Representations of (1, 1)-knots

MICHELE MULAZZANI

Abstract

A knot K in a 3-manifold N^3 is called a (1, 1)-knot if there exists a Heegaard splitting of genus one $(N^3, K) = (H, A) \cup_{\psi} (H', A')$, where H and H' are solid tori, $A \subset H$ and $A' \subset H'$ are properly embedded trivial arcs and $\psi : (\partial H', \partial A') \to (\partial H, \partial A)$ is an attaching homeomorphism. Obviously, N^3 turns out to be a lens space (possibly \mathbf{S}^3). In particular, the family of (1, 1)knots contains all torus knots and all two-bridge knots in \mathbf{S}^3 . The topological properties of (1, 1)-knots have recently been studied in several papers from different points of view (see references in [2]).

We develop two different representations of (1, 1)-knots and study the connections between them.

The first is algebraic: every (1, 1)-knot is represented by an element of the pure mapping class group of the twice punctured torus $PMCG_2(T)$, where $T = \partial H$ (see [1, 2]). Moreover, there is a surjective map from the kernel of the natural homomorphism $\Omega: PMCG_2(T) \to MCG(T) \cong SL(2,\mathbb{Z})$, which is a free group of rank two, to the class of all (1, 1)-knots in a fixed lens space.

The second is parametric: using the results of [4] and [3], every (1, 1)-knot can be represented by a 4-tuple (a, b, c, r) of integer parameters.

The above representations are explicitly obtained in many interesting cases, including two-bridge knots and torus knots.

References

 A. Cattabriga and M. Mulazzani: Strongly-cyclic branched coverings of (1,1)-knots and cyclic presentations of groups. Math. Proc. Cambridge Philos. Soc. 135 (2003), 137-146.

- [2] A. Cattabriga and M. Mulazzani: (1,1)-knots via the mapping class group of the twice punctured torus. Adv. Geom. 4 (2004), 263-277.
- [3] A. Cattabriga and M. Mulazzani: All strongly-cyclic branched coverings of (1, 1)-knots are Dunwoody manifolds. J. London Math. Soc., to appear, arXiv:math.GT/0309298
- [4] L. Grasselli and M. Mulazzani: Genus one 1-bridge knots and Dunwoody manifolds. Forum Math. 13 (2001), 379-397.