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Let R be the Riemann curvature tensor of a pseudo-Riemannian manifold (M, gM )
of signature (p, q) on a smooth manifold M of dimension m := p + q. We say that
(M, gM ) is k-curvature homogeneous if given any two points P, Q ∈ M , there exists
an isomorphism φP,Q from TP M to TQM so that

φ∗gQ = gP , φ∗RQ = RP , ..., φ∗∇kRQ = ∇kRP .

This means that the metric, curvature tensor, and covariant derivatives up to order
k of the curvature tensor “look the same” at each point. Takagi [4] was the first
to exhibit 0-curvature homogeneous Riemannian manifolds which were not locally
homogeneous; his examples were non compact. Compact examples were first ex-
hibited by Ferus, Karcher, and Münzer [2]; many other examples have been found
subsequently. In the Lorentzian setting, 1-curvature homogeneous manifolds which
are not locally homogeneous were constructed by Bueken and Vanhecke [1]. There
were, however, no known examples of pseudo-Riemannian manifolds which were
k-curvature homogeneous but not locally homogeneous for k ≥ 2. In this note,
we exhibit k-curvature homogeneous manifolds for arbitrary k which are of neutral
signature and which are not locally homogeneous [3].

Let k = p + 2 ≥ 2 be given. Let (x, y, z0, ..., zp, x̄, ȳ, z̄0, ..., z̄p) be coordinates on
R

2p+6. Let f = f(y) ∈ C∞(R). Let g2p+6,f be the pseudo-Riemannian manifold of
balanced (i.e. neutral) signature (p + 3, p + 3) on R

2p+6 where:

F2p+6,f (y, ~z) := f(y) + yz0 + y2z1 + ... + yp+1zp,

g2p+6,f (∂zi
, ∂z̄j

) = δij , g2p+6,f (∂x, ∂x̄) = 1,

g2p+6,f (∂y, ∂ȳ) = 1, and g2p+6,f (∂x, ∂x) = −2F2p+6,f (y, ~z) .

Theorem: Assume f (p+3) > 0 and f (p+4) > 0. Let M := (R2p+6, g2p+6,f ).

(1) All geodesics in M extend for infinite time.

(2) expP : TP R
2p+6 → R

2p+6 is a diffeomorphism for any P ∈ R
2p+6.

(3) M is p + 2-curvature homogeneous.

(4) For generic f , M is not p + 3-affine curvature homogeneous.

(5) M is Ricci flat, nilpotent Osserman, and nilpotent Ivanov-Petrova.
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