On a Two-Temperature Problem for the Klein-Gordon Equation

T.V. Dudnikova 1 & A.I. Komech 2 & N.J. Mauser 3

Consider the Klein-Gordon equation, with constant or variable coefficients in \mathbb{R}^n , $n \geq 2$,

$$\left\{ \begin{array}{l} \ddot{u}(x,\,t) = \sum_{j=1}^n (\partial_j - iA_j(x))^2 u(x,t) - m^2 \, u(x,t), \quad x \in {\rm I\!R}^n, \\ u|_{t=0} = u_0(x), \quad \dot{u}|_{t=0} = v_0(x). \end{array} \right.$$

Here m>0, $(A_1(x),\ldots,A_n(x))$ a vector potential of a magnetic field; we assume that functions $A_j(x)$ vanish outside a bounded domain. The solution u(x,t) is considered as a complex-valued function. Denote $Y(t)\equiv (u(\cdot,t),\dot{u}(\cdot,t))$, $Y_0\equiv (u_0,v_0)$. The initial date Y_0 is a random element of a complex functional space $\mathcal H$ consisting of states with a finite local energy, $\|Y\|_R^2=\int_{|x|< R}(|u(x)|^2+|\nabla u(x)|^2)dx<\infty$, $\forall R>0$. Given $t\in \mathbb R$, denote by μ_t the probability measure that gives the distribution of Y(t), the random solution to (1). We study the asymptotics of μ_t as $t\to\pm\infty$.

We identify $\mathbb{C} \equiv \mathbb{R}^2$ and denote by \otimes tensor product of real vectors. We assume that the initial correlation matrices $Q_0^{ij}(x,y) := E\left(Y_0^i(x) \otimes Y_0^j(y)\right) \; x,y \in \mathbb{R}^n, \; i,j=0,1,$ have the form

$$Q_0^{ij}(x,y) = \left\{egin{array}{l} q_+^{ij}(x-y), & x_n,y_n > a, \ q_-^{ij}(x-y), & x_n,y_n < -a. \end{array}
ight.$$

Here $q_{\pm}^{ij}(x-y)$ are the correlation matrices of some translation-invariant measures μ_{\pm} with zero mean value in \mathcal{H} , $x=(x_1,\ldots,x_n)$, $y=(y_1,\ldots,y_n)\in {\rm I\!R}^n$, a>0. The measure μ_0 is not translation-invariant if $q_-^{ij}\neq q_+^{ij}$.

We also assume that the measure μ_0 has zero mean and the initial mean 'energy' density is uniformly bounded: $E[|u_0(x)|^2+|\nabla u_0(x)|^2]=\operatorname{tr}\left(Q_0^{00}(x,x)+[\nabla_x\cdot\nabla_yQ_0^{00}(x,y)]|_{y=x}+Q_0^{11}(x,x)\right)<\infty$, a.a. $x\in\mathbb{R}^n$. Finally, we assume that measure μ_0 satisfies a mixing condition of a Rosenblatt- or Ibragimov-Linnik type, which means that $Y_0(x)$ and $Y_0(y)$ are asymptotically independent as $|x-y|\to\infty$.

Our main result is the (weak) convergence $\mu_t \to \mu_\infty$, $t \to \infty$, to an equilibrium measure μ_∞ , which is a translation-invariant Gaussian measure on $\mathcal H$. A similar convergence holds for $t \to -\infty$. We construct generic examples of the initial measures μ_0 satisfying all assumptions imposed. An explicit formulas are then given for the correlation matrices of measure μ_∞ .

The proof is based on the Bernstein 'room-corridor' argument and oscillatory integrals estimates. The application to the case of the Gibbs measures $\mu_{\pm} = g_{\pm}$ with two different temperatures T_{\pm} is given. Limiting mean energy current density formally is $-\infty \cdot (0, \ldots, 0, T_{+} - T_{-})$ for the Gibbs measures, and it is finite and equals $-C(0, \ldots, 0, T_{+} - T_{-})$ with C > 0 for a smoothed solution.

Bibliography

- [1] T.V. Dudnikova, A.I. Komech, E.A. Kopylova, Yu.M. Suhov, On convergence to equilibrium distribution, I. The Klein-Gordon equation with mixing, Com. Math. Phys. 225 (2002), no.1, 1-32.
- [2] T.V. Dudnikova, A.I. Komech, H. Spohn, On a two-temperature problem for wave equation, *Markov Processes and Related Fields* 8 (2002), 43-80.
- [3] T. Dudnikova, A. Komech, N.J. Mauser, On two-temperature for harmonic crystals, *J. Stat. Phys.* **114** (2004), no.3/4, 1035-1083.

¹M.V.Keldysh Institute of Applied Mathematics RAS, Moscow 125047, Russia, dudnik@elsite.ru

²Moscow State University, Russia, komech@mech.math.msu.su

³Wolfgang-Pauli Institute, c/o Institute of Mathematics, Vienna University, Austria, norbert.mauser@univie.ac.at