Toric Tutorial

Schedule of Lectures:

- Lecture I: 9-10
 What is a Toric Variety?
 David Cox
- Lecture II: 10:10-11:10
 Toric Ideals, Real Toric Varieties,
 the Moment Map, etc.
 Frank Sottile
- Lecture III: 11:15–12:15
 Lattice Points, Mixed Subdivisions,
 the BKK Theorem, etc.
 Maurice Rojas

Outline of Lecture I:

- 1. Varieties
- 2. Toric Varieties
- 3. Examples
- 4. Cones
- 5. Cones and Affine Toric Varieties
- 6. Normality
- 7. Fans and Toric Varieties
- 8. Properties of Toric Varieties
- 9. Homogeneous Coordinates
- 10. The Toric Variety of a Polytope
- Polytopes and Homogeneous Coordinates

1. Varieties

Most common varieties over C:

ullet Cⁿ and affine varieties

$$V = \mathbf{V}(f_1, \dots, f_s) \subset \mathbf{C}^n$$

ullet ${f P}^n$ and projective varieties

$$V = \mathbf{V}(F_1, \dots, F_s) \subset \mathbf{P}^n$$

Example 1.1. Let $C^* = C \setminus \{0\}$. Then $(C^*)^n \subset C^n$ is an affine variety via

$$(t_1,\ldots,t_n)\mapsto (t_1,\ldots,t_n,1/t_1\cdots t_n)$$

 $(\mathbf{C}^*)^n\simeq \mathbf{V}(x_1x_2\cdots x_{n+1}-1)\subset \mathbf{C}^{n+1}.$

 $(\mathbf{C}^*)^n$ is the n-dimensional complex torus and is the "toric" in "toric variety".

 $V \setminus W$ is Zariski open in V when $W \subset V$.

Example 1.2. $(\mathbf{C}^*)^n = \mathbf{C}^n \setminus \mathbf{V}(x_1 \cdots x_n)$ is Zariski open in \mathbf{C}^n .

V is *irreducible* if it can't be written $V = V_1 \cup V_2$ for $V_1 \neq V$ and $V_2 \neq V$.

2. Toric Varieties

Definition 2.1. A toric variety V is irreducible, contains $(\mathbf{C}^*)^n$ as a Zariski open subset, and the action of $(\mathbf{C}^*)^n$ on itself extends to an action on V.

Example 2.2. \mathbb{C}^n and \mathbb{P}^n are toric varieties, where $(\mathbb{C}^*)^n \subset \mathbb{P}^n$ via

$$(t_1,\ldots,t_n)\mapsto (1,t_1,\ldots,t_n).$$

Also:

1. $m \in M = \mathbf{Z}^n$ gives the *character* $\chi^m : (\mathbf{C}^*)^n \to \mathbf{C}^*$ defined by

$$\chi^m(t_1,\ldots,t_n)=t_1^{m_1}\cdots t_n^{m_n}.$$

 χ^m is a Laurent monomial.

2. $u \in N = \mathbf{Z}^n$ gives the 1-parameter subgroup $\lambda^u : \mathbf{C}^* \to (\mathbf{C}^*)^n$ defined by

$$\lambda^u(t) = (t^{u_1}, \dots, t^{u_n}).$$

3. $m \in M, u \in N$ give $\langle m, u \rangle = m \cdot u \in \mathbf{Z}$.

3. Examples

Example 3.1. V, W toric \Rightarrow so is $V \times W$.

Example 3.2. $V(y^2 - x^3) \subset \mathbb{C}^2$ is a toric variety via $t \mapsto (t^2, t^3)$. This is *non-normal*. The only 1-dimensional normal toric varieties are \mathbb{C}^* , \mathbb{C} and \mathbb{P}^1 .

Example 3.3. $V = \mathbf{V}(xy - zw) \subset \mathbf{C}^4$ is a toric variety via

$$(t_1, t_2, t_3) \mapsto (t_1, t_2, t_3, t_1t_2t_3^{-1}).$$

Since xy = zw on V, we have

$$x^a y^b z^c = x^a y^b \left(\frac{xy}{w}\right)^c = x^{a+c} y^{b+c} w^{-c}.$$

So $\chi^m = \chi^{(a,b,c)}$ extends to V if

$$a \ge 0, b \ge 0, a + c \ge 0, b + c \ge 0.$$

Example 3.4. For \mathbf{P}^2 , $u \in N$ gives a 1-parameter subgroup $\lambda^u : \mathbf{C}^* \to \mathbf{P}^2$. What is $\lim_{t\to 0} \lambda^u(t)$? Let $u = (a,b) \in N = \mathbf{Z}^2$, so that $\lambda^u(t) = (1,t^a,t^b)$. Then:

$$\lim_{t \to 0} \lambda^u(t) = \begin{cases} (1,0,0) & a,b > 0 \\ (1,0,1) & a > 0,b = 0 \\ (1,1,0) & a = 0,b > 0 \\ (1,1,1) & a = b = 0 \\ (0,0,1) & a > b,b < 0 \\ (0,1,0) & a < 0,a < b \\ (0,1,1) & a < 0,a = b. \end{cases}$$

To see how the fifth case works, note $\lim_{t\to 0}(1,t^a,t^b)=\lim_{t\to 0}(t^{-b},t^{a-b},1).$ This gives the picture:

4. Cones

Let $N_{\mathbf{R}} = \mathbf{R}^n$. A rational polyhedral cone $\sigma \subset N_{\mathbf{R}}$ is:

$$\sigma = \{\lambda_1 u_1 + \dots + \lambda_{\ell} u_{\ell} \mid \lambda_1, \dots, \lambda_{\ell} \ge 0\},\$$

where $u_1, \ldots, u_\ell \in N = \mathbb{Z}^n$. Then:

- σ is strongly convex if $\sigma \cap (-\sigma) = \{0\}$.
- $\dim \sigma$ is the *dimension* of σ .
- A face of σ is $\{\ell = 0\} \cap \sigma$, where ℓ is a linear form which is ≥ 0 on σ .
- ullet An *edges* ho of σ is a 1-dim face.
- The *primitive element* n_{ρ} is the unique minimal generator of $\rho \cap N$.
- \bullet σ is generated by the n_{ρ} of its edges.
- \bullet A facet of σ is a codimension-1 face.

Definition 4.1. A strongly convex rational polyhedral σ has *dual cone*

$$\sigma^{\vee} = \{ m \in M_{\mathbf{R}} = \mathbf{R}^n \mid \langle m, u \rangle \ge 0 \ \forall u \in \sigma \}.$$

This is rational polyhedral of dim n.

Elements of N are called *lattice points* of $N_{\mathbf{R}}$ and elements of M are called *lattice points* of $M_{\mathbf{R}}$.

Example 4.2. Consider $\sigma \subset N_{\mathbf{R}} = \mathbf{R}^3$:

This cone has primitive elements

$$n_1 = (1,0,0), n_2 = (0,1,0),$$

 $n_3 = (1,0,1), n_4 = (0,1,1)$

and inward pointing normals

$$m_1 = (1,0,0), m_2 = (0,1,0),$$

 $m_3 = (0,0,1), m_4 = (1,1,-1).$

These generate the dual cone σ^{\vee} in $M_{\mathbf{R}}$. Thus $(a,b,c)\in\sigma^{\vee}$ iff

$$a \ge 0, b \ge 0, a + c \ge 0, b + c \ge 0.$$

In general, the set of linear combinations of characters χ^m for $m \in \sigma^{\vee} \cap M$ is

$$\mathbf{C}[\sigma^{\vee} \cap M].$$

This is a ring since $\chi^m \cdot \chi^{m'} = \chi^{m+m'}$.

In terms of Laurent monomials, we have

$$\mathbf{C}[\sigma^{\vee} \cap M] \subset \mathbf{C}[t_1^{\pm 1}, \dots, t_n^{\pm 1}].$$

Cones and Affine Toric Varieties

A strongly convex rational polyhedral cone $\sigma \subset N_{\mathbf{R}}$ determines the affine toric variety U_{σ} as follows.

By Gordan's Lemma, $\sigma^{\vee} \cap M$ is generated over $\mathbf{Z}_{\geq 0}$ by $m_1, \dots, m_{\ell} \in M$. Map $(\mathbf{C}^*)^n \to \mathbf{C}^{\ell}$ by sending (t_1, \dots, t_n) to

$$(\chi^{m_1}(t_1,\ldots,t_n),\ldots,\chi^{m_\ell}(t_1,\ldots,t_n)).$$

Then $U_{\sigma} \subset \mathbf{C}^{\ell}$ is the *Zariski closure* of the image of this map.

We can think of this is as follows. Let y_1, \ldots, y_ℓ be variables, and consider

$$\mathbf{C}[y_1,\ldots,y_\ell] \to \mathbf{C}[\sigma^{\vee} \cap M] = \mathbf{C}[\chi^{m_1},\ldots,\chi^{m_\ell}]$$

defined by sending y_i to χ^{m_i} . This map is onto and its kernel $I \subset \mathbf{C}[y_1, \dots, y_\ell]$ consists of all algebraic relations among the χ^{m_i} . If $I = \langle f_1, \dots, f_s \rangle$, then

$$U_{\sigma} = \mathbf{V}(f_1, \ldots, f_s) \subset \mathbf{C}^{\ell}$$
.

Examples 5.1 and 5.3. For the cone of Example 4.2, the inward normals

$$m_1 = (1,0,0), m_2 = (0,1,0),$$

 $m_3 = (0,0,1), m_4 = (1,1,-1)$

generate $\sigma^{\vee} \cap M$.

Thus $\mathbf{C}[\sigma^{\vee} \cap M] = \mathbf{C}[\chi^{m_1}, \chi^{m_2}, \chi^{m_3}, \chi^{m_4}].$ Then $m_1 + m_2 = m_3 + m_4$ implies that xy - zw is in the kernel of

$$\mathbf{C}[x,y,z,w] \to \mathbf{C}[\sigma^{\vee} \cap M].$$

In fact, xy - zw generates the kernel, so

$$U_{\sigma} = \mathbf{V}(xy - zw) \subset \mathbf{C}^4$$
.

This is the toric variety of Example 3.3.

In general, $\mathbb{C}[\sigma^{\vee} \cap M]$ is the *coordinate* ring of U_{σ} . This is the ring of polynomial functions on the affine variety U_{σ} .

Thus $\mathbf{C}[\sigma^{\vee} \cap M]$ tells us which characters on $(\mathbf{C}^*)^n$ extend to functions defined on all of U_{σ} .

6. Normality

A variety is *normal* if its local rings are integrally closed in their fields of fractions. The affine variety U_{σ} is normal.

Question: When is an affine toric variety normal?

Example 6.1. Consider

The generators of $\sigma^{\vee} \cap M$ are $m_i = (1, i)$ for i = 0, ..., 4.

 $U_{\sigma} \subset \mathbf{C}^5$ is the Zariski closure of the image of $(\mathbf{C}^*)^2 \to \mathbf{C}^5$ defined by

$$(t, u) \mapsto (t, tu, tu^2, tu^3, tu^4).$$

What if we omit some of the m_i ?

1. m_0, m_4 give $(\mathbf{C}^*)^2 \to \mathbf{C}^2$ where $(t, u) \mapsto (t, tu^4)$.

The Zariski closure is \mathbb{C}^2 but the map is 4-to-1 and m_0, m_4 don't generate \mathbb{Z}^2 . Messed up the lattice.

2. m_0, m_1, m_4 give $(\mathbf{C}^*)^2 \to \mathbf{C}^3$ where $(t, u) \mapsto (t, tu, tu^4)$.

The Zariski closure is $x^3z = y^4$. The map is 1-to-1 and m_0, m_1, m_4 generate \mathbf{Z}^2 . Not normal since codim(sing) = 1.

Let $\sigma \subset N_{\mathbf{R}} = \mathbf{R}^n$ be a strongly convex rational polyhedral cone. Given $m_i \in \sigma^{\vee} \cap M$ for $i = 1, ..., \ell$, the χ^{m_i} give

$$(\mathbf{C}^*)^n \longrightarrow \mathbf{C}^\ell$$
.

Theorem 6.2. The Zariski closure of the image of this map is the normal affine toric variety U_{σ} determined by σ and N if and only if $\sigma^{\vee} \cap M$ is generated over $\mathbf{Z}_{\geq 0}$ by m_i for $i=1,\ldots,\ell$.

This shows that an affine toric variety is normal precisely when you use *all* lattice points in the dual cone.

7. Fans and Toric Varieties

A fan is a finite collection Σ of cones in $N_{\mathbf{R}}$ with the properties:

- Each $\sigma \in \Sigma$ is a strongly convex rational polyhedral cone.
- If $\sigma \in \Sigma$ and τ is a face of σ , then $\tau \in \Sigma$.
- If $\sigma, \tau \in \Sigma$, then $\sigma \cap \tau$ is a face of each. Each $\sigma \in \Sigma$ gives the affine toric variety U_{σ} , and if τ is a face of σ , then U_{τ} is a Zariski open subset of U_{σ} .

Definition 7.1. Given a fan Σ in $N_{\mathbf{R}}$, X_{Σ} is the variety obtained from the affine varieties U_{σ} , $\sigma \in \Sigma$, by gluing together U_{σ} and U_{τ} along their common open subset $U_{\sigma \cap \tau}$ for all $\sigma, \tau \in \Sigma$.

Example 7.2. For $\sigma \subset N_{\mathbb{R}}$, we get a fan by taking faces of σ (including σ). The toric variety of this fan is U_{σ} .

Example 7.3. The fan for P^1 is:

•

The cones $\sigma_1 = [0, \infty)$ and $\sigma_2 = (-\infty, 0]$ give U_1 with coordinate ring $\mathbf{C}[t]$ and U_2 with coordinate ring $\mathbf{C}[t^{-1}]$, which patch in the usual way to give \mathbf{P}^1 .

Example 7.4. For a basis e_1, \ldots, e_n of $N = \mathbf{Z}^n$, set $e_0 = -e_1 - \cdots - e_n$. Then \mathbf{P}^n is the toric variety of the fan whose cones are generated by all proper subsets of $\{e_0, e_1, \ldots, e_n\}$. When n = 2, this fan appeared in Example 3.4.

Example 7.5. The fan for $\mathbf{P}^1 \times \mathbf{P}^1$ is:

8. Properties of Toric Varieties

There are one-to-one correspondences between the following:

- The limits $\lim_{t\to 0} \lambda^u(t)$ for $u \in |\Sigma| = \bigcup_{\sigma \in \Sigma} \sigma$ ($|\Sigma|$ is the *support* of Σ).
- The cones $\sigma \in \Sigma$.
- The orbits of the torus action on X_{Σ} .

The correspondences is as follows: An orbit corresponds to a cone σ iff $\lim_{t\to 0} \lambda^u(t)$ exists and lies in the orbit for all u in the relative interior of σ . For an orbit $\operatorname{orb}(\sigma)$, we have:

- $\dim \sigma + \dim \operatorname{orb}(\sigma) = n$.
- $orb(\sigma) \subset \overline{orb(\tau)}$ if and only if $\tau \subset \sigma$.

Theorem 8.1. Let X_{Σ} be the toric variety of a fan Σ in $N_{\mathbb{R}}$. Then:

- X_{Σ} is compact $\Leftrightarrow |\Sigma| = N_{\mathbf{R}}$.
- X_{Σ} is smooth \Leftrightarrow all $\sigma \in \Sigma$ are smooth (generated by a subset of a **Z**-basis).
- X_{Σ} is simplicial (has finite quotient singularities) \Leftrightarrow all Σ are simplicial (generated by a subset of a **Q**-basis).

9. Homogeneous Coordinates

Assign a variable to each 1-dimensional cone in the fan of X_{Σ} . Thus:

$$ho_1,\ldots,
ho_r$$
 1-dim cones n_1,\ldots,n_r primitive generators D_1,\ldots,D_r orbit closures in X_{Σ} x_1,\ldots,x_r variables.

A monomial $\Pi_i x_i^{a_i}$ gives a divisor $D = \sum_i a_i D_i$, so we write $x^D = \Pi_i x_i^{a_i}$. Given $x^E = \Pi_i x_i^{b_i}$, define $\deg(x^D) = \deg(x^E)$ $\iff D = E + \operatorname{div}(\chi^m)$ for some $m \in M$ $\iff a_i = b_i + \langle n_i, m \rangle$ for some $m \in M$. This uses $\operatorname{div}(\chi^m) = \sum_i \langle n_i, m \rangle D_i$

 $deg(x^D)$ lies in the *Chow group*

$$A_{n-1}(X_{\Sigma}) = \mathbf{Z}^r/\alpha(M),$$

where $\alpha: M \to \mathbf{Z}^r$ is defined by

$$\alpha(m) = (\langle n_1, m \rangle, \dots, \langle n_r, m \rangle).$$

Then $C[x_1,...,x_r]$ is the homogeneous coordinate ring of X_{Σ} .

Example 9.1. For \mathbf{P}^n , we get the ring $\mathbf{C}[x_0,\ldots,x_n]$ with the usual grading.

Example 9.2. For $\mathbf{P}^1 \times \mathbf{P}^1$, we get divisors D_1, D_2 corresponding to the horizontal rays in the fan and divisors D_3, D_4 corresponding to vertical ones. Let the corresponding variables be x_1, x_2, x_3, x_4 .

To grade this, define $\mathbf{Z}^4 \to \mathbf{Z}^2$ by

$$(a_1, a_2, a_3, a_4) \mapsto (a_1 + a_2, a_3 + a_4).$$

The kernel of this map is the image of α . Hence

$$\deg(x_1^{a_1}x_2^{a_2}x_3^{a_3}x_4^{a_4}) = (a_1 + a_2, a_3 + a_4).$$

This is precisely the usual bigrading on $C[x_1, x_2; x_3, x_4]$, where each graded piece consists of bihomogeneous polynomials in x_1, x_2 and x_3, x_4 .

To get coordinates, we need an analog of the "irrelevant" ideal $\langle x_0, \ldots, x_n \rangle$ for \mathbf{P}^n . We do this as follows.

Given $\sigma \in \Sigma$, set

$$x^{\widehat{\sigma}} = \prod_{n_i \notin \sigma} x_i$$

and $B = \langle x^{\widehat{\sigma}} \mid \sigma \in \Sigma \rangle$. This uses *all* cones of the fan, while the homogeneous coordinate ring uses only the 1-dim ones.

Also set $G = \operatorname{Hom}_{\mathbf{Z}}(A_{n-1}(X_{\Sigma}), \mathbf{C}^*)$. This is the kernel of the dual of the map $(\mathbf{C}^*)^r \to (\mathbf{C}^*)^n$ induced by α .

 $G \subset (\mathbf{C}^*)^r$ implies that G acts naturally on \mathbf{C}^r and leaves $\mathbf{V}(B)$ invariant. Thus we can form the quotient

$$(\mathbf{C}^r \setminus \mathbf{V}(B))/G.$$

Theorem 9.3. Let X_{Σ} be toric variety where n_1, \ldots, n_{ℓ} span $N_{\mathbf{R}}$. Then:

- 1. X_{Σ} is the universal categorical quotient $(\mathbf{C}^r \setminus \mathbf{V}(B))/G$.
- 2. $(\mathbf{C}^r \setminus \mathbf{V}(B))/G$ is a geometric quotient if and only if X_{Σ} is simplicial.

We have $(\mathbf{C}^*)^n \simeq (\mathbf{C}^*)^r/G$ by definition. Then $(\mathbf{C}^*)^r \subset \mathbf{C}^r$ induces

$$(\mathbf{C}^*)^n \simeq (\mathbf{C}^*)^r/G \subset (\mathbf{C}^r \setminus \mathbf{V}(B))/G \simeq X_{\Sigma}.$$

Since $(\mathbf{C}^*)^r$ acts on $\mathbf{C}^r \setminus \mathbf{V}(B)$, $(\mathbf{C}^*)^n$ acts on X_{Σ} . And categorical quotients preserve normality, so that the quotient is a normal toric variety.

Example 9.4. For \mathbf{P}^n , we get the usual representation $\mathbf{P}^n \simeq (\mathbf{C}^{n+1} \setminus \{0\})/\mathbf{C}^*$.

Example 9.5. For $P^1 \times P^1$, we have $B = \langle x_1 x_3, x_1 x_4, x_2 x_3, x_2 x_4 \rangle$. Then

$$V(B) = (\{0\} \times C^2) \cup (C^2 \times \{0\})$$

and $G \simeq (\mathbf{C}^*)^2$ acts on \mathbf{C}^4 via

$$(\lambda, \mu) \cdot (x_1, x_2, x_3, x_4) = (\lambda x_1, \lambda x_2, \mu x_3, \mu x_4).$$

Hence the quotient of Theorem 9.3 is

$$((\mathbf{C}^2 \setminus \{0\})/\mathbf{C}^*) \times ((\mathbf{C}^2 \setminus \{0\})/\mathbf{C}^*),$$

which is how one represents $\mathbf{P}^1 \times \mathbf{P}^1$ as a quotient.

Example 9.7. (Simplicial, Not Smooth) Let $\sigma \subset N_{\mathbf{R}} = \mathbf{R}^2$ be generated by $n_1 = (1,0)$, $n_2 = (1,2)$. The homogeneous coordinate ring is $\mathbf{C}[x_1,x_2]$, where x_1,x_2 have degree 1 mod 2. Furthermore:

- **1.** $U_{\sigma} = V(xz y^2) \subset \mathbb{C}^3$.
- **2.** G acts on \mathbb{C}^2 by multiplication by ± 1 .
- **3.** The ring of invariants is $C[x_1, x_2]^G = C[x_1^2, x_1x_2, x_2^2].$
- **4.** The quotient $\pi: \mathbb{C}^2 \to U_{\sigma}$ is the map $(x_1, x_2) \to (x_1^2, x_1 x_2, x_2^2)$.

Note that $\mathbb{C}^2 \to U_{\sigma}$ is 2-to-1. This is a a finite quotient singularity.

Example 9.8. (Not Simplicial)

Let σ be the 3-dim cone of Example 3.3. The ring $\mathbf{C}[x_1, x_2, x_3, x_4]$ is graded by \mathbf{Z} , where the variables have degrees

$$deg(x_1) = deg(x_4) = 1$$

 $deg(x_2) = deg(x_3) = -1$.

Furthermore:

- 1. $U_{\sigma} = \mathbf{V}(xy zw) \subset \mathbf{C}^4$.
- 2. $G = \mathbf{C}^*$ acts via $\lambda \cdot (x_1, x_2, x_3, x_4) = (\lambda x_1, \lambda^{-1} x_2, \lambda^{-1} x_3, \lambda x_4)$.
- 3. The invariant ring is $C[x_1, x_2, x_3, x_4]^G$ = $C[x_1x_2, x_3x_4, x_1x_3, x_2x_4]$.
- **4.** The quotient map $\pi : \mathbb{C}^2 \to U_{\sigma}$ is $(x_1, x_2, x_3, x_4) \mapsto (x_1 x_2, x_3 x_4, x_1 x_3, x_2 x_4).$

If $p \in U_{\sigma}$, then:

- $p \neq 0 \Rightarrow \pi^{-1}(p)$ is a G-orbit.
- $p = 0 \Rightarrow \pi^{-1}(p) = (\mathbf{C} \times \{0\} \times \{0\} \times \mathbf{C}) \cup (\{0\} \times \mathbf{C} \times \mathbf{C} \times \{0\}).$

In general, a "categorical quotient" is constructed using the ring of invariants under the group action.

10. The Toric Variety of a Polytope

A lattice polytope Δ in $M_{\mathbf{R}} = \mathbf{R}^n$ is the convex hull of a finite subset of M. We represent Δ as an intersection of halfspaces as follows.

For each facet F of Δ , there is an inward normal primitive vector $n_F \in N$ and $a_F \in \mathbf{Z}$ such that

$$\Delta = \bigcap_{F \text{ is a facet}} \{m \in M_{\mathbf{R}} \mid \langle m, n_F \rangle \ge -a_F \}.$$

Given a face \mathcal{F} of Δ , we let $\sigma_{\mathcal{F}}$ be the cone generated by n_F for all facets F containing \mathcal{F} . Then

$$\Sigma_{\Delta} = \{ \sigma_{\mathcal{F}} \mid \mathcal{F} \text{ is a face of } \Delta \}$$

is the *normal fan* of Δ . This gives a toric variety X_{Δ} .

Example 10.1. Consider the unit square in $M_{\mathbf{R}} = \mathbf{R}^2$. The inward normals (not to scale) are:

The four vertices give four 2-dim cones in the normal fan. For example, the vertex (1,1) gives the 2-dim cone

From here, it is easy to see that we get the fan of Example 7.5. Thus the toric variety is $\mathbf{P}^1 \times \mathbf{P}^1$.

Theorem 10.2. The normal toric variety of a fan Σ in $N_{\mathbf{R}} \simeq \mathbf{R}^n$ is projective if and only if Σ is the normal fan of an n-dimensional lattice polytope in $M_{\mathbf{R}}$.

We also have a 1-to-1 correspondence

$$\sigma_{\mathcal{F}} \in \Sigma_{\Delta} \longleftrightarrow \mathcal{F} \subset \Delta$$

between cones and faces such that

$$\dim \sigma_{\mathcal{F}} + \dim \mathcal{F} = n.$$

Let m_1, \ldots, m_ℓ be the lattice points of Δ . Then sending $(t_1, \ldots, t_n) \in (\mathbf{C}^*)^n$ to

$$\left(\chi^{m_1}(t_1,\ldots,t_n),\ldots,\chi^{m_\ell}(t_1,\ldots,t_n)\right)\in\mathbf{P}^{\ell-1}$$

extends to $X_{\Delta} \to \mathbf{P}^{\ell-1}$. When $\nu \gg 0$, this map for $\nu \Delta$ is an embedding.

11. Polytopes and Homogeneous Coordinates

Fix a lattice polytope $\Delta \subset M_{\mathbf{R}} = \mathbf{R}^n$. Since 1-dimensional cones of the normal fan correspond to facets of Δ , we get:

$$ho_1, \ldots,
ho_r$$
 1-dim cones of normal fan F_1, \ldots, F_r facets of lattice polytope x_1, \ldots, x_r facet variables.

Given a vertex v, the *vertex monomial* $x^{\hat{v}}$ is the product of variables whose facets miss the v. These generate B, so that $\mathbf{C}^r \setminus \mathbf{V}(B)$ consists of points where at least one vertex monomial is nonzero.

 Δ gives some interesting monomials in the coordinate ring. Let

$$\Delta = \bigcap_{i} \{ m \in M_{\mathbf{R}} \mid \langle m, n_i \rangle \ge a_i \}$$

and let $D = \sum_i a_i D_i$. If $m \in \Delta \cap M$, then

$$\mathbf{x}^m = \prod_i x_i^{\langle m, n_i \rangle + a_i}$$

is the Δ -homogenization of χ^m . For any monomial x^E , $\deg(x^E) = \deg(x^D)$ iff

$$x^E = \mathbf{x}^m$$
 for some $m \in \Delta \cap M$.

This gives a 1-to-1 correspondence between monomials of degree $\deg(x^D)$ and lattice points of Δ .

Now consider the map

$$\mathbf{x} = (x_1, \dots, x_r) \rightarrow (\mathbf{x}^{m_1}, \dots, \mathbf{x}^{m_\ell}).$$

This map has two properties:

- $\mathbf{x} \notin \mathbf{V}(B)$ implies $\mathbf{x}^{m_i} \neq 0$ for some i.
- Recall $G \subset (\mathbf{C}^*)^r$, so $\mu \in G$ gives $\mu \mathbf{x} = (\mu_1 x_1, \dots, \mu_r x_r)$. Then for each $m_i \in \Delta \cap M$,

$$(\mu \mathbf{x})^{m_i} = \mu_{\Delta} \mathbf{x}^{m_i},$$

where $\mu_{\Delta} = \mu_1^{a_1} \cdots \mu_r^{a_r}$.

It follows that we get well-defined map

$$X_{\Delta} = (\mathbf{C}^r \setminus \mathbf{V}(B))/G \longrightarrow \mathbf{P}^{\ell-1}.$$

If one restricts this map to $(\mathbf{C}^*)^n \subset X_{\Delta}$, the result is *exactly* the map given at the end of Section 10. Using $(n-1)\Delta$ instead of Δ gives an embedding.