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1. THE TANGENT SPACE OF AN IRREDUCIBLE VARIETY

We will now see that “being singular” is a local property.
Let V be an irreducible affine variety and C(V') be the ring of rational
functions. Let P = (a1, ...,a,) € V. The following subring:

Ovp={feC(V)st. PeDom(f)}
is called the local ring of V' at P and the evaluation map
evp: Oyp — C
is a surjective ring homomorphism, whose kernel is the maximal ideal:
mp ={f € Oypst. f(P)=0}

Notice that mp = {f € C[V] s.t. f(P) =0} = (21 — a1, ..., xp — ap), and
that since for every f € mp we have f = g - unit, where g € mp it is
mp = (21 — a1, ...,&n — ap) in Oy, p and (check)

2 2
mp/mp = mp/mp
as C vector spaces.

Example 1.1. Let P € C", after a change of coordinates we can assume
that P = 0 and thus mp = (1, ..., z,,). Consider the map (of abelian groups)

¢p (21, 10) = (C)*, =Y fO (P,
It is surjective since x; = ¢(z;). Moreover

of
K = .
er() = {f(@) st. 5
It follows that for every P € C"
mp/m3 = (C")*.

1

(P) =0 for all i} = m?%.
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Proposition 1.2. Let V be an irreducible affine variety and P € V. Then
(TpV)* = mp/mp
as C vector spaces.

Proof. We wil follow the lines of the previous example. By definition it is
(TpV)* C (C™)* and thus the restriction map induces a surjective map:

¢V,P : Mp = (acl, ...,xn) — (TPV)*
where we use the different notation Mp to recall that the ideal is in Clz1, ..., z,].
Notice that if f € Ker(¢yp) then it is f(1) = Zaiggl) for g; € I(V).
Then it would be f —>".g; € M# and thus f € M3 + I(V). Since both
M2 C Ker(¢y.p) and I(V) C Ker(¢y,p) it is:

Ker(gv,p) = M3+ 1(V)
Because Mp/M2 +1(V) mp/mz% the assertion is proved. O

The vector space (mp/m%)* is called the Zariski tangent space.
Recalling that a Zariski-open is isomorphic to an affine variety, we can
speak of TpU,, where U, is a Zariski-open.

FEzercise 1.3. (Assignment 2) Let V' be an irreducible affine variety and
P e V.1t U,, V, are two open neighborhoods (Zariski open)and ¢ : U, — W,
is an isomorphism, such that ¢(P) = @, then there is a natural isomorphism
TpU, — TpV, and hence dim(TpU,) = dim(TyVs).

Two varieties are birationally equivalent if there is a rational map, whose
inverse is a rational map. Deduce that if two varieties are birationally equiv-
alent, they they have the same dimension.

Example 1.4. (Blow up) Consider the map p : C?> — C? defined by
p(z,y) = (z,2y). the rational inverse is p~! : C?> — — > C? defined by
(z,y) — (z,y/z). It defines an isomorphism C? \ {0} = C?\ V(z).

Consider now the irreducible variety C = V(y? — 23) which is an irre-
ducible curve, singular at 0. p~1(C) = V(2?(y* — z)) which we can write as
the union of two irreducible components:

pHO)=V(@)UV(2—2)=EUC

where C’ is not singular at 0 and it is isomorphic to C' outside 0. This
process is called resolution of singularities and the map p~! is the blow-up
of C? at the origin.

2. RATIONAL CONVEX POLYHEDRAL CONES

The proofs of what follows can be found in [F] and [CLS].

Let M, N be dual lattices of dimension n. We will denote by Mg, Ng the
associated dual real vector spaces of dimension n. Let S = {u1,...,us} C Nr
be a finite subset. The set

Cone(S) =Rtuy + ... + RTu, = {Z Ass 8.t A >0}
seS
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is called a rational polyhedral convex cone. We will use the term cone for
simplicity.
Notice that such a cone is indeed a cone (x € 0 = Az € o, for all A > 0)
and it is indeed convex (z,y € o = Ar+ (1 — ANy €0, forall 0 <A <1).
The dual cone of a cone o is:

g={me Mr st <m,u>>0foralluco}

The dual cone is also a rational convex polyhedral cone: & = Cone(S’)
for some finite S’ C Mp.

Example 2.1. Let {e1, e2} be the lattice base of a two-dimenasional lattice
N and let {e}, e} be the lattice base of the dual two-dimenasional lattice
M . Consider

o = Cone(ez,2e; — e3) C Ng.
The dual cone is:
g = Cone(e], e] + 2e5) C Mg.
Definition 2.2. e The dimension of a cone ¢ is equal to the dimension

of its linear span: dim(c) = dim(Ro) = dim(c + (—0)).
e A face of ¢ is given by the intersection with a supporting hyperplane:

T=0NH,={ueost. <uv>=0}

o A face of codimesion 1 is called a facet and a face of dimension 1 is
called an edge.

The following properties hold:

(1) A face is again a rational convex cone. An edge is than generated
by one element:

p =R,
The intersection of faces is again a face.
If 7 C o is a face, then any face of 7 is a face of o.

Any proper face is contained in a facet.
Any proper face is the intersection of the facets containing it.

2)
3)
4)
5)
If 7 C o is a face, we define

(
(
(
(
f

mt={m e Mgst. <m,u>=0forallucr}

Then 7 = 7 N & is called the dual face, because it is a face of the dual
cone ¢. The correspondence:

T 7%

defines an inclusion reversing one-to-one corespondence between faces on o
and faces of &, such that

dim(7) = codim(7*) i.e. dim(7) 4 dim(7*) = dim(o).



4 MARCH 3

REFERENCES

[AM] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.

[CLS] D. Cox, J. Little, H. Scenck. Toric Varieties.

[F] W. Fulton.Introduction to toric varieties. Annals of Math. Princeton Univ. Press, 131.



