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It is proved in works [1,2] that the randomness problem does not solved outside concept
of the restriction principle. The congruent operator of densities convolution pz(") is

considered in [2]. It describes the vector summation modulo 1
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where the summation is coordinatewise. The convolution pEZZ) for values z((fn)) converges

rapidly to an uniform distribution ||p(2) — 1| =2°0 in norms of standard spaces.

Theorem 1. Increase of parameter m of congruent summation in (1) brings to
growth of pseudorandomness measure of resulting vectors z((:;)) .

Theorem 2. Only unlimited increase of parameter m = oo in expression (1) ensures
a creation of random values and hence generation of randomness.

Theorem 3. Opportunity of numerical modelling of an arbitrary pseudorandom-
ness measure signifies solution of randomness, multivariate uniformity and independence
problems.
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