Toric Tutorial

Schedule of Lectures:

o Lecture I. 9-10
What is a Toric Variety?
David Cox

e Lecture II: 10:10—-11:10
Toric Ideals, Real Toric Varieties,
the Moment Map, etc.
Frank Sottile

o Lecture III: 11:15—-12:15
Lattice Points, Mixed Subdivisions,
the BKK Theorem, etc.
Maurice Rojas
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1. Varieties
Most common varieties over C:
e C" and affine varieties
V=V(f1,...,fs) CC"
e P" and projective varieties
V =V(Fy,...,Fs) C P"
Example 1.1. Let C* = C\ {0}. Then
(C*)" C C" is an affine variety via

(C*)n ~V(xixo--- Tp41 — 1) C Cn+1.



(C*)"is the n-dimensional complex torus

and is the *toric” in “toric variety".
V\W is Zariski open in V. when W C V.

Example 1.2. (C*)" = C"\V(z1 - -xn)

is Zariski open in C™.

V' is irreducible if it can’'t be written
V:V1UV2 for Vl;éV and VQ#V.

2. Toric Varieties

Definition 2.1. A toric variety V is
irreducible, contains (C*)™ as a Zariski
open subset, and the action of (C*)™ on

itself extends to an action on V.



Example 2.2. C" and P" are toric
varieties, where (C*)™ C P" via

(tl,,tn) —> (1,t1,,tn)

AlsoO:

1. me M = Z" gives the character
X" (C*)™ — C* defined by

X" (t1y e ytn) =t Lt

x" is a Laurent monomial.

2. ue N =2Z" gives the 1-parameter
subgroup \* : C* — (C*)™ defined by

AU () = (E", ... Y.

3. me M,u € N give (m,u)y =m-u € Z.
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3. Examples

Example 3.1. V., W toric = sois VxW.

Example 3.2. V(y2 —z3) Cc C? is a
toric variety via t — (t2,t3). This is non-
normal. The only 1-dimensional normal
toric varieties are C*, C and P1.

Example 3.3. V = V(zy — zw) C C% is
a toric variety via
—1
(t1,t2,t3) = (t1,t2,t3,t1t0t3 ™).
Since xy = zw on V, we have

. ybz _xayb< y) —
w

So y™ = y(ab:c) extends to V if

a—I—cyb—I—cw—c

a>0,b>0, a4+c>0, b4+ c>0.
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Example 3.4. For P2, uw € N gives a
1-parameter subgroup A\ : C* — P2
What is lim;_,g A¥(t)? Let v = (a,b) €
N = Z2, so that \%(¢¥) = (1,t%,tY). Then:

(1,0,0)
(1,0,1)
(1,1,0)
im \“(t) =4¢(1,1,1)
t—0

(0,0,1)
(0,1,0)
(0,1,1)

a,b >0

a>0,b=0
a=0,b>0
a=b=20
a>bb<O
a<0,a<b
a<0,a=0b.

To see how the fifth case works, note
Iimt—>0(17ta7tb) — Iimt—)O(t_bata_b7 1)

This gives the picture:




4. Cones

Let Ng = R". A rational polyhedral

cone o C NR Is:

O':{A1U1—|—"'+>\5Ug|Al,...,AgZO},

where uy,...,up € N = Z". Then:

e o is strongly convex if cN(—o) = {0}.

e dimo is the dimension of o.

e A face of o is {{ =0} No, where / is a
linear form which is > 0 on o.

e An edges p of o is a 1-dim face.

e T he primitive element n, is the unique
minimal generator of pN N.

e o is generated by the n, of its edges.

e A facet of o is a codimension-1 face.
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Definition 4.1. A strongly convex

rational polyhedral ¢ has dual cone
UV:{mEMR: R"™ | (m,u) ZOVUEU}.

This is rational polyhedral of dim n.

Elements of N are called lattice points
of Nr and elements of M are called

lattice points of Mg.

Example 4.2. Consider ¢ C Ngr = R3:




This cone has primitive elements

nl — (17070)7 n2 — (07 170)7
n3 = (1,0,1), ng =(0,1,1)
and inward pointing normals
ml — (17070)7 m2 — (07 170)7
m3 — (0707 1)7 My — (17 17 _1)
These generate the dual cone ¢V in MR.

Thus (a,b,c) € oV iff

a>0,b>0, a4+c>0, b4+c>0.

In general, the set of linear combinations
of characters Y™ for m e oV N M is

Clo" N M].

/ /

This is a ring since Y™ - x™ = ymTm
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In terms of Laurent monomials, we have

CloV nM] c CtFl, ..., 651

5. Cones and Affine ToricC
Varieties

A strongly convex rational polyhedral
cone o C Nr determines the affine toric
variety U, as follows.

By Gordan’s Lemma, oY N M is gener-
ated over Z>g by mq,...,mp € M. Map
(C*)" — C*t by sending (tq,...,tn) to

(X" (1, tn), - X (L, - tn)).

Then U, C C¢ is the Zariski closure of

the image of this map.
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We can think of this is as follows. Let

Y1, -.-,Yp D€ variables, and consider
C[y17 S 7y€] — C[Uva] — C[Xm17 S 7Xm£]

defined by sending y; to x". This map
is onto and its kernel I C Cly1,...,y/]
consists of all algebraic relations among
the x™i. If I = (f1,..., fs), then

Us = V(f1,...,fs) C C".
Examples 5.1 and 5.3. For the cone
of Example 4.2, the inward normals

mi — (17070)7 mp — (07 170)7
m3 — (07 07 1)7 myg — (17 17 _1)

generate oV N M.
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Thus CloVNM] = C[x™1, x™2, x™3, x™4].

Then mi1 + mo

m3 + mg implies that

xy — zw IS in the kernel of
Clz, vy, z, w] — C[c¥ N M].
In fact, zy — zw generates the kernel, so
Us = V(zy — zw) C Cc*.
This is the toric variety of Example 3.3.

In general, C[ocVY N M] is the coordinate
ring of Uy. This is the ring of polynomial

functions on the affine variety Us,.

Thus C[eYNM] tells us which characters

on (C*)™ extend to functions defined on
all of Us.
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6. Normality

A variety is normal if its local rings are
integrally closed in their fields of frac-

tions. The affine variety U, is normal.

Question: When is an affine toric
variety normal?

Example 6.1. Consider

The cone o The cone "

The generators of VN M are m; = (1,4)
for:=20,...,4.
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U, C C° is the Zariski closure of the
image of (C*)2 — C° defined by

(t,u) — (¢, tu, tu?, tu>, tu?).
What if we omit some of the m;?
1. mg, mg give (C*)2 — C2 where
(t,u) — (¢, tut).

The Zariski closure is C2 but the map
is 4-to-1 and mq, m4 don't generate Z2.
Messed up the lattice.

2. mg, m1, ma give (C*)2 — C3 where
(t,u) — (¢, tu, tu?).

The Zariski closure is z3z = y*. The
map is 1-to-1 and mg, m1,mg generate
Z2. Not normal since codim(sing) = 1.
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Let ¢ C Ngr = R" be a strongly con-
vex rational polyhedral cone. Given m; €

oV NM fori=1,...,¢ the x™i give

(C*)" —s C*.

Theorem 6.2. The Zariski closure of
the image of this map is the normal
affine toric variety U, determined by o
and N if and only if 6V N M is generated

over Z>qg by m; for:=1,...,¢.

T his shows that an affine toric variety is
normal precisely when you use all lattice

points in the dual cone.
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7. Fans and Toric Varieties

A fan is a finite collection > of cones in

Nr with the properties:

e Each o € 2 is a strongly convex
rational polyhedral cone.

e If c € 2 and 7 is a face of o, then
TE 2.

o If o,7 € 2, then o7 is a face of each.

Each o € > gives the affine toric variety

Us, and if 7 is a face of o, then U; is a

Zariski open subset of U,.

Definition 7.1. Given a fan > in Ng,
X5 Is the variety obtained from the affine
varieties U,, o € 2, by gluing together
U, and U; along their common open
subset Ugnr for all o,7 € 2.
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Example 7.2. For ¢ C Nr, we get a
fan by taking faces of o (including o).
T he toric variety of this fan is Uy,.

Example 7.3. The fan for Pl is:

The cones o1 = [0,00) and o5 = (—o0, O]
give U7 with coordinate ring C[t] and Us
with coordinate ring C[t~1], which patch
in the usual way to give P1.

Example 7.4. For a basis e1,...,en Of
N =2Z", set eg = —e1 —--- —epn. Then
P is the toric variety of the fan whose
cones are generated by all proper sub-
sets of {eg,e1,...,en}. When n = 2, this

fan appeared in Example 3.4.
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Example 7.5. The fan for Pl x Pl is:

3. Properties of Toric Varieties

There are one-to-one correspondences

between the following:

e The limits lim;_g A%(¢t) for u € || =
Uges o (|X] is the support of X).

e The cones o e 2.

e [ he orbits of the torus action on X5 .
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The correspondences is as follows:

An orbit corresponds to a cone o iff
lim;_,g A%(¢) exists and lies in the orbit
for all w in the relative interior of o.
For an orbit orb(c), we have:

e dimo 4+ dimorb(c) = n.

e orb(o) C orb(7) if and only if 7 C o.

Theorem 8.1. Let X5 be the toric

variety of a fan > in Nr. Then:

e X5 is compact & |X| = Ng.

e X5 is smooth & all o0 € > are smooth
(generated by a subset of a Z-basis).

e X5 is simplicial (has finite quotient
singularities) < all X are simplicial

(generated by a subset of a Q-basis).
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9. Homogeneous Coordinates

Assign a variable to each 1-dimensional

cone in the fan of Xs. Thus:

p1,...,pr 1l-dim cones
ni,...,ny primitive generators
D1,...,Dyr orbit closures in Xs
x1,...,xr Variables.

A monomial M;z;* gives a divisor D =
>;a;Di, so we write zP = Mz, Given
A zazfz, define deg(zP) = deg(z%)

<= D = FE + div(xy™) for some m & M

< a; = b; + (n;, m) for some m € M.
This uses div(x™) = >;{(n;, m)D;
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deg(z?) lies in the Chow group
Ap_1(Xx) =2Z" Ja(M),
where o« : M — Z" is defined by

a(m) = ((nl, m),...,{nr, m))

Then Clz1,...,zr] is the homogeneous

coordinate ring of X5 .

Example 9.1. For P", we get the ring
Clxp,...,zn] with the usual grading.

Example 9.2. For P! x P1, we get di-
visors D1, D> corresponding to the hori-
zontal rays in the fan and divisors D3, Dy
corresponding to vertical ones. Let the

corresponding variables be z1,x5,x3, x4.
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To grade this, define Z4 — Z2 by

(a1,a9,a3,a4) — (a1 + a2,a3 + aa).

The kernel of this map is the image of

o. Hence

deg(z1'z5%x332,*) = (a1 4 a2, a3 + as).

This is precisely the usual bigrading on
Clx1,z2; x3,24], Wwhere each graded piece
consists of bihomogeneous polynomials

In x1,xzo and x3, x4.

To get coordinates, we need an analog
of the “irrelevant” ideal (zq,...,xn) fOr

P"”. We do this as follows.
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Given o € 2, set
CBa — I‘Ini@ Ly

and B = (2% | 0 € ). This uses all
cones of the fan, while the homogeneous

coordinate ring uses only the 1-dim ones.

Also set G = Homz(A4,,_1(Xs),C*). This
is the kernel of the dual of the map
(C*)" — (C*)™ induced by «a.

G C (C*)" implies that G acts naturally
on C" and leaves V(B) invariant. Thus

we can form the quotient

(C"\V(B))/G.
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Theorem 9.3. Let X5 be toric variety

where nq,...,ny span Nr. Then:

1. X5 is the universal categorical
quotient (C"\ V(B))/G.

2. (C"\V(B))/G is a geometric quotient

if and only if X5 is simplicial.

We have (C*)" ~ (C*)" /G by definition.
Then (C*)" C C" induces

(CH" ~ (C*)"/G C (CT\V(B))/G ~ X5.

Since (C*)" acts on C"\ V(B), (C*)"
acts on Xs. And categorical quotients
preserve normality, so that the quotient

IS @ normal toric variety.
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Example 9.4. For P", we get the usual
representation P" ~ (C"T1\ {0})/C*.

Example 9.5. For Pl x P, we have

B = (x1x3,T1%4,T2x3,X2T4). T hen
V(B) = ({0} x C*) U (C? x {0})
and G ~ (C*)?2 acts on C# via
(A p)- (1, 2,23, 24) = (AT1, AT, PT3, T4).
Hence the quotient of Theorem 9.3 is
(€2 \{o})/C*) x ((€*\{o})/C*),

which is how one represents Pl x P! as

a quotient.
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Example 9.7. (Simplicial, Not Smooth)
Let 0 C Ngr = R? be generated by ni =
(1,0), no = (1,2). The homogeneous
coordinate ring is Clx1, zo], where x1, x5
have degree 1 mod 2. Furthermore:
1. Uy = V(zz —y2) C C3.
2. G acts on C2 by multiplication
by +1.
3. The ring of invariants is C[z1, 25]¢ =
C[az%,azlazg,wg].
4. The quotient « : C2 = U, is the map
(x1,22) — (2%, 2102, T3).
Note that C? — U, is 2-to-1. This is a

a finite quotient singularity.
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Example 9.8. (Not Simplicial)
Let o be the 3-dim cone of Example 3.3.
The ring Clzq1, x5, x3,x4] iS graded by Z,

where the variables have degrees

deg(xz1) = deg(zg) = 1
deg(zp) = deg(z3) = —1.

Furthermore:

1. Uy = V(zy — zw) C C*.

2. G=C* actsvia A (z1,22,23,24) =
Az, A\ Lzo, X Leg, Azg).

3. The invariant ring is C[z1, o, 3, 4]¢
= Clz129, 2374, T123, ToT4].

4. The quotient map n : C? — Uy, is
(z1, 72,23, 74)— (T1T2, T3T4, T1T3, T2T4).
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If p e Uy, then:

e p =20 = 7 1(p) is a G-orbit.

e p=0= 7"1(p) =(Cx{0}x{0}xC)U
({0} xC xC x{0}).

In general, a ‘categorical quotient” is

constructed using the ring of invariants

under the group action.

10. The Toric Variety of a
Polytope

A lattice polytope A in M = R"™ is
the convex hull of a finite subset of M.
We represent A as an intersection of

halfspaces as follows.
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For each facet F' of A, thereis an inward
normal primitive vector np € N and ap €
Z such that

A= (1 {meMr|{(mmnp) > —ar}.
F is a facet

Given a face F of A, we let o be the
cone generated by ng for all facets F

containing F. Then
>N ={or | Fis aface of A}

is the normal fan of A. This gives a

toric variety X .
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Example 10.1. Consider the unit square
in Mr = R?. The inward normals (not
to scale) are:

(0,1) l l (1,1)

> -

(0,0) T T (0,1)

T he four vertices give four 2-dim
cones in the normal fan. For example,
the vertex (1,1) gives the 2-dim cone

-

From here, it Is easy to see that we get
the fan of Example 7.5. Thus the toric

variety is P1 x pP1.
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Theorem 10.2. The normal toric vari-
ety of a fan X in Ngr ~ R" is projective
iIf and only if > is the normal fan of an
n-dimensional lattice polytope in MR.

We also have a 1-to-1 correspondence
creE2lA+—FCA

between cones and faces such that
dimor +dim F = n.

Let mq,...,my be the lattice points of
A. Then sending (t1,...,tn) € (C*)™ to

(Xml(t]', T 7tn)’ "t 7Xm£(t17 s 7tn)> c Pe_l

extends to XA — Pl When v > 0,

this map for vA is an embedding.
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11. Polytopes and Homogeneous
Coordinates

Fix a lattice polytope A C Mr = R".
Since 1-dimensional cones of the normal

fan correspond to facets of A, we get:

p1,--.,pr 1l-dim cones of normal fan
Fq,..., F, facets of lattice polytope

x1,...,xyr facet variables.

Given a vertex v, the vertex monomial zV
IS the product of variables whose facets
miss the v. These generate B, so that
C" \ V(B) consists of points where at

least one vertex monomial IS nonzero.
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A gives some interesting monomials in
the coordinate ring. Let

A =({m € Mg | (m,n;) > a;}

and let D =3%;a;D;. If me AN M, then
xm = [a{mnite
i
is the A-homogenization of x™. For any

monomial z¥, deg(z¥) = deg(zL) iff

£ = x™ for some m € A N M.

This gives a 1-to-1 correspondence
between monomials of degree deg(z?)
and lattice points of A.

Now consider the map

X=(x1,...,2r) — (X", ... X"),
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T his map has two properties:
e X ¢ V(B) implies x™i % 0 for some i.
e Recall G C (C*)", so u € G gives
uX = (u1x1,..., urzy). Then for each
m; € ANM,

(ux)™ = pp XM,
where ua = ,uffl e T
It follows that we get well-defined map
Xa = (C"\V(B))/G — P L

If one restricts this map to (C*)" C XA,
the result is exactly the map given at
the end of Section 10. Using (n — 1)A

instead of A gives an embedding.
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