
Homework in Topology, Spring 2009.

Björn Gustafsson

April 29, 2009

1 Generalities

To pass the course you should hand in correct and well-written solutions of
approximately 10-15 of the problems. For higher grades more will be needed.

2 Problems on point set topology

1. Find all the limit points of the following subsets of R.

a) {1/m + 1/n : m,n = 1, 2, ...}.
b) { sin n

n
: n = 1, 2, ...}.

2. Let A be dense and U open in a topological space. Show that U ⊂
A ∩ U .

3. Show that every closed set in R2 is the boundary of some subset of R2.

4. The following family of sets forms a basis of a topology τ on R: the
sets (x− ε, x+ ε) for all x ∈ R\{0} and all ε with 0 < ε < |x| together
with the sets (−ε, ε) ∪ (−∞,−n) ∪ (n,∞) for all ε > 0, n ∈ N.

Draw a picture of (R, τ) embedded in R2 in such a way that τ corre-
sponds to the subspace topology of R2.

5. a) Show that the family of all half-open intervals [a, b) (where a, b ∈ R)
forms a basis of a topology τ on R.

b) Show that the rational numbers are dense in (R, τ).

c) Does there exist a countable basis for τ?

d) Let σ denote the usual topology of R. Set f(x) = sin x. Is f conti-
nuous considered as a function f : (R, σ) → (R, τ)?
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as a function f : (R, τ) → (R, σ)?

as a function f : (R, τ) → (R, τ)?

6. An arithmetic progression in N = {1, 2, 3, . . .} is a set of the form
{a + nb : n = 0, 1, 2, 3, . . .} for some fixed a, b ∈ N, a ≤ b. Show that
these sets form a basis of a topology on N, and use this topology to
prove that the set of prime numbers is infinite.

Is the arithmetic progression topology Hausdorff? Is it metrizable (may-
be difficult question)? Is N compact with it?

7. a) Suppose a topological space X has a countable basis. Show that X
is separable.

b) Does the converse implication (from separable to the existence of a
countable basis) hold? (Hint: problem 5.)

c) Show that the converse (in b)) holds in case X is a metric space.

8. Construct a topological space X and a compact subset K of it such
that the closure of K is not compact.

9. Recall that a net in a topological space X is a map Λ → X, where Λ
is a directed set, i.e. a set having a relation ≺ such that (i) α ≺ β
and β ≺ γ implies α ≺ γ and (ii) for every two α, β ∈ Λ there exists
γ ∈ Λ with α ≺ γ and β ≺ γ. Recall also that the net, write it as
Λ 3 α 7→ xα ∈ X, converges to a point x ∈ X if and only if for every
neighbourhood U of x there is a γ ∈ Λ such that xα ∈ U for all α ∈ Λ
with γ ≺ α. We then write xα → x.

a) Show that a function f : X → Y is continuous if and only if for
every convergent net xα → x in X we have f(xα) → f(x) (in Y ).

b) Give an example showing that the statement in a) is false (in general)
if we replace the word net by sequence.

c) Show that a topological space X is Hausdorff if and only if every
net in X converges to at most one point. (So if X is not Hausdorff you
have to construct a net converging to two points simultaneously.)

10. Show that every compact Hausdorff space is homeomorphic to a closed
subset of the product space [0, 1]A, for some set A. (Difficult.)

11. Show that in a topological space X a sequence (xn) converges to a point
x if and only if every subsequence has in its turn a subsequence which
converges to x.
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12. Let X be a suitable set of functions (0, 1) → R, e.g. the set of Riemann
or Lebesgue integrable functions. Recall that there exists a topology on
X such that convergence fn → f in this topology is the same as poin-
twise convergence (i.e. convergence fn(x) → f(x) for each individual
x ∈ (0, 1)). This is the topology gotten by regarding X as a subspace
of the product space R(0,1).

Now, show that there is no topology on X which corresponds to conver-
gence almost everywhere (a.e.). By definition, fn → f a.e. if there exists
a nullset (set of Lebesgue measure zero) N such that fn(x) → f(x) for
every x ∈ (0, 1) \N .

Hint: Construct a sequence fn such that, for each x, fn(x) = 1 for
infinitely many values of n but such that, still, every subsequence of fn

has a subsequence which converges a.e. to zero. Then use problem 12.

13. Set 10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} provided with the discrete topology
and 10N provided with the product topology. Thus 10N is a compact
topological space. We have the decimal expansion map”(or rather its
inverse)

f : 10N → [0, 1]

defined by

(a1, a2, ...) 7→ 0, a1a2... =
∞∑

n=1

an10−n.

Clearly f is surjective (each number has a decimal expansion), but not
quite injective (because certain numbers have two decimal expansions,
e.g. 0, 300000... = 0, 299999....).

a) Show that f is continuous.

If f were injective it would follow that f were a homeomorphism. We
now restrict f to a smaller space so that it becomes injective. Take e.g.
A ⊂ 10N to consist of those sequences which do not end like 99999.....
Then

f |A : A → [0, 1)

is injective, and surjective, and f |A is of course still continuous (with
the subset topology on A).

b) Is A closed in 10N? open? dense?.

c) Is the inverse (f |A)−1 : [0, 1) → A continuous? If so, f |A is a homo-
emorphism and A and [0, 1) are homeomorphic. Is this reasonable?
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14. We define a topological space X, the sheaf of germs of analytic
functions as follows. X consists of all pairs

p0 = (z0, {an}∞n=0)

where z0 ∈ C, an ∈ C and

lim sup(|an|)1/n < ∞.

The latter means that the an are the coefficients of a convergent power
series.

With each pair p0 as above we associate the analytic function

f(z) =
∞∑

n=0

an(z − z0)
n,

defined in the open disc B(z0, r), where 1/r = lim sup(|an|)1/n. For each
z1 ∈ B(z0, r) we may expand f in a power series centered at z1, with
coefficients bn = f (n)(z1)/n!. We then get a new element in X, namely
p1 = (z1, {bn}). Note that the radius of convergence for this pair will be
at least r−|z0−z1|, but it may be larger. Now we define the topology of
X by saying that a typical basic open neighbourhood of p0 shall consist
of all p1 as above with z1 in some neighbourhood U ⊂ B(z0, r) of z0.

Now X is a topological space with a natural projection map X → C,
p0 7→ z0, which is a local homeomorphism.

Task: Explain, in terms of analytic functions, what are the components
X. In particular, answer the following question: which of the pairs below
belong to the same component?

p1 = (1, {0, 1,−1/2, 1/3,−1/4, .....})
p2 = (1, {πi, 1,−1/2, 1/3, .....})
p3 = (1, {2πi, 1,−1/2, 1/3, .....})

p4 = (−1, {πi,−1,−1/2,−1/3, .....})

3 Problems on algebraic topology

15. Recall (Armstrong p. 67) that a surjective continuous map which is
either open or closed (or both) is an identification map. Give an example
of an identification map which is neither open, nor closed.
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16. Let S2 be the unit sphere in R3 and define f : S2 → R4 by

f(x, y, z) = (x2 − y2, xy, xz, yz).

Show that f induces an embedding of the (real) projective plane P2

into R4. Can the projective plane be embedded in R3?

17. Let S1 denote the unit circle in the plane. Suppose f : S1 → S1 is a
map which is not homotopic to the identity map. Prove that f(x) = −x
for some point x ∈ S1.

18. A topological space X is said to have the fixed-point property if every
continuous map from X to itself has at least one fixed point. Which of
the following spaces have the fixed-point property:

a) the 2-sphere;

b) the torus;

c) the open unit disc;

d) the one-point union of two circles;

e) the Hilbert cube (i.e., [0, 1]N with the product topology)?

19. Let P1(C) denote the one-dimensional complex projective space, i.e.,
the identification space obtained from C2 \{0} by identifying all points
which lie on the same complex line. Show that P1(C) is identical, as a
topological space, with the one-point compactification Ĉ = C∪{∞} of
the complex plane. (The complex structure on C extends in a natural
way to the point at infinity, and provided with this structure Ĉ, or
P1(C), is called the Riemann sphere.)

20. a) Let p(z) be a polynomial of degree ≥ 1 in the complex variable z.
Then p is continuous as a function C → C. Show that p extends to a
continuous function Ĉ → Ĉ. (See problem 20 for notation.)

b) Can the exponential function exp : C → C (exp(z) = ez) also be
extended this way?

c) Recall from complex analysis that every nonconstant analytic func-
tion is an open mapping. In particular, this is true for p, in fact even
at the point of infinity, i.e., as a map p : Ĉ → Ĉ. Show that every open
continuous map between two compact, connected Hausdorff spaces is
surjective, and conclude that the equation p(z) = 0 has at least one
solution z ∈ C (one form of the fundamental theorem of algebra).
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21. Construct a triangulation for Klein’s bottle and then compute the Euler
characteristic for it.

22. Problem 22, p.169, in Armstrong, namely to decide whether the two
surfaces depicted there are homeomorphic.

23. Let X be a topological space and U = {Ui} a finite open cover of X.
The nerve N(U) of U is, by definition, the set of all subcollections
{Ui0 , ..., Uik} (for various k ≥ 0) such that Ui0 ∩ ... ∩ Uik 6= ∅.
a) Check that U is an abstract complex. (By an abstract complex is
meant a finite set V (of ”vertices”) and a collection S of nonempty
subsets (simplexes”) of V such that s ∈ S and s′ ⊂ s imply s′ ∈ S.)
Remark: The complex N(U) is a basic ingredient in the construction of
the Čech homology and cohomology groups.

b) Now, let K be an ordinary (geometric) complex in some Euclidean
space Rn. Then the set of open stars of the vertices of K is a finite
open cover of |K|. Thus we now have two complexes, the nerve of the
open stars (abstract) and K itself (geometric). How do they relate to
each other?

c) Let X be a topological space, e.g. the one-point union of two circles,
choose a finite open cover U of X and compute the edge group E(N(U))
of the nerve of U . (Clearly, the edge group makes sense also for an
abstract complex.) Is it isomorphic to the fundamental group of X?
The answer may depend on the choice of cover. For a “good”cover
(meaning that all intersections of sets in U are contractible) the groups
are supposed to be isomorphic.

24. Let 0 < α < 2π and consider the points zn = eiαn on the unit circle C
in the complex plane (n = 1, 2, ...). The sequence (zn) defines a filter F
in a canonical way, namely as follows: F ∈ F if and only if there exists
m such that zn ∈ F for all n ≥ m.

a) Does F converge to some point?

b) Since C is compact there must anyway exist a refinement G of F
(i.e., F ⊂ G) which converges to some point. Find such a G, which
converges to, say, 1 ∈ C.

c) Indeed, there should even be an ultrafilter G ⊃ F which converges.
Can you find such a G? (Should be possible if α is a rational multiple
of π, otherwise it might be more difficult...)
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25. Let X = 2A, where 2 = {0, 1} has the discrete topology and A is any
nonempty set. By Tychonov’s theorem the space X, when provided
with the product topology, is compact for every choice of A. The aim
of this problem is to show (if possible?) that X is sequentially compact
if and only if A is finite or countable. (Recall that a space being se-
quentially compact means that every infinite sequence has a convergent
subsequence.)

a) Show that if A is at most countable, then X is infact sequentially
compact. (Not so difficult.)

b) Show that if A has the cardinality of the continuum (e.g. A = R),
then X is not sequentially compact. (Maybe difficult, but not impossib-
le.)

c) Is it true that X is not sequentially compact for every uncountable
set A?

Hint: If you can show that there exists an injective function R → A,
then you get reduced to case b). However, to prove existence of such a
function in general is not easy.
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