Let G be a simply connected algebraic group of type B_n or D_n over an algebraically closed field K of characteristic $p \geq 0$, n > 4, and $H \subset G$ be a naturally embedded subgroup of type A_2 . We say that a subgroup is naturally embedded into G if it is generated by the root subgroups of G associated with certain simple and opposite to them roots. Suppose that $\omega_1, \ldots, \omega_n$ are the fundamental weights and $\omega = m_1\omega_1 + \ldots + m_n\omega_n$ is a dominant weight of G. Denote by V_ω the simple rational G-module with highest weight ω and by $Irr_H\omega$ the set of highest weights of composition factors for the restriction of V_ω to H. The set of all dominant weights for the group H can be identified with the set \mathbb{N}^2 of pairs of nonnegative integers with the help of the following map $x_1\omega_1 + x_2\omega_2 \mapsto (x_1, x_2)$. Therefore we can write $Irr_H\omega \subseteq \mathbb{N}^2$. Let M be the value of the weight ω on the maximal root and $m = M - m_2$. We have $M = m_1 + 2m_2 + \ldots + 2m_{n-1} + m_n$ for $G = B_n(K)$ and $M = m_1 + 2m_2 + \ldots + 2m_{n-2} + m_{n-1} + m_n$ for $G = D_n(K)$.

The following holds:

Proposition 1 Let p = 0. Then

$$Irr_H \omega = \{ (x_1, x_2) \in \mathbb{N}^2 \mid x_1 \le m, x_2 \le m, x_1 + x_2 \le M \}.$$
 (1)

Definition 2 Let p > 0. The weight ω is locally small if $m_i + m_{i+1} + m_{i+2} + m_{i+3} + 3 \le p$ for all i with $1 \le i \le n-4$ and $m_{n-3} + m_{n-2} + 2m_{n-1} + m_n + 3 \le p$ for $G = B_n(K)$ or $m_{n-3} + m_{n-2} + 2m_{n-1} + m_n + 3 \le p$ for $G = D_n(K)$.

Theorem 3 Let p > 0 and ω be locally small. Then the set $Irr_H\omega$ coincides with the relevant set in characteristic 0, i.e. (1) holds.