 1], with
a square integrable Sobolev derivative. Let now

K

 LoT’
where T is as constructed above. Then A.u is a Girsanov measure for the map 7.
This means that the law of the stochastic process (t,z) — Ti(x) under A.p is equal to
the Wiener measure, where T;(x) is defined as the evaluation of the trajectory T'(x) at

t € [0,1]. In other words the process (t,z) — Ti(z) is a Brownian motion under the
probability A.u. Let (FI,t € [0,1]) be its filtration, the invertibility of T implies that

\/ A =BW).
tel0,1]

A is upper and lower bounded p-almost surely, hence also A.u-almost surely. The Ito
representation theorem implies that it can be represented as

1 1 1
A = E[A%]exp {—/ GsdTs — = / ]ds|2ds} ,
0 2 Jo

where a(-) = [ dsds is an H-valued random variable. In fact a can be calculated
explicitly using the Ito-Clark representation theorem (cf., [30]), and it is given as
_ EA[DAJF, /]

e NIEzd (7.16)
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dt x Adu-almost surely, where E, denotes the expectation operator with respect to
A.p and DA is the Lebesgue density of the absolutely continuous map ¢t — VA(t, ).
From the relation (7.16), it follows that « is a function of T', hence we have obtained
the strong solution of the Monge-Ampere equation. Let us state all this as

Theorem 7.4 Assume that K and L are upper and lower bounded densities, let T be
the transport map constructed in Theorem 6.1. Then T is also the strong solution of
the Monge-Ampere equation in the Ito sense, namely

1 1 1
E[A2]LoTexp{—/ asde—Q/ \as\st}:K,
0 0

p-almost surely, where ¢ is given by (7.16).
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