V. G. Romanov

Sobolev Institute of Mathematics, Acad. Koptyug prosp., 4, 630090, Novosibirsk, Russia, e-mail: romanov@math.nsc.ru

A stability estimate of a solution in two-dimensional inverse problem of electrodynamics

The problem of determining three coefficients c(x), $\sigma(x)$, q(x) for a hyperbolic equation is considered. The inverse two-dimensional problem of electrodynamics is reduced to this problem.

Let $u = u(x, t), x \in \mathbf{R}^2$, be the solution to the problem

$$u_{tt} + \sigma u_t - c^2(\Delta u + qu) = \delta(t) \,\delta(x \cdot \nu), \quad u|_{t<0} = 0, \tag{1}$$

where $\nu = (\nu_1, \nu_2)$ is a unite vector and $x \cdot \nu$ is the scalar product of $x = (x_1, x_2)$ and ν . Because the solution to problem (1) depends on ν we consider ν as a parameter of the problem, i.e., $u = u(x, t, \nu)$. Let a support of coefficients c(x) - 1, $\sigma(x)$, q(x) belongs to the disk $D := \{x \in \mathbf{R}^2 | |x - x^0| < r\}$ that is contained inside the half-plane $x \cdot \nu > 0$. Introduce $\tau(x, \nu)$ as the solution to the Cauchy problem for the eikonal equation

$$|\nabla \tau|^2 = c^{-2}(x), \quad \tau|_{x \cdot \nu = 0} = 0$$
 (2)

and let $G(\nu)$ be the cylindrical domain $G(\nu) := \{(x,t) | x \in D, \tau(x,\nu) < t < T + \tau(x,\nu)\}$ where T is a positive number. Denote by $S(\nu)$ a lateral part of the boundary of $G(\nu)$, i.e., $S(\nu) := \{(x,t) | x \in \partial D, \tau(x,\nu) \le t \le T + \tau(x,\nu)\}, \ \partial D := \{x \in \mathbf{R}^2 | |x-x^0| = r\}.$

The following problem of determining coefficients c(x), $\sigma(x)$, q(x) is considered. Let function $\tau(x,\nu)$ be given on ∂D and traces of the solution to problem (1) and its normal derivative be given on $S(\nu^{(k)}) := S_k$ for tree different parameters $\nu = \nu^{(k)}$, k = 1, 2, 3, i.e.,

$$u(x,t,\nu^{(k)}) = f^{(k)}(x,t), \quad \frac{\partial}{\partial n} u(x,t,\nu^{(k)}) = g^{(k)}(x,t), \quad (x,t) \in S_k,$$
$$\tau(x,\nu^{(k)}) = \tau^{(k)}(x), \quad x \in \partial D, \quad k = 1, 2, 3.$$
(3)

The inverse problem is: find c(x), $\sigma(x)$ and q(x).

Under suitable conditions on a smoothness and a boundeness of c(x), $\sigma(x)$ and q(x) as well as a natural relation between T and the diameter of D conditional stability and uniqueness theorems for the inverse problem are stated.