A parabolic equation with drift

2—1: = %Au—i— (B, grad u),
is considered on a complete simply connected n-dimension Riemannian manifold M with non-
positive curvature, known as Cartan—Hadamard manifold. In the equation the drift field
B: M — TM is a vector field on the manifold M and Laplacian A is concerned with the
Riemannian metrics, i. e. is Laplace—Beltrami operator.

The first boundary problem for this equation is solved with potential method. In order to
apply this method, existing a double-layer potential gap is proven on a submanifold included
into the manifold M [1|. Cartan—Hadamard manifold exhibits behavior similar to R".

A fundamental solution for the parabolic equation with drift is proposed to be constructed
by the perturbation method similar to parametrix one [2]|. Also the fundamental solution
estimates are obtained with different assumptions concerning the drift field [3]. Two groups of
assumption are examined: strong one means integrability of the drift field norm, its first and
second covariant derivatives; and weak one means bounded drift field, bounded first and second
covariant derivatives of the field.

A logarithmic gradient of the fundamental solution is shown to be represented as sum of
two vector fields: known one and bounded one [4]. The boundedness of the latter field is proven
under strong assumptions for the drift field by maximum principle.
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