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1. The tangent space of an irreducible variety

We will now see that “being singular” is a local property.
Let V be an irreducible affine variety and C(V ) be the ring of rational

functions. Let P = (a1, ..., an) ∈ V. The following subring:

OV,P = {f ∈ C(V ) s.t. P ∈ Dom(f)}

is called the local ring of V at P and the evaluation map

evp : OV,P → C

is a surjective ring homomorphism, whose kernel is the maximal ideal:

mP = {f ∈ OV,P s.t. f(P ) = 0}.

Notice that mP = {f ∈ C[V ] s.t. f(P ) = 0} = (x1 − a1, ..., xn − an), and
that since for every f ∈ mP we have f = g · unit, where g ∈ mP it is
mP = (x1 − a1, ..., xn − an) in OV,P and (check)

mP /m2
P
∼= mP /m2

P

as C vector spaces.

Example 1.1. Let P ∈ Cn, after a change of coordinates we can assume
that P = 0 and thus mP = (x1, ..., xn). Consider the map (of abelian groups)

φP : (x1, ..., xn) → (Cn)∗, f 7→
∑

i

f (1)(P )xi.

It is surjective since xi = φ(xi). Moreover

Ker(φ) = {f(x) s.t.
∂f

∂xi
(P ) = 0 for all i} = m2

P .

It follows that for every P ∈ Cn

mP /m2
P
∼= (Cn)∗.
1
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Proposition 1.2. Let V be an irreducible affine variety and P ∈ V. Then

(TP V )∗ ∼= mP /m2
P

as C vector spaces.

Proof. We wil follow the lines of the previous example. By definition it is
(TP V )∗ ⊂ (Cn)∗ and thus the restriction map induces a surjective map:

φV,P : MP = (x1, ..., xn) → (TP V )∗

where we use the different notation MP to recall that the ideal is in C[x1, ..., xn].
Notice that if f ∈ Ker(φV,P ) then it is f (1) =

∑
aig

(1)
i for gi ∈ I(V ).

Then it would be f −
∑

i gi ∈ M2
P and thus f ∈ M2

P + I(V ). Since both
M2

P ⊂ Ker(φV,P ) and I(V ) ⊂ Ker(φV,P ) it is:

Ker(φV,P ) = M2
P + I(V )

Because MP /M2
P + I(V ) ∼= mp/m2

p the assertion is proved. �

The vector space (mP /m2
P )∗ is called the Zariski tangent space.

Recalling that a Zariski-open is isomorphic to an affine variety, we can
speak of TP Uo, where Uo is a Zariski-open.

Exercise 1.3. (Assignment 2) Let V be an irreducible affine variety and
P ∈ V. If Uo, Vo are two open neighborhoods (Zariski open)and φ : Uo → Wo

is an isomorphism, such that φ(P ) = Q, then there is a natural isomorphism
TP Uo → TP Vo and hence dim(TP Uo) = dim(TQVo).

Two varieties are birationally equivalent if there is a rational map, whose
inverse is a rational map. Deduce that if two varieties are birationally equiv-
alent, they they have the same dimension.

Example 1.4. (Blow up) Consider the map p : C2 → C2 defined by
p(x, y) = (x, xy). the rational inverse is p−1 : C2 − − > C2 defined by
(x, y) 7→ (x, y/x). It defines an isomorphism C2 \ {0} ∼= C2 \ V (x).

Consider now the irreducible variety C = V (y2 − x3) which is an irre-
ducible curve, singular at 0. p−1(C) = V (x2(y2− x)) which we can write as
the union of two irreducible components:

p−1(C) = V (x2) ∪ V (y2 − x) = E ∪ C ′

where C ′ is not singular at 0 and it is isomorphic to C outside 0. This
process is called resolution of singularities and the map p−1 is the blow-up
of C2 at the origin.

2. Rational convex polyhedral cones

The proofs of what follows can be found in [F] and [CLS].
Let M,N be dual lattices of dimension n. We will denote by MR, NR the

associated dual real vector spaces of dimension n. Let S = {u1, ..., us} ⊂ NR
be a finite subset. The set

Cone(S) = R+u1 + ... + R+us = {
∑
s∈S

λss s.t. λ ≥ 0}
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is called a rational polyhedral convex cone. We will use the term cone for
simplicity.

Notice that such a cone is indeed a cone (x ∈ σ ⇒ λx ∈ σ, for all λ ≥ 0)
and it is indeed convex (x, y ∈ σ ⇒ λx + (1− λ)y ∈ σ, for all 0 ≤ λ ≤ 1).

The dual cone of a cone σ is:

σ̌ = {m ∈ MR s.t < m,u >≥ 0 for all u ∈ σ}

The dual cone is also a rational convex polyhedral cone: σ̌ = Cone(S′)
for some finite S′ ⊂ MR.

Example 2.1. Let {e1, e2} be the lattice base of a two-dimenasional lattice
N and let {e∗1, e∗2} be the lattice base of the dual two-dimenasional lattice
M . Consider

σ = Cone(e2, 2e1 − e2) ⊂ NR.

The dual cone is:
σ̌ = Cone(e∗1, e

∗
1 + 2e∗2) ⊂ MR.

Definition 2.2. • The dimension of a cone σ is equal to the dimension
of its linear span: dim(σ) = dim(Rσ) = dim(σ + (−σ)).

• A face of σ is given by the intersection with a supporting hyperplane:

τ = σ ∩Hv = {u ∈ σ s.t. < u, v >= 0}.

• A face of codimesion 1 is called a facet and a face of dimension 1 is
called an edge.

The following properties hold:

(1) A face is again a rational convex cone. An edge is than generated
by one element:

ρ = R+vi.

(2) The intersection of faces is again a face.
(3) If τ ⊂ σ is a face, then any face of τ is a face of σ.
(4) Any proper face is contained in a facet.
(5) Any proper face is the intersection of the facets containing it.

If τ ⊂ σ is a face, we define

τ⊥ = {m ∈ MR s.t. < m,u >= 0 for all u ∈ τ}

Then τ∗ = τ⊥ ∩ σ̌ is called the dual face, because it is a face of the dual
cone σ̌. The correspondence:

τ 7→ τ∗

defines an inclusion reversing one-to-one corespondence between faces on σ
and faces of σ̌, such that

dim(τ) = codim(τ∗) i.e. dim(τ) + dim(τ∗) = dim(σ).
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