Periodic Solutions of Impulsive Matrix Differential Equation

V. CHIRICALOV

Nat. T.Shevchenko Univ., Department of Mech. and Math., Ukraine, 04033, Kyiv, Volodymyrs'ka str. 64 , e-mail: cva@skif.kiev.ua

AMS Subject Classification: 34A37, 34C15, 34C25 Key words: Impulsive matrix equations, periodic solution, nonlinear oscillation

We consider a differential matrix equation with bilinear main part

$$dX/dt = A(t)X - XB(t) + \sum_{k} [D_k]\delta(t - t_k)X + F_{\delta}(t), \qquad (1)$$

where $F_{\delta}(t) = F(t) + \sum_{k} \widetilde{F}_{k} \delta(t - t_{k}), \ [D_{k}]Z = D_{k} Z \widetilde{D}_{k}; \ A(t), D_{k} \in \mathbb{R}^{n \times n}; \ B(t), \widetilde{D}_{k} \in \mathbb{R}^{m \times m}; \ X, F, \widetilde{F} \in \mathbb{R}^{n \times m}; \ \delta(t - t_{k})$ is Dirac's measure. The general solution of that equation deal with the solution of difference operator equation.

Proposition. The solution of equation (1) is the distribution with continuous derivative at any interval (t_k, t_{k+1}) $(-\infty < k < \infty)$. It is defined by equalities

$$X_t(t_0, X_0) = [\Omega_{t_k^+}^t] C_k + \int_{t_k^+}^t [\Omega_{\tau}^t] F(\tau) d\tau, \ t \ge t_0$$

$$C_k = [\alpha_k] C_{k-1} + \beta_k, \ k = 1, 2, ...,$$
(2)

where $[\Omega_{\tau}^{t}]$ is the evolutionary operator of the homogeneous equation (1) at interval $(t,\tau), \ [\Omega_{\tau}^{t}]Z = \underset{A}{\Omega_{\tau}^{t}} Z \underset{B}{\Omega_{\tau}^{t}}, \ [\alpha_{k}] = ([I] + [D_{k}])[\Omega_{t_{k-1}^{+}}^{t_{k}^{-}}], \ \beta_{k} = ([I] + [D_{k}]) \int_{t_{k-1}^{+}}^{t_{k}^{-}} [\Omega_{\tau}^{t_{k}^{-}}]F(\tau)d\tau + \widetilde{F}_{k}.$

The formula (2) is equivalent to the formula which have been given in the monograph [1] but is more convenience for numerical calculations. One can easy to see that if $F(t) \equiv 0$, $[D_k] \equiv 0$, then $[\alpha_k] = [\Omega_{t_{k-1}}^{t_k}]$, $\beta_k = \tilde{F}_k$ and the formulas (2)-(5) are transforming into the formulas that was given in [2].

The equation (1) is periodic with period ω if the matrix-valued functions A(t), B(t), F(t) are ω -periodic, and there is a natural number p such that $D_{k+p} = D_k$, $\tilde{D}_{k+p} = \tilde{D}_k$, $\tilde{F}_{k+p} = \tilde{F}_k$ for all k, and $t_{k+p} = t_k + \omega$. The difference equation in (2) then will be periodic with the period equal p. It is interesting for application the case when p = 1, $[D_k] = constant$, $\tilde{F}_k = constant$, F(t) = 0. This impulsive differential problem is called stroboscopic problem [3].

In our report we consider the properties of periodic solution, the conditions of its stability and conditions of convergence the approximate solution if iterative method will be applied.

References.

 Samoilenko A.M., Perestyuk N.A. Impulsive Differential Equations. World Scientific, Series A. Singapur. New Jersey. London. Hong Kong.1995.
Halanay A., Wexler D. Teoria Calitativa a Sistemelor cu Impulsuri. Editura Academiei Republicii Socialiste Romania, Bucuresti, 1968.
Blaquiere A. Nonlinear System Analysis. Academic Press. New York. London. 1966.