An explanation of G. Galilei's paradox [1], p. 140-146, can be obtained by means of some conditions, which make it possible to divide all injective mappings $\varphi : N \to N$ into five classes: finitely surjective, potentially surjective, potentially antisurjective, finitely antisurjective mappings. In particular, the following statements are proved:

Theorem 1. Any injection of the latter 3 classes can't belong to the surjective mappings set.

Theorem 2. Necessary criterion of surjectivity of the injective mappings $\varphi : N \to N$ is of an asymptotic nature: $\lim(\varphi(n):n) = 1$.

Theorem 3. There isn't a bijection between natural numbers set N and its proper subset $A \subset N$.

The concept of numerical sequence convergence is generalized in following way:

Definition 1. Numerical sequence (a) is termed as a properly convergent sequence, if

$$\lim(a_{n+1} - a_n) = 0. \tag{1}$$

This concept substantiates the existence of infinity hyper-real numbers. For example, both sequences (a) and (b) defined as $a_n = n^{1-\alpha}$, and $b_n = a_n (lnn)^{1-\alpha}$, $\alpha > 0$, satisfy condition (1).

Statement. So (a_n) , $a_n = \sum_{p=1}^n p^{-1}$, $n \in N$, satisfies condition (1) then solution of an asymptotic equation $a_{\infty} = Arcsin(x_{\infty})$ exists.

It is easy to prove the following statement by (1):

Theorem 4. A set of Cauchy's sequences includes unlimited ones.

The concept of numerical series defined more exactly makes it possible to prove

Theorem 5. The convergence of a numerical series (A) doesn't depend on permutation of (A)'s addends.

Example. Let $(A) = \sum (-1)^{n+1} n^{-1} = A = \ln 2$. Series (B) was obtained from (A) by the following "procedure": q of sequential negative (A)'s addends were put after p of sequential positive ones. The sequence (S_n) of partial (B)'s sums converges to number $S = \ln 2\sqrt{pq^{-1}}$. The sequence (r_n) of (B)'s residuals converges [2] to number $r = \ln \sqrt{p^{-1}q}$. Thus, A = S + r.

References

- [1] Galilei G. Selected Works: In 2 T.-Moscow: Science, 1964. T. 1.- 571 p. (In Russian)
- [2] Sukhotin A. M. Alternative analysis principles: Study.-Tomsk: TPU Press, 2002.-43 p.