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1. Affine varieties

Lemma 1.1. Let V,W be affine varieties
(1) V ⊆W ⇔ I(W ) ⊆ I(V ).
(2) V = W ⇔ I(W ) = I(V ).
(3) I(V ) is prime ⇔ V is irreducible;
(4) (Weak Nullstellensatz) For x ∈ V, then I({x}) := mx is a maximal

ideal. Moreover all the maximal ideal of C[x1, ..., xn] are of the form
mx = ((x1 − a1, ..., xn − an). This means that there is a one to one
correspondence:

{ maximal ideals of C[x1, ..., xn]} ↔ { points of Cn}.

Proof. (1) Easy.
(2) Easy.
(3) Assume I(V ) is prime and let V = V1 ∪ V2. Then I(V ) ⊂ I(V1)

and thus we can take f ∈ I(V1) \ I(V ). For any g ∈ I(V2) the
product fg ∈ I(V ) and thus because I(V ) is prime and f 6∈ I(V ) it
is g ∈ I(V ). This imples that I(V ) = I(V2) and thus V2 = V.

Assume now that V is irreducible and that fg ∈ I(V ). Let V1 =
V (f)∩V, V2 = V (g)∩V . It follows that V = V1∪V2 and that V = V1

(i.e. f ∈ I(V )) or V = V2 (i.e. g ∈ I(V )).
(4) Let x = (a1, ..., an), and consider I = (x1 − a1, ..., xn − an). We

first prove that every ideal of the form I = (x1 − a1, ..., xn − an) is
maximal. Assume I ⊂ M ⊂ R. then there is 1 6= f ∈ M \ I and by
the division algorithm write:

f = A1(x1 − a1) + ... + An(xn − an) + b,

where 0 6= b ∈ C. Moreover, since A1(X1 − a1) + ... + An(xn − an) ∈
I ⊂M and f ∈M , it follows that b ∈M and hence 1 = b· 1b ∈M , i.e.
M = R. Now we prove that every maximal ideal in C[x1, ..., xn] is of
the form (x1−a1, ..., xn−an). Moreover, since (x1−a1, ..., xn−an) ⊂
mx, it has to be (x1 − a1, ..., xn − an) = mx. Let I ⊂ C[x1, ..., xn] be
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maximal. Since I is proper it is I 6= C[x1, ..., xn] and thus V (I) 6= ∅.
Let x = (a1, ..., an) ∈ V (I). It follows that for every f ∈ I, f ∈ mx

and thus I ⊂ mx. It follows that I = (x1 − a1, ..., xn − an) = mx.
�

We have established a correspondence:

affine varieties →I ideals

ideals →V affine varieties
This maps are inclusion-reversing and V (I(X)) = X.

THEOREM 1.2. (Hilbert Nullstellensatz) I(V (J)) =
√

J.

Proof. (Outline) Let J = V (f1, ..., fk) and f ∈ I(V (J)). We have to show
that there is m ≥ 1 and Ai ∈ C[x1, ..., xn] such that fm =

∑
Aifi. Consider

J ′ = (f1, ..., fk, 1 − yf) ⊂ C[x1, ..., xn, y] and let (a1, ..., an, an+1) ∈ Cn+1.
If a = (a1, ..., an) ∈ V (J), then f(a) = 0 and 1 − an+1f(a) = 1 6= 0 which
implies that (a1, ..., an, an+1) 6∈ V (J ′).

If a = (a1, ..., an) 6∈ V (J) then fi(a) 6= 0 for some i. This means that
fi(a1, ..., an, an+1) 6= 0 for some i and thus again (a1, ..., an, an+1) 6∈ V (J ′).

We can conclude that V (J ′) = ∅. (By induction on n) one proves that if
V (J ′) = ∅, then J ′ = C[x1, ..., xn, y], that is

1 =
∑

pi(x1, ..., xn, y)fi + q(x1, ..., xn, y)(1− yf).

Substituting y = f−1 we get 1 =
∑

pi(x1, ..., xn, f−1)fi and for m sufficiently
large to clear denominators:

fm =
∑

Aifi.

The other inclusion is obvious. �

Example 1.3. I(VR(y − x2, z − x3)) = (y − x2, z − x3).

There is then a bijection:

Radical ideals →V affine varieties

(an ideal I is radical if I =
√

I.)

2. Isomorphic affine varieties

A polynomial function on an affine variety V ⊂ Cn is the restriction of a
polynomial on Cn.

The ring C[V ] := C[x1, ..., xn]/I(V ) is called the coordinate ring of the
variety V.

Because f, g restricts to the same function on V if and only if f−g ∈ I(V )
we have that:

C[V ] = {f : V → C s.t. f is a polynomial function}.
From what said above we see

C[V ] is an integral domain ⇔ I(V ) is prime ⇔ V is irreducible;
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Moreover, because the maximal ideals in C[V ] correspond to the maximal
ideals mx in C[x1, ..., xn] such that I(V ) ⊂ mx, it follows that there is a one
to one correspondence:

{ maximal ideals of C[V ]} ↔ { points of V }.

Definition 2.1. Let V ⊂ Cn,W ⊂ Cm be two affine varieties.
A map f : V → W is a polynomial map if there exist m polynomials

F1, ..., FM ∈ C[x1, ..., xn] such that:

f(x) = (F1(x), ..., Fm(x)).

Equivalently f is a polynomial map iff yj ◦ f ∈ C[V ] for j = 1, ...,m,
where yi are the coordinate functions on W.

Definition 2.2. A polynomial map f : V → W is an isomorphism (of
affine varieties) if there is a polynomial map g : W → V such that f ◦ g =
idW , g ◦ f = idV .

Example 2.3. Let C = V (y − x2, z − x3) ⊂ C3, the map:

f : C→ C, f(t) = (t, t2, t3)

is a polynomial map and an isomorphism.

Every polynomial map f : V →W induces a ring homomorphism:

f∗ : C[W ]→ C[V ]

define by f∗(g) = g◦f. Conversely every algebra (hence ring) homomorphism
F : C[W ]→ C[V ] is of the form F = f∗ for some f : V →W. In other words
there is a bijection:

{ polynomial maps f : V →W} ← {algebra homomorphism F : C[W ]→ C[V ]}
such that (g ◦ f)∗ = f∗ ◦ g∗. We can conclude that: f : V → W is an
isomorphism iff f∗ : C[W ]→ C[V ] is an isomorphism.

We see hence that:

Example 2.4.

C[C∗] = C[x, x−1] Laurent polynomials in one variable .

Similarly:
C((C∗)n) = C[x1, x

−1
1 , ..., xn, x−1

n ].
Because (C∗)n = C∗ × ... × C∗ ∼= V (x1y1 − 1, ..., xnyn − 1) ⊂ C2n. Observe
that C((C∗)n) is an Integral Domain (it a localization of an Integral domain!)
and hence the affine variety (C∗)n is irreducible.

In what follows we will assume that the affine variety V is irreducible.
The field of fractions

C(V ) = {f
g

s.t. f, g ∈ C[V ], g 6= 0}

is called the function field or the field of rational functions on V.
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Definition 2.5. A function f ∈ C(V ) is regular at p ∈ V if f can be
represented as as f = h

g , where g(P ) 6= 0.

Notice that, since C(V ) will not be in general a U.F.D. en element f
can have more than one representation. Moreover Let Dom(f) = {p ∈
V |f is regular at P}

Lemma 2.6.

a rational function f is regular on the whole V ⇔ f ∈ C[V ].

Proof. Let Df = {g ∈ C[V ] s.t. fg ∈ C[V ]}. It is an ideal called theideal of
the denominators. Moreover it is V \Dom(f) = V (Df ). It follows that:

Dom(f) = V ⇔ V (Df ) = ∅ ⇔ Df = C[V ]⇔ 1 ∈ Df ⇔ f ∈ C[V ]

�

Definition 2.7. Let V be an affine variety. A rational map:

f : V −− > Cm

is a partially defined map given by rational functions f1, ..., fm ∈ C(V ), i.e.

f(p) = (fi(p), ..., fm(p)), p ∈ ∩Dom(fi).

Moreover f is regular at p if p ∈ ∩Dom(fi).
Let V ⊂ Cn,W ⊂ Cm. A rational map f : V −− > W is a rational map

f : V −− > Cm such that f(Dom(f)) = W.

Example 2.8. Consider f(x, y, z) = (x, y, z, xy
z ) is a rational map over

(C∗)3. Notice that the inverse of this map id the projection onto the first
three factors which is regular. Moreover Dom(f) ⊂ V (xy − zw), in fact
Dom(f) = V (xy − zw) \ V (z). This is an example of an affine variety that
contains a Zariski open ”isomorphic” to a product of C∗.

3. Zariski-open subspaces

Definition 3.1. The complement of an affine variety V (f1, ..., fk) ∈ Cn

Cn \ V (f1, ..., fk) = {x|fi(x) 6= 0 for some i = 1, ..., k}

is called a Zariski open set.
Now we will make precise what do we mean by isomorphism of open

subsets:

Definition 3.2. Let V,W be irreducible affine varieties and let U ⊂ V
be a Zariski open subset. A morphism f : U → W is a rational map if
f : V −− > W such that U ⊂ Dom(f).

If U1 ⊂ V and U2 ⊂ W are open then a morphism f : U1 → U2 is a
morphism f : U1 →W such that f(U1) = U2.

An isomorphism is a morphism which has an inverse which is a morphism.
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Note that

Cn\V (f1, ..., fk) = Cn\(V (f1)∩...∩V (fk)) = (Cn\V (f1))∩...∩(Cn\V (f1))

We will denote these building blocks (Cn \ V (fi)) = Vfi
.

Let I = I(V ) ⊂ C[x1, ..., xn], f ∈ C[V ] and Vf = V − V (f). Clearly we
can interpret Vf as an affine variety. Let J = (I, yf − 1) and V (J) ⊂ Cn+1.

The map f(x) = (x, 1
f(x)) is a morphism from Vf to Cn+1 with inverse

f−1(x, y) = x which is regular. it follows that

Vf
∼= V (J)

Notice that

C[Vf ] = C[V ][f−1] = { g

f l
∈ C(V ) s.f. g ∈ C[V ]}.


