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1. some algebraic torminology

For more details we refer to [H]. First some notation.
Recall that a lattice (for us) is a discrete subgroup of Rn. So the element

of a lattice M ⊂ Rn can be identified with all integral liear combinations
of a basis of Rn. Under this identification the lattice M is isomorphic (as
lattice) to Zn.

2. algebraic tori

Definition 2.1. A linear algebraic group is an affine variety G having the
structure of a group such that the multiplication map and the inverse map
are morphisms of affine varieties.

Let G,G′ be two linear algebraic groups, a morphism G→ G′ of algebraic
groups is a map which is a morphism of affine varieties and a homomorphism
of groups. We will indicate the SET of such morphisms with HomAG(G,G′).

Recall that when G,G′ are abelian HomAG(G,G′) is an abelian group.

Example 2.2. The classical examples of algebraic groups are:(C∗)n, GLn, SLn.

Definition 2.3. An n-dimensional algebraic torus is an affine variety T ,
isomorphic to (C∗)n.

An algebraic torus is a group, with the group operation that makes the
isomorphism (of affine varieties) a group-homomorphism. Hence an alge-
braic torus is a linear algebraic group.

From now on we will drop the adjective algebraic in algebraic torus.

Definition 2.4. Let T be a torus.
• An element of the abelian group HomAG(C∗, T ) is called a one pa-

rameter subgroup of T .
• An element of the abelian group HomAG(T,C∗) is called a character

of T .
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Lemma 2.5.
HomAG(C∗,C∗) ∼= Z.

Proof. First note that an invertible element of the ring C[t, t1] is of the form
atk for a constant a ∈ C and an integer k ∈ Z. Let χ : C∗ → C∗ be an
element of HomAG(C∗,C∗). It induces a ring homomorphism:

χ∗ : C[t, t−1]→ C[t, t−1]

where χ∗(t) = χ(t) = atk is an invertible polynomial. Observe that the
moltiplication morphism induces the ring homorphism:

C[t, t−1]→ C[t1, t−1
1 , t2, t

−1
2 ], t 7→ t1t2.

Moreover since χ is a group homorphism, we have the following diagram:

C[t, t−1] //

χ∗

��

C[t1, t−1
1 , t2, t

−1
2 ]

χ∗

��

C[t, t−1] // C[t1, t−1
1 , t2, t

−1
2 ]

Which implies that χ∗(t2) = χ∗(t)2. It follows that a = 1 and thus that χ(t) = tk.

�

Note that:

HomAG(C∗, T ) ∼= HomAG(C∗, (C∗)n) =
n∑
1

HomAG(C∗,C∗) = Zn = N

as abelian groups. An important consequence of this simple fact is that the
two abelian groups HomAG(C∗, T ), HomAG(T,C∗) can be identified as dual
lattices.

First observe that the composition morphism of abelian varieties:

HomAG(C∗, T )×HomAG(T,C∗)→ Z
is a perfect pairing of Z-modules, in fact it induces the isomorphism:

HomAG(T,C∗)→ Hom(N,Z), λ(χ) = χ ◦ λ.
(In the assignment I you will verify that it is an isomorphism). It follows
that

HomAG(T,C∗) = M ∼= N∗

Remark 2.6. Given a map φ : X → Y ⊂ Cm of affine toric varietie, we define
the image variety as

V (Iφ), where Iφ = Ker(f∗) = {f ∈ C[x1, ..., xm] s.t. f ◦ φ = 0}.
In the assignment you will show that Iφ is an ideal such that Im(φ) ⊂ V (Iφ).

Moreover you will prove that if T1
∼= (C∗)k, T2

∼= (C∗)t are algebraic tori
and φ ∈ HomAG(T1, T2), then Im(φ) = V (Iφ) and V (Iφ) is an algebraic
torus.

Another important fact, whose proof can be found in [H] is that:
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Lemma 2.7. Any irreducible closed subgroup of a torus (i.e. an irreducible
affine sub-variety which is a subgroup) is a sub-torus.

3. Some examples of affine toric varieties

Recall that:

Definition 3.1. An affinie toric variety is an irreducible affine variety, con-
taining a torus as a Zariski-open subset and such that the multiplicative
action of the torus on itself extends to the whole variety.

In other words and affine toric variety is an affine variety endowed with
an action of a torus, such that the action has a free open orbit (i.e. without
fixed points).

Let Xbe an affine toric variety, containing the torus T ∼= (C∗)nas Zariski
open set. We define:

dim(X) = n.

Example 3.2. Consider the affine variety V (x3 − y2).
Because x3 − y2 is an irreducible polynomial, the ideal (x3 − y2) is prime

and hence the variety is irreducible. The map: f : C∗ → C2 defined by
t 7→ (t2, t3) is a morphism such that Im(f) = V (x3− y2). The rational map
(x, y) 7→ y

x whose domain is C2 \ V (x) ∩ V (x3 − y2) is its inverse.
It follows that (C2\V (x))∩V (x3−y2) is a Zariski open subset of V (x3−y2)

isomorphic to the 1-dimensional torus C∗.
Moreover the self action of the torus extends to the algebraic action:

t(x, y) = (t2x, t3y).

Example 3.3. V (xy − zw) as seen before.

4. Affine toric varieties from lattice points

In this section we will see that:

Any subset A = {m1, ...,ms} consisting of s elements of a lattice M
defines an affine toric variety YA ⊂ Cs of dimension rank(A). The
coordinate ring C[YA] ∼= C[χmi , ..., χms ] (as C-algebras) and YA = V (IA)
where IA = Ker(φ∗A) and

φ∗A : C[x1, ..., xs]→ C[YA], xi 7→ χmi

Let M ∼= Zn be a lattice and let N = M∗. The lattice M can be identified
with the character group of a torus TN .

TN ∼= (C∗)n, HomAG(C∗, TN ) = N,HomAG(TN ,C∗) = N∗ = M.

We will denote the character corresponding to the point m ∈M with χm.
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A choice of lattice points A = {m1, ...,ms} ⊂M determines a morphism
of affine varieties:

ψA : TN → Cs, t 7→ (χm1(t), ..., χms(t))

Let A also denote the n× s matrix where the lattice points mi are columns.
This map can be seen as a map between two tori and hence the image

will be a torus: φA(TN ) ∼= (C∗)k. Observe that φA(TN ) is closed in (C∗)k,
but open in Cs.

Definition 4.1. Let X be a subset of Cs. The Zariski-clousure X is defined
to be the smallest affine variety of Cs containing X.

So we have:
φA(TN ) ⊂ φA(TN ) ⊂ Cs

Notice that, because the torus φA(TN ) is irreducible, so is φA(TN ).
The torus φA(TN ) acts on Cs via multiplication (it is an algebraic action

extending the self action) and φA(TN ) is invariant under this action, i.e. the
action restricts to an algebraic action:

φA(TN )× φA(TN )→ φA(TN ).

This is because the image of the action map is a variety containing the torus
φA(TN ).

After identifying HomAG(φA(TN ),C∗) = M(A) with Zr, we see that the
map φAinduces a map:

φ′A : Zs →M

where the stantard basis-element ei i mapped to mi. The image can be
identified with M(A) and it has dimension equal to rank(A) = r.

All the above proves that φA(TN ) = YA is an affine toric variety of di-
mension rank(A) = r.

It follows that the associated map of C-algebras is

φ∗A : C[x1, ..., xs]→ C[YA], xi 7→ χmi

and that YA = V (Ker(φ∗A)).
Because φ∗A is onto we can write:

C[YA] = C[χm1 , ..., χms ].

The C-algebra generated by the χmi , where the multiplication is given by
χmiχmj = χm1+mj . One sees easily that if S is the finitely generated semi-
group NA, then

C[χm1 , ..., χms ] = {
∑
m∈S

cmχ
m s.t. cm ∈ C and cm = 0 for all but finitely many m}.

Example 4.2. Consider {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1 − 1)} = A ⊂ Z3.
YA = V (xy − zw) is the quadric threefold (rk(A) = 3) in C4.
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