
Abstract: The notion of left quotient ring, introduced by Utumi in [9], is a
widely present notion in the mathematical literature [1,3,4,8]. In [10] Van Oystaeyen
studied graded rings and modules of quotients from a categorical point of view and
considering unital rings. In this work the authors develop a theory in the non-unital
case and construct the graded maximal left quotient algebra Ql

gr−max(A) of every
right faithful graded algebra A as the direct limit of graded homomorphisms of left
A-modules from graded dense left ideals of A into an arbitrary graded left quotient
algebra B of A. In the case of a superalgebra, and with some extra hypothesis, we
prove that there exists an algebra isomorphism between Ql

gr−max(A)0 and Ql
max(A0).

These results can be applied to the context of associative pairs and triple systems.
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