Let Ω be a set of all orderings of the real field F. There is the following natural homomorphism $\psi: {}_2\mathrm{Br}(F) \to \prod_{\alpha \in \Omega} {}_2\mathrm{Br}(F_\alpha)$, where F_α is the real closure of F with respect to an ordering α and ${}_2\mathrm{Br}(F)$, ${}_2\mathrm{Br}(F_\alpha)$ are 2-torsion parts of the Brauer groups of F and F_α respectively. An algebra A representing a nontrivial element of the kernel of ψ is called an Ω -algebra. The local Pfister conjecture looks as follows: the index of any Ω -algebra over $\mathbb{R}((t))(x)$ equals to 2. The following result is obtained.

Let $f_1, f_2 \in \mathbb{R}((t))[x]$ be monic irreducible polynomials which are sums of two squares, deg f_1 , deg $f_2 > 0$. Then there exists a quaternion Ω -algebra with ramification only at f_1 and f_2 .

References.

- [1] A. Pfister, Quadratic forms with applications to algebraic geometry and topology, London Math. Soc. Lect. Notes, Cambridge Univ. Press. 1995.
- [2] D. F. Bazyleu, Quaternionity of Ω -algebras with special ramification, Dokl. Nats. Akad. Nauk Belarusi 47 (2003), n° 2, 9–11.