Dualities between torsion-free abelian groups of finite rank and their endomorphism rings

 $Ekaterina\ Blagoveshchenskaya$

Saint-Petersburg State Polytechnical University, E-mail: kate@robotek.ru

Section 02, Subject classification 05

Key words: abelian groups, endomorphism rings, Boolean algebra

Let \mathcal{A} be a particular class of torsion-free abelian groups, the socalled almost completely decomposable groups (ACD-groups), having the regulator A, a fully invariant completely decomposable subgroup of finite rank. According to the classical definition of ACD-groups, for any $X \in \mathcal{A}$ there exists a finite set of primes P = P(X) such that $X = \sum_{p \in P} X_p$ with $X_p \in \mathcal{A}$ and X_p/A is a p-primary finite group. It was shown in [1] that for any group $X \in \mathcal{A}$ its subgroups, members of \mathcal{A} , and their endomorphism rings form two anti-isomorphic Boolean algebras with respect to the set theory operations + and ∩. Since torsion-free abelian groups have complicated structures with non-isomorphic direct decompositions, they are traditionally classified up to near-isomorphism (\cong_{nr}) , an equivalence, which is weaker than isomorphism (\cong) , but preserves the decomposability properties. Our consideration of ACD-groups in the dual connection with their endomorphism rings leads to the extension of some results from ACDgroups to the rings, see [1-2].

Theorem 1. Let $X, X' \in \mathcal{A}$. If $X \cong_{nr} X'$ then End X and End X' are nearly isomorphic as abelian groups.

Theorem 2. Let $X, X' \in \mathcal{A}$ and X/A, X'/A be cyclic groups. Then $X \cong_{nr} X'$ if and only if End X and End X' are isomorphic as rings.

References

- [1] E. Blagoveshchenskaya, Dualities between almost completely decomposable groups and their endomorphism rings, Journal of Mathematical Sciences, Kluwer Academic/Plenum Publishers, accepted, 2004.
- [2] E. Blagoveshchenskaya, G. Ivanov, P. Schultz, The Baer-Kaplansky theorem for almost completely decomposable groups, Contemporary Mathematics 273, pp. 85 - 93, 2001.