
Homework, Topology, fall 1998. Version December 1.

Here are 25 homework problems. Correct and well-written solutions of at least one
half of these will be enough for the mark ”godkänd” or ”3”. For higher marks more will
be needed (more solutions or possibly passing some other kind of examination).

1. Find all the limit points of the following subsets of R.
a) {1/m + 1/n : m,n = 1, 2, ...}.
b) { sin n

n : n = 1, 2, ...}.

2. Let A be dense and U open in a topological space. Show that U ⊂ clos(A ∩ U).

3. Show that every closed set in R2 is the boundary of some subset of R2.

4. The following family of sets forms a basis of a topology τ on R: the sets (x−ε, x+ε)
for all x ∈ R \ {0} and all ε with 0 < ε < |x| together with the sets (−ε, ε) ∪ (−∞,−n) ∪
(n,∞) for all ε > 0, n ∈ N.

Draw a picture of (R, τ) embedded in R2 in such a way that τ corresponds to the
subspace topology of R2.

5. a) Show that the family of all half-open intervals [a, b) (where a, b ∈ R) forms a
basis of a topology τ on R.

b) Show that the rational numbers are dense in (R, τ).
c) Does there exist a countable basis for τ?
d) Let σ denote the usual topology of R. Set f(x) = sin x. Is f continuous considered

as a function f : (R, σ) → (R, τ)?
as a function f : (R, τ) → (R, σ)?
as a function f : (R, τ) → (R, τ)?

6. a) Suppose a topological space X has a countable basis. Show that X is separable.
b) Does the converse implication (from separable to the existence of a countable basis)

hold? (Hint: problem 5.)
c) Show that the converse (in b)) holds in case X is a metric space.

7. Let A be a subset of a topological space X. Show that at most 14 different sets
(including A itself) can be obtained from A through the operations of taking closure and
taking complement with respect to X.

Find a subset A of R (with its usual topology) so that the number 14 above really is
attained.

1



8. Construct a topological space X and a compact subset K of it such that the closure
of K is not compact.

9. Recall that a net in a topological space X is a map Λ → X, where Λ is a directed
set, i.e. a set having a relation ≺ such that (i) α ≺ β and β ≺ γ implies α ≺ γ and (ii)
for every two α, β ∈ Λ there exists γ ∈ Λ with α ≺ γ and β ≺ γ. Recall also that the
net, write it as Λ 3 α 7→ xα ∈ X, converges to a point x ∈ X if and only if for every
neighbourhood U of x there is a γ ∈ Λ such that xα ∈ U for all α ∈ Λ with γ ≺ α. We
then write xα → x.

a) Show that a function f : X → Y is continuous if and only if for every convergent
net xα → x in X we have f(xα) → f(x) (in Y ).

b) Give an example showing that the statement in a) is false (in general) if we replace
the word ”net” by ”sequence”.

c) Show that a topological space X is Hausdorff if and only if every net in X converges
to at most one point. (So if X is not Hausdorff you have to construct a net converging to
two points simultaneously.)

10. Show that every compact Hausdorff space is homeomorphic to a closed subset of
the product space [0, 1]A, for some set A.

11. Show that in a topological space X a sequence (xn) converges to a point x if and
only if every subsequence has in its turn a subsequence which converges to x. (The same
statement applies to nets.)

12. Let X be a suitable set of functions (0, 1) → R, e.g. the set of Riemann or
Lebesgue integrable functions. Recall that there exists a topology on X such that con-
vergence fn → f in this topology is the same as pointwise convergence (i.e. convergence
fn(x) → f(x) for each individual x ∈ (0, 1)). This is the topology gotten by regarding X
as a subspace of the product space R(0,1).

Now, show that there is no topology on X which corresponds to convergence almost
everywhere (a.e.). By definition, fn → f a.e. if there exists a nullset (set of Lebesgue
measure zero) N such that fn(x) → f(x) for every x ∈ (0, 1) \N .

Hint: Construct a sequence fn such that, for each x, fn(x) = 1 for infinitely many
values of n but such that, still, every subsequence of fn has a subsequence which converges
a.e. to zero. Then use problem 11.

13. Set 10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} provided with the discrete topology and 10N

provided with the product topology (N = {1, 2, ...}). Thus 10N is a compact topological
space. We have the ”decimal expansion map” (or rather its inverse)

f : 10N → [0, 1]

defined by

(a1, a2, ...) 7→ 0, a1a2... =
∞∑

n=1

an10−n.

Clearly f is surjective (each number has a decimal expansion), but not quite injective
(because certain numbers have two decimal expansions, e.g. 0, 300000... = 0, 299999....).
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a) Show that f is continuous.
If f were injective it would follow that f were a homeomorphism. We now restrict

f to a smaller space so that it becomes injective. Take e.g. A ⊂ 10N to consist of those
sequences which do not end like 99999..... Then

f |A : A → [0, 1)

is injective, and surjective, and f |A is of course still continuous (with the subset topology
on A).

b) Is A closed in 10N? open? dense?.
c) Is the inverse (f |A)−1 : [0, 1) → A continuous? If so, f |A is a homoemorphism and

A and [0, 1) are homeomorphic. Is this reasonable?

14. We define a topological space X, the sheaf of germs of analytic functions as
follows. X consists of all pairs

p0 = (z0, {an}∞n=0)

where z0 ∈ C, an ∈ C and
lim sup(|an|)1/n < ∞.

The latter means that the an are the coefficients of a convergent power series.
With each pair p0 as above we associate the analytic function

f(z) =
∞∑

n=0

an(z − z0)n,

defined in the open disc B(z0, r), where 1/r = lim sup(|an|)1/n. For each z1 ∈ B(z0, r) we
may expand f in a power series centered at z1, with coefficients bn = f (n)(z1)/n!. We then
get a new element in X, namely p1 = (z1, {bn}). Note that the radius of convergence for
this pair will be at least r− |z0 − z1|, but it may be larger. Now we define the topology of
X by saying that a typical basic open neighbourhood of p0 shall consist of all p1 as above
for z1 in a corresponding neighbourhood U ⊂ B(z0, r) of z0.

Now X is a large topological space with a natural projection map X → C, p0 7→ z0

which is a local homeomorphism.
Task: Explain, in terms of analytic functions, what are the components X. In partic-

ular, answer the following question: which of the pairs below lie in the same component.

p1 = (1, {0, 1,−1/2, 1/3,−1/4, .....})

p2 = (1, {πi, 1,−1/2, 1/3, .....})
p3 = (1, {2πi, 1,−1/2, 1/3, .....})

p4 = (−1, {πi,−1,−1/2,−1/3, .....})
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15. Recall (Armstrong p. 67) that a surjective continuous map which is either open
or closed (or both) is an identification map. Give an example of an identification map
which is neither open, nor closed.

16. Let S2 be the unit sphere in R3 and define f : S2 → R4 by

f(x, y, z) = (x2 − y2, xy, xz, yz).

Show that f induces an embedding of the projective plane into R4. Can the projective
plane be embedded in R3?

17. Let S1 denote the unit circle in the plane. Suppose f : S1 → S1 is a map which
is not homotopic to the identity map. Prove that f(x) = −x for some point x ∈ S1.

18. A topological space X is said to have the fixed-point property if every continuous
map from X to itself has at least one fixed point. Which of the following spaces have the
fixed-point property:

a) the 2-sphere;
b) the torus;
c) the open unit disc;
d) the one-point union of two circles;
e) the Hilbert cube (i.e., [0, 1]N with the product topology)?

19. Let P1(C) denote the one-dimensional complex projective space, i.e., the identifi-
cation space obtained from C2\{0} by identifying all points which lie on the same complex
line. Show that P1(C) is identical, as a topological space, with the one-point compact-
ification Ĉ = C ∪ {∞} of the complex plane. (The complex structure on C extends in
a natural way to the point at infinity, and provided with this structure Ĉ, or P1(C), is
called the Riemann sphere.)

20. a) Let p(z) be a polynomial of degree ≥ 1 in the complex variable z. Then p is
continuous as a function C → C. Show that p extends to a continuous function Ĉ → Ĉ.
(See problem 19 for notation.)

b) Can the exponential function exp : C → C (exp(z) = ez) also be extended this
way?

c) Recall from complex analysis that every nonconstant analytic function is an open
mapping. In particular, this is true for p, in fact even at the point of infinity, i.e., as a
map p : Ĉ → Ĉ. Show that every open continuous map between two compact, connected
Hausdorff spaces is surjective, and conclude that the equation p(z) = 0 has at least one
solution z ∈ C (one form of the fundamental theorem of algebra).
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21. Construct a triangulation for Klein’s bottle and then compute the Euler charac-
teristic for it.

22. Problem 22, p.169, in Armstrong.

23. Let X be a topological space and U = {Ui} a finite open cover of X. The nerve
N(U) of U is, by definition, the set of all subcollections {Ui0 , ..., Uik

} (for various k ≥ 0)
such that Ui0 ∩ ... ∩ Uik

6= ∅.
a) Check that U is an abstract complex. (By an abstract complex is meant simply a

finite set V (of ”vertices”) and a collection S of nonempty subsets (”simplexes”) of V such
that s ∈ S and s′ ⊂ s imply s′ ∈ S.) Remark: The complex N(U) is a basic ingredient in
the construction of the Čech homology and cohomology groups.

b) Now, let K be an ordinary (geometric) complex in some Euclidean space Rn. Then
the set of open stars of the vertices of K is a finite open cover of |K|. Thus we now have
two complexes, the nerve of the open stars (abstract) and K itself (geometric). How do
they relate to each other?

c) Let X be a simple topological space, e.g. the one-point union of two circles, choose
a finite open cover U of X and compute the edge group E(N(U)) of the nerve of U .
(Clearly, the edge group makes sense also for an abstract complex.) Is it isomorphic to the
fundamental group of X? The answer may depend on the choice of cover. For a ”good”
cover (meaning that all intersections of sets in U are contractible) the groups are supposed
to be isomorphic.

24. Let 0 < α < 2π and consider the points zn = eiαn on the unit circle C in the
complex plane (n = 1, 2, ...). The sequence (zn) defines a filter F in a canonical way,
namely as follows: F ∈ F if and only if there exists m such that zn ∈ F for all n ≥ m.

a) Does F converge to some point?
b) Since C is compact there must anyway exist a refinement G of F (i.e., F ⊂ G)

which converges to some point. Find such a G, which converges to, say, 1 ∈ C.
c) Indeed, there should even be an ultrafilter G ⊃ F which converges. Can you find

such a G? (Should be possible if α is a rational multiple of π, otherwise it might be more
difficult...)

25. Let X = 2A, where 2 = {0, 1} has the discrete topology and A is any nonempty
set. By Tychonov’s theorem the space X, when provided with the product topology, is
compact for every choice of A. The aim of this problem is to show (if possible?) that X
is sequentially compact if and only if A is finite or countable. (Recall that a space being
sequentially compact means that every infinite sequence has a convergent subsequence.)

a) Show that if A is at most countable, then X is infact sequentially compact. (Not
so difficult.)

b) Show that if A has the cardinality of the continuum (e.g. A = R), then X is not
sequentially compact. (Maybe difficult, but not impossible.)

c) Is it true that X is not sequentially compact for every uncountable set A?
Hint: If you can show that there exists an injective function R → A, then you get

reduced to case b). However, to prove existence of such a function in general is not easy.
(You may need the Christmas holidays, and much more.... )
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