Section number 2 (Algebra).

Name and affiliation of authors

I. Arne Ring (arne.ring@epost.de), Hirschenberg 11, D-88471 Laupheim, Germany;

Title of poster

State Symmetries in Matrices and Vectors on Finite State Spaces.

1991 Mathematics Subject Classification

05E20 Group actions on designs, geometries and codes; 15A03 Vector spaces, linear dependence, rank; 20G20 Linear algebraic groups over the reals, the complexes, the quaternions.

Key words

state symmetry, linear algebra, vector space, symmetric group, general linear group, isotropy group.

continued on next page

Abstract

Let $C = \{1, 2, ..., N\}$ be a finite set of natural numbers (the state space). Let $\rho \in S_N$ be a permutation of the elements of C, and let $\mathbb{V} = \mathbb{R}^N$ be the vector space of real column vectors and \mathbb{M} be the vector space of real $N \times N$ matrices.

A state symmetry of a vector or a matrix is defined as a permutation ρ for which holds $v^{\rho} = v$, where $v^{\rho} = (v_i^{\rho}) := (v_{\rho(i)})$ (similarly $M^{\rho} = M$ with $M^{\rho} = (m_{ij}^{\rho}) := (m_{\rho(i)\rho(j)})$), so that ρ is acting on \mathbb{V} and \mathbb{M} . If $v^{\rho} = v$ (or $M^{\rho} = M$) for a permutation $\rho \neq id$, v (or M) is called state symmetric. Hence, $S_v := \{\rho | v^{\rho} = v\}$ and $S_M := \{\rho | M^{\rho} = M\}$ are isotropy subgroups.

In addition, $\mathbb{V}_{\rho} := \{v \in \mathbb{V} | v^{\rho} = v\}$ and $\mathbb{M}_{\rho} := \{M \in \mathbb{M} | M^{\rho} = M\}$ are vector spaces. The dimension of \mathbb{V}_{ρ} is the number of disjoint cycles of ρ , and a canonical basis of this vector space can be derived directly. For M_{ρ} the dimension is the sum of all $GCD(n_1, n_2)$ where the sum is taken over all pairs of cycles c_1 and c_2 in ρ and n_r is the length of c_r .

The set $G = \mathbb{M}_{\rho} \cap GL(N)$ of invertible matrices with state symmetry ρ is a group. Also this group acts on \mathbb{V}_{ρ} and \mathbb{M}_{ρ} .

If $v^{(1)} = M v^{(0)}$ and $v^{(2)} = M v^{(1)}$, then the existance of a common state symmetry of the vectors $v^{(0)}$ and $v^{(1)}$ is generally not sufficient for the existance of a state symmetry of M, neither for the existance of a state symmetry of $v^{(2)}$.

However, the following hypothesis has been raised for vector sequences $u = (v^{(i)})_{i=0,\dots,N}$: Let $\mathbb{W}_u := \{M | v^{(i+1)} = M v^{(i)} \text{ for } i = 0,\dots,N-1\}$ be the set of "generators" of u. If ρ is a proper state symmetry ρ of all vectors of u, then $|\mathbb{W}_u| \ge 2$ and there is at least one matrix $\hat{M} \in \mathbb{W}_u$ which is state symmetric. In this case, all elements of the infinite sequence $u = (v^{(i)})_i$ are state symmetric.

Applications to simplify special Markow chains or structures of graphs will be presented.