
A new exact algorithm for the maximum-weight clique 
problem based on a heuristic vertex-coloring and a 

backtrack search. 

Deniss Kumlander 

Informatics Department, Tallinn Technical University, Ehitajate tee 5, 19086 Tallinn, 
Estonia;  

kalkin@solo.ee 

Abstract: In this paper we present an exact algorithm for the maximum-weight 
clique problem on arbitrary undirected graphs. The algorithm based on a fact 
that vertices from the same independent set couldn’t be included into the same 
maximum clique. Those independent sets are obtained from a heuristic vertex 
coloring where each of them is a color class. Color classes and a backtrack 
search are used for pruning branches of the maximum-weight clique search tree. 
Those pruning strategies together result in a very effective algorithm for the 
maximum-weight clique finding. Computational experiments with random 
graphs show that the new algorithm works faster than earlier published 
algorithms; especially on dense graphs.  
 
 
Key words: maximum-weight clique, branch and bound algorithm, maximum-
weight independent set, vertex-coloring 

1. Introduction 

Let G=(V, E, W) be an undirected graph, where V is the set of vertices, E is the set 
of edges and W is a set of weights for each vertex. A clique is a complete subgraph of 
G, i.e. one whose vertices are pairwise adjacent. The maximum clique problem is a 
problem of finding maximum complete subgraph of G, i.e. a set of vertices from G 
that are pairwise adjacent. An independent set is a set of vertices that are pairwise 
nonadjacent. A graph coloring problem is defined to be an assignment of color to its 
vertices so that no pair of adjacent vertices shares identical colors. All those problems 
are computationally equivalent, in other words, each one of them can be transformed 
to any other.  

The maximum-weight clique problem asks for clique of the maximum weight. The 
weighted clique number is the total weight of weighted maximum clique. It can be 
seen as a generalization of the maximum clique problem by assigning positive, integer 
weights to the vertices. Actually it can be generalized more by assigning real-number 
weights, but it is reasonable to restrict to integer values since it doesn’t decrease 
complexity of the problem. This problem is well known to be NP-hard. 



2      Deniss Kumlander 

The described problem has important economic implications in a variety of 
applications. In particular, the maximum-weight clique problem has applications in 
combinatorial auctions, coding theory [1], geometric tiling [2], fault diagnosis [3], 
pattern recognition [4], molecular biology [5], and scheduling [6]. Additional 
applications arise in more comprehensive problems that involve graph problems with 
side constraints. More this problem is surveyed in [7].  

In this paper a new algorithm for finding the maximum-weight clique is 
introduced. In the following section the algorithm is described in details and in the 
later section it is benchmarked by some algorithms that are reported to be the best at 
the moment. Random graphs are used for that, so that the same graphs are given to 
each algorithm and then the speed of finding the maximum-weight clique is 
compared. Unfortunately the DIMACS test graphs are not weighted and therefore 
cannot be applied for testing. The last section concluded the paper and describes open 
problems. 

2. Description of the Algorithm 

This section is divided into two parts – in the first part we look at the recently 
developed algorithm for the unweighted case while the next part contains 
modification of this algorithm for the weighted case. 

2.1. The unweighted case 

Before starting the algorithm we find a vertex-coloring by using any heuristic 
algorithm, for example in a greedy manner. We determine color classes one by one as 
long as uncolored vertices exist. Then vertices are resorted in an order they are added 
into color classes. This order affects the algorithm’s performance in finding a 
maximum clique.  

 
Definition 1: A color class is called existing on a subgraph Gp if any vertex from 

this color class belongs to the subgraph Gp. 
Definition 2: Degree of a subgraph Gp equals to the number of color classes 

existing on that subgraph. 
 
Crucial to the understanding of the algorithm is a notation of the depth and pruning 

formula. Basely, at depth 1 we have all vertices, i.e. G1≡G. We are going to expand 
all vertices of a subgraph so that vertex is deleted from the subgraph after it is 
expanded. Suppose we expand vertex v1. At depth 2, we consider all vertices adjacent 
to v1 from vertices from previous depth, i.e. belonging to G1. Those vertices form a 
subgraph G2. At depth 3, we consider all vertices (that are in depth 2) adjacent to the 
vertex expanded in depth 2 etc. Let vd1 be the vertex we are currently expanding at 
depth d. That is: 

 
Let’s say that Gd is a subgraph of G on depth d that contains the following vertices: 

Vd=(vd1, …, vdm).  



A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-
coloring and a backtrack search.      3 

Then a subgraph on depth d+1 is Gd+1=(Vd+1,E),  
where Vd+1=(vd+1 1, …, vd+1 k): ∀i vd+1 i ∈ Vd  and (vd+1 i , vd)∈ E. 
 
The pruning formula is the next: If d –1 + Degree(Gd) ≤ CBC, where CBC is a size 

of the current best clique then we prune, since the size of the largest possible clique 
(formed by expanding any vertex of Gd) would be less or equal to CBC. If we are at 
depth 1 and this inequality holds then we stop; we have found the maximum clique. 

2.2. The weighted case 

The previously described algorithm is the base for the maximum-weight algorithm 
with the following changes. We cannot any longer determine values of the function 
Degree as a number of existing color classes on a subgraph since vertices have 
different weights and a color class’ maximum weight can differ from 1. Therefore a 
degree of a subgraph will be calculated as a sum of maximum weights of each color 
class existing on this subgraph: for each existing lass we have to find a vertex of the 
maximum-weight and then sum up weights of those vertices. 

The order of vertices here becomes even more important. Vertices should be 
resorted first of all by color classes and then by weights inside each color class. So, a 
vertex of the maximum weight in any color class always will be the last inside this 
color class. Therefore a degree of a subgraph equals to the sum of the last vertex’ 
weights of each color class existing on the subgraph independent on which vertices of 
a color class exists on this subgraph. Moreover, instead of calculating degree of a 
subgraph each time we will calculate it only first time on a depth and later only adjust 
by the following rule: if the next vertex on this depth to be expanded is from the same 
color class as the previous one then degree remains the same otherwise should be 
decreased on a weight of the previous vertex (there is no more vertices from the 
previous vertex’ color class and the previous vertex weight was the largest in that 
color class by resorting). 

Besides one more adjustment to the base algorithm will be done. We will use ideas 
of a backtrack search described by P. Östergård [10]. In the algorithm values of a 
function c(i) is calculated (i is a vertex number) which denotes the weight of the 
maximum-weight clique in the subgraph induced by the vertices {vi, vi+1,…,vn}. 
Obviously c(n) = weight of vn and с(1) is the weight of the maximum-weight clique. 
For each vertex starting from the last one and up to the first one a backtrack search is 
carried out to find c(i). Those values are used to prune the search of the maximum-
weight clique. As we search for a clique with weight greater than W, if the total 
weight of the forming current clique vertices is W′ and we consider vi to be the next 
expanded vertex then we can prune the search if W′ + c(i)≤W. P. Östergård is also 
advised to use a vertex reordering by a vertex-coloring’s color classes [10], therefore 
the ordering for the first pruning strategy will not slow down this backtrack search. 

Other steps of the algorithm remain unchanged. 
Note: It is advisable to use a special array to solve order of vertices to avoid work 

by changing adjacency matrix during reordering vertices. 
 



4      Deniss Kumlander 

Algorithm for the maximum – weight clique problem 
 
N – number of vertices in the graph 
W – weight of the current best (maximum-weight) clique 
d – depth 
Gd – subgraph of G formed by vertices existing on depth d 
W(d) – weight of all vertices in the forming clique 
w(i) – weight of vertex i 
 

Step 0. Heuristic vertex-coloring: Find a vertex coloring, reorder vertices and apply 
new vertices indexes (renumber vertices from 1 to N for using in the backtrack 
search). 
 
Step 1. Back track search runner:  

For n = N downto 1 
Goto step 2 
c(i)=W 

Next 
Go to End 
 

Step 2. Initialization: Form the depth 1 by selecting all vertices with an index less 
than n and connected to the vertex n. d=1. W(1)= w(n) 
Step 3. Control: If the current level can contain a larger clique than already found: 

If W(d) + Degree(Gd) ≤ W then go to step 7. 
Step 4. Expand vertex: Get the next vertex to expand. If all vertices have been 
expanded or there is no vertices then control if the current clique is the largest one. If 
yes then save it and go to step 7. 
Step 5. Control: If the current level can contain a larger clique than already found: 

If W(d) + c(expanding vertex index) ≤ W then go to step 7. 
Step 6. The next level: Form the new depth by selecting all remaining vertices that 
are connected to the expanding vertex from the current depth;  

W(d+1)=W(d) + w(expanding vertex index) 
d = d + 1; 
Go to step 2. 

Step 7. Step back:  
d = d – 1;  
if d = 0, then return to step 1 
Delete the expanded vertex from the analyze on this depth;   
Go to step 2. 
 

End:    Return the maximum-weight clique. 
 
The algorithm program code can be obtained from 
 http://www.simpleconcepts.ee/dk/index.html. 



A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-
coloring and a backtrack search.      5 

3. Computational results and discussion 

Usually two types of test cases are used: randomly generated graphs and fixed 
instances like the DIMACS test graphs. Unfortunately for the later type such instances 
are lacking for the maximum-weight clique problem. The DIMACS graphs are not 
weighted and can therefore not used for our testing. That’s why only random graphs 
are tested. For each vertices/density case 100 cases were generated and average time 
was measured. 

Several algorithms were published since 1975s. The easiest and effective one was 
presented in an unpublished paper by Carraghan and Pardalos [8]. This algorithm is 
nothing more that their earlier algorithm [9] for the unweighted case applied to 
weighted case. They have shown that their algorithm outperforms algorithm their 
have compared with. Recently one more algorithm was published by P. Östergård 
[10]. He also has compared his algorithm with earlier published algorithms and has 
shown his algorithm works better. Besides those two algorithms were used as a base 
for our new algorithm. It gives possibility to conclude that worse cases of the new 
algorithm is practically the same as worse cases of those base algorithms and 
comparing them on worse cases cannot give another result than comparing on random 
graphs. 

Results are presented as a ratio of algorithms spent times on finding the maximum-
weight clique – so the same results can be reproduced on any platforms. Compared 
algorithms were programmed using the same programming language and the same 
programming technique (since the new and P. Östergård algorithms are just 
modifications of Carraghan and Pardalos algorithm). The greedy algorithm was used 
to find a vertex-coloring. 

 
PO – time needed to find the maximum-weight clique by Carraghan and Pardalos 

algorithm [8] divided by time needed to find the maximum-weight clique by P. 
Östergård algorithm [10]. 

New – time needed to find the maximum-weight clique by Carraghan and Pardalos 
algorithm [8] divided by time needed to find the maximum-weight clique by the new 
algorithm. 

Table 1.  
Benchmark results at random graphs 

Vertices Edge density PO New 
1000 0.1 1.12 1.28 
800 0.2 1.23 1.93 
500 0.3 1.42 2.78 
300 0.4 1.63 2.81 
200 0.5 1.73 2.81 
200 0.6 1.90 4.90 
150 0.7 2.12 5.54 
100 0.8 2.27 6.83 
100 0.9 11.25 69.85 



6      Deniss Kumlander 

For example, 6.83 in the column marked New means that Carraghan and Pardalos 
[8] algorithm requires 6.83 times more time to find the maximum clique than the new 
algorithm. Presented results show that the new algorithm performs very well on any 
density. It is faster than both algorithms we compare with. Especially great results are 
shown on the dense graphs, where the new algorithm is faster than the Carraghan and 
Pardalos algorithm [8] in 69 times and than P. Östergård algorithm [10] in 6 times. 

Accordingly to the vertex-coloring step of the algorithm we should mark that the 
problem of finding an efficient vertex coloring can be treated as a separate problem. 
This problem is an NP-hard task; therefore we had to use a heuristic. Heuristic 
algorithm is an algorithm that 
1. Doesn’t guarantee the best result, but finds a result that is close enough to the best 

one. 
2. Is quicker than an exact algorithm. In our case we use a polynomial heuristic – a 

result is found in a polynomial time. 
 
The vertex-coloring step affects the overall result in the following way:  
1. The closer number of color classes to the size of the maximum clique the quicker 

the maximum clique will be found because of more effective pruning; 
2. The more time we spent on vertex coloring the slower our algorithm works in 

general (since the vertex coloring subroutine is included into the main algorithm 
and it’s time should be get into account). 

 
Moreover, the algorithm can evaluate without changing core steps by inventing a new 
and more effective heuristic algorithm for the vertex coloring.  

Table 2.  
Number of color classes by a greedy vertex coloring 

Vertices Density 
Average size 

of the maximum 
clique 

Number of 
color classes 

Number of color classes 
containing only 1 vertex 

100 0.1 3.88 7.16 0.40 
100 0.2 5.08 10.36 0.48 
100 0.3 6.52 13.88 0.64 
100 0.4 8.24 17.20 0.92 
100 0.5 10.44 20.76 1.12 
100 0.6 13.60 24.80 1.56 
100 0.7 18.00 30.00 1.76 
100 0.8 24.04 37.24 3.16 
100 0.9 34.36 46.08 4.80 
100 0.99 69.56 71.20 42.48 

 
It is easy to see that quite effective results of the new algorithm were reached not 

on the best splitting vertices into color classes - number of color classes 
approximately larger on 50%-25% than size of the maximum clique. This difference 



A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-
coloring and a backtrack search.      7 

is understandable if we will get into account that we have used a quite easy/rough 
heuristic on vertex coloring. 

4. Conclusion 

In this paper we have introduced the new algorithm for finding the maximum-
weight clique based on a heuristic vertex-coloring and a backtrack search. Color 
classes found in the heuristic vertex-coloring are used to prune branches of the 
maximum-weight clique search tree – since vertices of the same color class cannot 
participate in the same maximum clique we can more effectively define if a current 
subgraph can contain a larger clique than already found or not using color classes than 
by just looking at the amount of vertices of this subgraph. A backtrack search is also 
proved to be effective information capture and branches pruning strategy (originally it 
was shown by P. Östergård [10]). Those two pruning strategies provide us with a very 
fast algorithm for the maximum-weight clique finding. Besides algorithm is easy to 
implement. Probably the triviality of ideas makes it so fast. The program listing can 
be obtained from http://www.simpleconcepts.ee/dk/index.html.  

Another advantage is a way how a heuristic result is used for finding the exact 
result: usually a heuristic result just sets upper or lower bounds and them quite 
quickly lose actuality since usually are replaced by a current best result. In the new 
algorithm a heuristic vertex-coloring is employed on the permanent base through the 
whole algorithm’s work. Moreover, the algorithm can evaluate without changes in 
algorithm’s core steps by just inventing a new and more effective heuristic algorithm 
for the vertex coloring. The less color-classes we have found the more effectively we 
prune branches of a search tree. 

References 

1. MacWilliams, J., Sloane, N.J.A.: The theory of error correcting codes. North-Holland, 
Amsterdam (1979). 

2. Corradi, K., Szabo, S.: A combinatorial approach for Keller’s Conjecture. Periodica 
Mathematica Hungarica, Vol. 21. (1990) 95-100. 

3. Berman, P., Pelc, A.: Distributed fault diagnosis for multiprocessor systems. Proceedings of 
the 20th Annual International Symposium on Fault-Tolerant Computing, Newcastle, UK. 
(1990) 340-346 

4. Horaud, R., Skordas, T.: Stereo correspondence through feature grouping and maximal 
cliques. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11. (1989) 
1168-1180 

5. Mitchell, E.M., Artymiuk, P.J., Rice, D.W., Willet, P.: Use of techniques derived from graph 
theory to compare secondary structure motifs in proteins. Journal of Molecular Biology, 
Vol. 212. (1989) 151-166. 

6. Jansen, K., Scheffler, P., Woeginger, G.: The disjoint cliques problem. Operations Research, 
Vol. 31. (1997) 45-66. 



8      Deniss Kumlander 

7. Bomze, M., Budinich, M., Pardalos, P. M., Pelillo, M.: The maximum clique problem. 
Handbook of Combinatorial Optimization, Vol. 4, In D.-Z. Du and P. M. Pardalos, editors,. 
Kluwer Academic Publishers, Boston, MA, (1999)

8. Carraghan, R. and Pardalos, P. M. A parallel algorithm for the maximum weight clique 
problem. Technical report CS-90-40, Dept of Computer Science, Pennsylvania State 
University (1990) 

9. Carraghan, R. and Pardalos, P. M. An exact algorithm for the maximum clique problem. Op. 
Researc Letters, Vol. 9. (1990) 375-382 

10. Östergård, P.R.J., A new algorithm for the maximum-weight clique problem. Nordic 
Journal of Computing, Vol. 8. (2001) 424-436 

11. Johnson, D.S., Trick, M.A., editors. Cliques, Coloring and Satisfiability: Second DIMACS 
Implementation Challenge, Vol. 26 of DIMACS Series in Discrete Mathematics and 
Theoretical Computer Science. American Mathematical Society (1996). 
 


